This Web Site is Under Construction

About Us

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi. Aenean vulputate eleifend tellus. Aenean leo ligula, porttitor eu, consequat vitae, eleifend ac, enim. Aliquam lorem ante, dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. 

Recent Publications

Pulmonary artery enlargement is associated with right ventricular dysfunction and loss of blood volume in small pulmonary vessels in chronic obstructive pulmonary disease.

Wells MJ, Iyer AS, Rahaghi FN, Bhatt SP, Gupta H, Denney TS, Lloyd SG, Dell'Italia LJ, Nath H, Estepar RSJ, et al. Pulmonary artery enlargement is associated with right ventricular dysfunction and loss of blood volume in small pulmonary vessels in chronic obstructive pulmonary disease. Circ Cardiovasc Imaging. 2015;8(4).Abstract
BACKGROUND: Chronic obstructive pulmonary disease causes significant morbidity and concomitant pulmonary vascular disease and cardiac dysfunction are associated with poor prognosis. Computed tomography-detected relative pulmonary artery (PA) enlargement defined as a PA to ascending aorta diameter ratio >1 (PA:A>1) is a marker for pulmonary hypertension and predicts chronic obstructive pulmonary disease exacerbations. However, little is known about the relationship between the PA:A ratio, pulmonary blood volume, and cardiac function. METHODS AND RESULTS: A single-center prospective cohort study of patients with chronic obstructive pulmonary disease was conducted. Clinical characteristics and computed tomography metrics, including the PA:A and pulmonary blood vessel volume, were measured. Ventricular functions, volumes, and dimensions were measured by cine cardiac MRI with 3-dimensional analysis. Linear regression examined the relationships between clinical characteristics, computed tomography and cardiac MRI metrics, and 6-minute walk distance. Twenty-four patients were evaluated and those with PA:A>1 had higher right ventricular (RV) end-diastolic and end-systolic volume indices accompanied by lower RV ejection fraction (52±7% versus 60±9%; P=0.04). The PA:A correlated inversely with total intraparenchymal pulmonary blood vessel volume and the volume of distal vessels with a cross-sectional area of <5 mm(2). Lower forced expiratory volume, PA:A>1, and hyperinflation correlated with reduced RV ejection fraction. Both PA diameter and reduced RV ejection fraction were independently associated with reduced 6-minute walk distance. CONCLUSIONS: The loss of blood volume in distal pulmonary vessels is associated with PA enlargement on computed tomography. Cardiac MRI detects early RV dysfunction and remodeling in nonsevere chronic obstructive pulmonary disease patients with a PA:A>1. Both RV dysfunction and PA enlargement are independently associated with reduced walk distance. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00608764.

Chest CT measures of muscle and adipose tissue in COPD: gender-based differences in content and in relationships with blood biomarkers.

Diaz AA, Zhou L, Young TP, McDonald M-L, Harmouche R, Ross JC, Estepar RSJ, Wouters EFM, Coxson HO, MacNee W, et al. Chest CT measures of muscle and adipose tissue in COPD: gender-based differences in content and in relationships with blood biomarkers. Acad Radiol. 2014;21(10):1255-61.Abstract
RATIONALE AND OBJECTIVES: Computed tomography (CT) of the chest can be used to assess pectoralis muscle area (PMA) and subcutaneous adipose tissue (SAT) area. Adipose tissue content is associated with inflammatory mediators in chronic obstructive pulmonary disease (COPD) subjects. Based on gender differences in body composition, we aimed to assess the hypothesis that in subjects with COPD, the relationships between PMA, SAT, and blood biomarkers of inflammation differ by gender. MATERIALS AND METHODS: We compared chest CT measures of PMA and SAT on a single slice at aortic arch and supraesternal notch levels from 73 subjects (28 women) with COPD between genders. The relationships of PMA and SAT area to biomarkers were assessed using within-gender regression models. RESULTS: Women had a lesser PMA and a greater SAT area than men (difference range for PMA, 13.3-22.8 cm²; for SAT, 11.8-12.4 cm²; P < .05 for all comparisons) at both anatomic levels. These differences in PMA and SAT remained significant after adjustment for age and body mass index. Within-gender regression models adjusted for age showed that SAT was directly associated with C-reactive protein (for aortic arch level, P = .04) and fibrinogen (for both anatomic locations, P = .003) only in women, whereas PMA was not associated with any biomarkers in either gender. CONCLUSIONS: It appears that in subjects with COPD, there are gender-based differences in the relationships between subcutaneous adipose tissue and inflammatory biomarkers.

Quantitative computed tomography measures of pectoralis muscle area and disease severity in chronic obstructive pulmonary disease. A cross-sectional study.

McDonald M-LN, Diaz AA, Ross JC, Estepar RSJ, Zhou L, Regan EA, Eckbo E, Muralidhar N, Come CE, Cho MH, et al. Quantitative computed tomography measures of pectoralis muscle area and disease severity in chronic obstructive pulmonary disease. A cross-sectional study. Ann Am Thorac Soc. 2014;11(3):326-34.Abstract
RATIONALE: Muscle wasting in chronic obstructive pulmonary disease (COPD) is associated with a poor prognosis and is not readily assessed by measures of body mass index (BMI). BMI does not discriminate between relative proportions of adipose tissue and lean muscle and may be insensitive to early pathologic changes in body composition. Computed tomography (CT)-based assessments of the pectoralis muscles may provide insight into the clinical significance of skeletal muscles in smokers. OBJECTIVES: We hypothesized that objective assessment of the pectoralis muscle area on chest CT scans provides information that is clinically relevant and independent of BMI. METHODS: Data from the ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) Study (n = 73) were used to assess the relationship between pectoralis muscle area and fat-free mass. We then used data in a subset (n = 966) of a larger cohort, the COPDGene (COPD Genetic Epidemiology) Study, to explore the relationship between pectoralis muscle area and COPD-related traits. MEASUREMENTS AND MAIN RESULTS: We first investigated the correlation between pectoralis muscle area and fat-free mass, using data from a subset of participants in the ECLIPSE Study. We then further investigated pectoralis muscle area in COPDGene Study participants and found that higher pectoralis muscle area values were associated with greater height, male sex, and younger age. On subsequent clinical correlation, compared with BMI, pectoralis muscle area was more significantly associated with COPD-related traits, including spirometric measures, dyspnea, and 6-minute-walk distance (6MWD). For example, on average, each 10-cm(2) increase in pectoralis muscle area was associated with a 0.8-unit decrease in the BODE (Body mass index, Obstruction, Dyspnea, Exercise) index (95% confidence interval, -1.0 to -0.6; P < 0.001). Furthermore, statistically significant associations between pectoralis muscle area and COPD-related traits remained even after adjustment for BMI. CONCLUSIONS: CT-derived pectoralis muscle area provides relevant indices of COPD morbidity that may be more predictive of important COPD-related traits than BMI. However, the relationship with clinically relevant outcomes such as hospitalization and death requires additional investigation. Pectoralis muscle area is a convenient measure that can be collected in the clinical setting in addition to BMI.

Deformable Registration of Feature-Endowed Point Sets Based on Tensor Fields.

Wassermann D, Ross J, Washko G, Wells WM, San Jose-Estepar R. Deformable Registration of Feature-Endowed Point Sets Based on Tensor Fields. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2014;2014:2729-2735.Abstract
The main contribution of this work is a framework to register anatomical structures characterized as a point set where each point has an associated symmetric matrix. These matrices can represent problem-dependent characteristics of the registered structure. For example, in airways, matrices can represent the orientation and thickness of the structure. Our framework relies on a dense tensor field representation which we implement sparsely as a kernel mixture of tensor fields. We equip the space of tensor fields with a norm that serves as a similarity measure. To calculate the optimal transformation between two structures we minimize this measure using an analytical gradient for the similarity measure and the deformation field, which we restrict to be a diffeomorphism. We illustrate the value of our tensor field model by comparing our results with scalar and vector field based models. Finally, we evaluate our registration algorithm on synthetic data sets and validate our approach on manually annotated airway trees.

Genome-wide association identifies regulatory Loci associated with distinct local histogram emphysema patterns.

Castaldi PJ, Cho MH, San José Estépar R, McDonald M-LN, Laird N, Beaty TH, Washko G, Crapo JD, Silverman EK, Silverman EK. Genome-wide association identifies regulatory Loci associated with distinct local histogram emphysema patterns. Am J Respir Crit Care Med. 2014;190(4):399-409.Abstract
RATIONALE: Emphysema is a heritable trait that occurs in smokers with and without chronic obstructive pulmonary disease. Emphysema occurs in distinct pathologic patterns, but the genetic determinants of these patterns are unknown. OBJECTIVES: To identify genetic loci associated with distinct patterns of emphysema in smokers and investigate the regulatory function of these loci. METHODS: Quantitative measures of distinct emphysema patterns were generated from computed tomography scans from smokers in the COPDGene Study using the local histogram emphysema quantification method. Genome-wide association studies (GWAS) were performed in 9,614 subjects for five emphysema patterns, and the results were referenced against enhancer and DNase I hypersensitive regions from ENCODE and Roadmap Epigenomics cell lines. MEASUREMENTS AND MAIN RESULTS: Genome-wide significant associations were identified for seven loci. Two are novel associations (top single-nucleotide polymorphism rs379123 in MYO1D and rs9590614 in VMA8) located within genes that function in cell-cell signaling and cell migration, and five are in loci previously associated with chronic obstructive pulmonary disease susceptibility (HHIP, IREB2/CHRNA3, CYP2A6/ADCK, TGFB2, and MMP12). Five of these seven loci lay within enhancer or DNase I hypersensitivity regions in lung fibroblasts or small airway epithelial cells, respectively. Enhancer enrichment analysis for top GWAS associations (single-nucleotide polymorphisms associated at P < 5 × 10(-6)) identified multiple cell lines with significant enhancer enrichment among top GWAS loci, including lung fibroblasts. CONCLUSIONS: This study demonstrates for the first time genetic associations with distinct patterns of pulmonary emphysema quantified by computed tomography scan. Enhancer regions are significantly enriched among these GWAS results, with pulmonary fibroblasts among the cell types showing the strongest enrichment.

Extended Gabor approach applied to classification of emphysematous patterns in computed tomography.

Nava R, Escalante-Ramírez B, Cristóbal G, San José Estépar R. Extended Gabor approach applied to classification of emphysematous patterns in computed tomography. Med Biol Eng Comput. 2014;52(4):393-403.Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive and irreversible lung condition typically related to emphysema. It hinders air from passing through airpaths and causes that alveolar sacs lose their elastic quality. Findings of COPD may be manifested in a variety of computed tomography (CT) studies. Nevertheless, visual assessment of CT images is time-consuming and depends on trained observers. Hence, a reliable computer-aided diagnosis system would be useful to reduce time and inter-evaluator variability. In this paper, we propose a new emphysema classification framework based on complex Gabor filters and local binary patterns. This approach simultaneously encodes global characteristics and local information to describe emphysema morphology in CT images. Kernel Fisher analysis was used to reduce dimensionality and to find the most discriminant nonlinear boundaries among classes. Finally, classification was performed using the k-nearest neighbor classifier. The results have shown the effectiveness of our approach for quantifying lesions due to emphysema and that the combination of descriptors yields to a better classification performance.
More