Darius Li and Adam Mitchell Chinese History 200r Professor Bol 16 January 2012

Visualizing CBDB Data from the Song to Ming Dynasties: ArcGIS Technique and Methodology

Contents

Layers in CH 200r Project Main.mxd	. 2
Layers in CH 200r Project Time Animation.mxd	. 3
Aggregating Data in Excel	. 4
Creating Kernel Densities of the CBDB Biographical Population	. 5
Time Animation for the CBDB Biographical Population Density: Spatial Join	. 6
Social Network Representation in GIS	10
XY to Line: Time-Enabled	15

Layers in CH 200r Project Main.mxd

Table Of Contents
🗽 📮 🗇 📮 🗉
E 🛃 Layers
Kinship_Networks
Song_Kinship_Networks
Yuan_Kinship_Networks
Ming_Kinship_Networks
Letter_Networks
Song_Letter_Networks
Yuan_Letter_Networks
Ming_Letter_Networks
Ming_Taxes
□ Rice_Tax_Collected
□ Wheat_Tax_Collected
⊕ Wheat_Tax_1393
⊕ Wheat_Tax_1502 ⊕ Wheat Tax 1578
⊕ Wheat_Tax_1578
☐ Tax_Quotas ① Tax_Quotas 1461
Biographed_Persons_Population_Density
Song_Kernel_Density_Maps
Ming_Kernel_Density_Maps
in Changerener_bensity_maps

Kinship_Networks: This is a visual representation of kinship networks for 20-year periods from 960 to 1659. The data was collected from CBDB by running a Social Network Query (for all kinship ties) for all persons with an index year falling within the upper and lower bounds of the Song, Yuan, and Ming dynasties. This representation, created though the XY to Line function includes the full set of data from CBDB, but because of the function, only displays the connections between persons belonging to places with different XY coordinates.

Letter_Networks: This is a visual representation of the networks of literary exchanges for 20-year periods from 960 to 1659. The data was collected from CBDB by running a Social Network Query (all forms of writing checked under the "Select Types of Relations" tab) for all persons with an index year falling within the upper and lower bounds of the Song, Yuan, and Ming dynasties. Like the relationship network data, this

representation only displays the written communications between persons belonging to places with different XY coordinates.

For both Kinship_Networks and Letter_Networks, three sub-layers roughly divide the data into the Song, Yuan, and Ming dynasties. We used Excel pivot tables to create a count function to determine the intensity of interaction (kinship and literary exchanges) between any given two locations. This data is however very sparse for the Ming Dynasty and should be updated once more Ming biographies have been added to the CBDB.

Ming_Taxes: The data source is 中國歷代戶口、田地、田賦統計 by 梁方仲

Rice_Tax_Collected:

The data is compiled from pages 332-3 and 344-5 in the book (\mathbb{Z} 表 29 and 35). This layer has the rice tax collection data across different locations for the years 1393, 1502, and 1578.

Wheat_Tax_Collected:

The data is compiled from pages 332-3 and 344-5 in the book (\mathbb{Z} 表 29 and 35). This layer has the wheat tax collection data across different locations for the years 1393, 1502, and 1578.

Tax_Quotas:

The data is compiled from pages 354-359 in the book (乙表 43-45). The unit of the data is ^糧 (石).

The layer has the tax quotas across different locations for 天順五年 (1461), 崇貞年間 (unknown year), and 崇貞六年 (1633).

Biographed_Persons_Population_Density: This layer has the kernel density maps for the number of biographed persons in CBDB whose index years are in the 20-year periods from 960 to 1659. The layers are named after the first year in the 20-year period. For instance, K0960 is the kernel density for the people whose index years range from 960 to 979.

Layers in CH 200r Project Time Animation.mxd

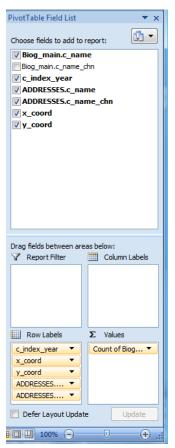
Table Of Contents
🖃 😅 Layers
Song_Yuan_Ming_Kinship_All_TimeEnabled_NoZeros
Count_20
-1
-2
-3
<u> </u>
-5
6 +
Song_Yuan_Ming_Letters_All_TimeEnabled_NoZeros
Song_Yuan_Ming_Letters_All_Count.Count_20
1
-2
-3-4
-5-8
-9-12 12-16
Biographed_Persons_Prefecture_TimeEnabled_SpatialJoin PP960_1662
1
1 - 2
2 - 3
3 - 4
4 - 6
6 - 9
9 - 14
14+

Song_Yuan_Ming_Kinship_All_Time_Enabled_NoZeros:

This layer has all the kinship connections for people in CBDB whose index years fall between 960 and 1659, and is a time-enabled version of all the 20-year kinship layers in Song_Kinship_Networks.lyr, Yuan_Kinship_Networks.lyr, and Ming_Kinship_Networks.lyr.

This layer has the same data as

Song_Yuan_Ming_Kinship_All_TimeEnabled.lyr except that all entries in which the kinship pair lived in the same location are removed for the purposes of not slowing down the time slider with excessive data. Distances of 0 do not appear on the map anyway, so removing these entries do not affect the visual representation


Song_Yuan_Ming_Letters_All_TimeEnabled_NoZeros:

This layer has all the literary connections for people in CBDB whose index years fall between 960 and 1659, and is a time-enabled version of all the 20-year layers in Song_Letters_Networks.lyr, Yuan_Letters_Networks.lyr, and Ming_Letters_Networks.lyr.

This layer has the same data as Song_Yuan_Ming_Letters_All_TimeEnabled.lyr except that all entries in which the sender and recipient lived in the same location are removed for the purposes of faster processing. Distances of 0 do not appear on the map anyway, so removing these entries do not affect the visual representation.

Aggregating Data in Excel

Because we chose to divide our CBDB biographical population data into 20-year periods, we want the intensity of our relationships (in this case the count of relationship ties that occur between two locations for any given period) to reflect the data for an individual period and not the entire dataset. Since ArcGIS's time series does not have the function to aggregate data in this way, we had to pre-aggregate the data in Excel by assigning each biographical person to a 20-year period associated with his index year. This tricks GIS into thinking that our data moves through time in 20-year increments when in fact we aggregated the data within each 20-year period.

Step 1: Open Song_Yuan_Ming_Elites_960_1660.xlsx (in the Worksheets folder). The Song-Ming Elites 960-1660 tab has the original export from CBDB with all the persons queried from Biog_main whose index years ranged from 960 to 1660.

Note: Make sure to delete duplicated entries. In CBDB, any given biographed individual may have multiple addresses.

Step 2: Create a pivot table. The pivot table options are listed in the diagram on the left. We pivoted the data based on index year, coordinates, address, and then created a count under Values based on the field Biog_main.c_name. This pivot table is shown in the Pivot Table tab in Song_Yuan_Ming_Elites_960_1660.xlsx.

Note: Any given location may have different codes for different time periods. Also, any given location might be assigned to multiple coordinates in the CBDB database. For consistency, consider cleaning the data by assigning a single coordinate and address code to each location.

Step 3: The Formatting Pivot tab adds Excel formulas to repeat row labels for the index year and coordinates, which do not appear automatically in the pivot table as shown below.

	A	В	С	D	E	F
1 c_index_year	-	x_coord	y_cool 💌	ADDR 💌	ADDRESSES.c_name_chn 💌	Count of Biog_main.c_name
2	= 960	≡104.077995		⊟ Cheng	(成都	1
3				⊟Huaya	罐陽	1
4		■105.08304				1
5		■108.891495	30.967	⊜Yun'an	雲安	1
6		■108.906976	34.246	⊟Chang ⁱ	長安	1
7		≡110.332306	34.835	⊟Hezho	河中府	1
8		■111.287125	⊟ 30.704	⊟Xia Zh	峡州	1
9		⊟111.47834	= 34.363	∃Xiashi	硤石	1
10		■112.170128	35.69	⊟Qinshu	沁水	1
11		■112.38263	34.665	ELuoyar	洛陽	3
12		■112.978134				1
13		■113.103485	36.184	Shang	上業	1
14		≡113.819748	34.031	Chang	長社	1

Step 4: Open Song_Yuan_Ming_Elites_960_1660_FinalPivot.xlsx (in the Worksheets folder). This Excel sheet further formats the pivot table to assign each index year to the first year of a 20-year period.

Step 5: In the Elites960_1660_Year_Conversion tab, in column M, we listed all the years from 960 to 1660. In cell N2, we typed the formula, =ROUNDDOWN(M2/20,0)*20 and applied it down the column. This assigns each year to the beginning of its corresponding 20-year period. For instance, 968 is assigned to 960.

	G2 • G2 = VLOOKUP(F2,M:N,2,FALSE)												
		А	В	С	D	E	F	G	Н	М	N	0	F
	1	x_coor(💌	y_coor	ADDRE 🔽	ADDRE	Elite_N	Year 💌	Twenty_YearPeric		Year	20_YearPeriod		
	2	104.078	30.65039	Chengdu	成都	1	960	960		960	960		
	3	105.083	29.99911	Anyue	安岳	1	960	960		961	960		
	4	108.8915	30.96685	Yun'an	雲安	1	960	960		962	960		
	5	108.907	34.24642	Chang'an	長安	1	960	960		963	960		
н.	6	110.3323	34.83513	Hezhong F	河中府	1	960	960		964	960		
н.	7	111.2871	30.70423	Xia Zhou	峽州	1	960	960		965	960		
	8	111.4783	34.36277	Xiashi	硤石	1	960	960		966	960		
	9	112.1701	35.6904	Qinshui	沁水	1	960	960		967	960		
	10	112.3826	34.66528	Luoyang	洛陽	3	960	960		968	960		
					E N.	-							

Step 6: In the same tab, we use the vlookup function in Column G to assign all the index years in the data pasted from the original pivot table to a 20-year period.

Step 7: Take Columns A to G in the Elites960_1660_Year_Conversion tab, and recreate the pivot table, but this time, use the 20-year period as the row label for time. This will further aggregate the number of elites in a given location during a given 20-year period. The Elites960_1659Final tab shows the final data that is exported into ArcGIS.

Creating Kernel Densities of the CBDB Biographical Population

Step 1: Under ArcToolbox, click Spatial Analyst Tools \rightarrow Density \rightarrow Kernel Density

Input point or polyline features		Search radius	
G:\200r Final Project\960_1659_Elites_PtFiles\E0960.sl	I 🖻	(optional)	
Population field			
Elite_Numb	•	 The search radius with 	
Dutput raster		which to calculate der	
C: \Users \DYL \Documents \ArcGIS \Default.gdb \KernelD_sh		Units are based on th	
Dutput cell size (optional)		linear unit of the proje	stion
0.06		reference	
Search radius (optional)			
	0.8	.a For example, if the un	its
Area units (optional) SQUARE MAP UNITS		are in meters, to inclu features within a one-	
		neighborhoad, set the search radius equal the 1609.344 (1 mile = 1609.344 (meters). The default is the sho of the width or height extent of the ingut des in the output spatial reference, divided by 3	rtest of the tures

Step 2: Input a point file under the 960_1659_Elites_PtFiles folder. The files in this folder have data on the number of elites (CBDB persons in biog_main) in each given location for a given 20-year period from 960 to 1659.

Under the Population field, select Elite_Number.

We selected the output cell size as 0.06 (this determines the pixelation of the kernel density map). The map is more pixelated as the cell size increased. We selected the search radius as 0.8, so that the program counts the number of elites in circles of radius 0.8. The unit in our case is degrees. Click OK. A kernel density map will automatically appear in the Table of Contents pane.

Time Animation for the CBDB Biographical Population Density: Spatial Join

In this part of the project, we aim to produce a spatial-join time series in which the map

aggregates the number of biographical persons whose coordinates fall under particular prefectural boundaries. One tedious approach would be to spatial-join the prefectural polygons to the point files. However, this approach will only join the polygon to the first point that falls under each polygon. In order to create a time series, we would have to spatially join each polygon to all points in each 20-year period.

Please be aware that prefectural boundaries change throughout different historical periods. Since we aggregated our data into 20-year periods, the effect of boundary changes is reduced. Also, since we only have the

lew Feature Cla	ass 2	x
Name:	Prefectures	
Alias:		
Туре		
	f features stored in this feature class:	
Polygo	on Features 🔹	
Geometry P	Importion	
	nates include M values. Used to store route data.	
Coordin	nates include Z values. Used to store 3D data.	
	< Back Next > Cancel	

shape file for the 1820 prefectural boundaries, using one set of prefectural boundaries provides some stability in the spatial-join technique.

Here is the method:

Step 1: Create geodatabase Song_Ming_Animation.gdb.

In the Catalog pane, right click on the folder that you want to store the geodatabase. Click New \rightarrow File Geodatabase. We named the geodatabase Song_Ming_Animation.gdb.

	Field Name	Data Type	1
OBJECTID		Object ID	- 0
SHAPE		Geometry	
NAME_PY		Text	
NAME_CH		Text	
NAME_FT		Text	
PRES_LOC		Text	
TYPE_PY		Text	
TYPE_CH		Text	
LEV_RANK		Text	
BEG_YR		Long Integer	
BEG_RULE		Text	
END_YR		Long Integer	
END_RULE		Text	
field Properties	OBJECTID		

Step 2: In the Catalog pane, right click Song_Ming_Animation.gdb and click New \rightarrow Feature Class.

In the New Feature Class dialog box, give the feature class a name (Prefectures). Select the correct coordinate system. Then continue to click Next until you reach the following step: Click Import and select v5_1820_pref_pgn_gbk.shp. The fields from this file will appear. Click Finish to create the Prefecture feature class.

This only imports the fields of the shape file. In order to input the actual data, we must load the data.

In the Catalog pane, right click the newly created Prefecture feature class. Click Load \rightarrow Load Data.

In the Simple Data Loader dialog box, input v5_1820_pref_pgn_gbk.shp and then click Add. Then continue to click Next, retaining the default options, and then click Finish. This adds all the data from v5_1820_pref_pgn_gbk.shp into the Prefecture feature class.

Simple Data Loader		×
Enter the source data that you will be loading from. Click Add to add it the list of source data to be loaded. You can load from multiple data so the same operation if they share the same schema.		
Input data		
	2	
List of source data to load		
G:\200r Final Project\v5_1820_gbk\v5_1820_pref_pgn_gbk.shp		
Add Remove		_
<back next=""></back>	Car	ncel

Step 3: Add Export960_1659.shp into Table of Contents. This is the shape file created by exporting Song_Yuan_Ming_Elites_960_1660_FinalPivot.xlsx.

Step 4: In the Table of Contents pane, right click on Export960_1659 and click Properties.

	C	0.1 m	0:1	C 1 1	Fields	0.6 11 0		Joins & Relates	T	LUTHE D
eneral	Source	Selection	Display	Symbology	Fields	Definition Query	Labels	Juins & heidles	Time	HTML Popu
Joins						Relates				
		that has bee attribute tal		led to this		Lists the da table/layer.		s been associated	d with ti	nis
				Ad	ld					Add
Remove								Remove		
				Remo	ove All				R	emove All
Prope	rties:					Properties:				
										~

Step 5: In the Join Data dialog box, select Join Data from another layer based on spatial location. Choose the Prefecture feature class for #1. Retain the default selection "it falls inside" under #2. In #3, save this spatially joined shape file as

PointToPolygon960_1659.shp. This shape file is a point-to-polygon shape file, since we associated each point with a polygon into which each point falls.

Note: Do not spatially join the points to polygons by selecting the original v5_1820_pref_pgn_gbk.shp. For some reason, the entries in the shape file will associate the polygons with an ID number that does

Under the Joins & Relates tab, under the Joins Section, click Add. This will take you to the Join Data dialog box.

Join Data
Join lets you append additional data to this layer's attribute table so you can, for example, symbolize the layer's features using this data.
What do you want to join to this layer?
Join data from another layer based on spatial location
1. Choose the layer to join to this layer, or load spatial data from disk:
🗞 Prefectures 🔽 🖻
2. You are joining: Polygons to Points
Select a join feature dass above. You will be given different options based on geometry types of the source feature dass and the join feature dass.
Each point will be given all the attributes of the polygon that:
(a) it falls inside.
If a point falls inside more than one polygon (for example, because the layer being joined contains overlapping polygons) the attributes of the first polygon found will be joined.
⊘ is dosest to it.
A distance field is added showing how close the polygon is (in the units of the target layer). A polygon that the point falls inside is treated as being closest to the point (i.e. a distance of 0).
3. The result of the join will be saved into a new layer.
Specify output shapefile or feature class for this new layer:
G:\200r Final Project\960_1659_Pop_Density_SpatialJoin\Joii
About Joining Data OK Cancel

not match the ID number in the Prefectures feature class. In fact, the ID numbers will be off by one, but this makes it very difficult to make a query in a later step. Theoretically, you could add a field in the attribute table, using the field calculator to add one to the ID numbers. However, the query function will not allow SQL syntax to apply to fields created from the field calculator.

Step 6: In the Catalog pane, right click Song_Ming_Animation.gdb. Click Import → Table (single). The Table to Table dialog box will appear. Import PointToPolygon960_1659. Under Output Table, name the table PP960_1659_Table. Click OK. We now have the point-to-polygon shape file and prefecture shape file data in one geodatabase, so we can now create a query table.

🔨 Table to Table		
Input Rows Point ToPolygon960_1659 Output Location G:\2000 Final Project\Song Ming Animation.gdb		Output Table ^
Output Table Output Table Expression (optional)		
Field Map (optional) IP: FID_1 (long) IV (Double) IV (Pouble) IV (Pouble)		
Geodatabase Settings (optional)	OK Cancel Environments) <<+Hde H	 Tool Help

Step 7: Make a query table.

Under Arc Toolbox, select Data Management Tools \rightarrow Layers and Table Views \rightarrow Make Query Table.

nput Tables		é	Fields (optional)
III PP960_1659_Table			The fields to include in the layer or table view. If an alias is set for a field, this is the name that appears. If no fields are specified, all fields from all tables are included.
ields (optional)			
Field Name	Alias Name	~	
PP960 1659 Table.SHAPE Area			1
Prefectures.OBJECTID			1
Prefectures.SHAPE			1
Prefectures.NAME_PY			1
Prefectures.NAME_CH			1
Prefectures.NAME_FT			1
Prefectures.PRES_LOC			1
Prefectures.TYPE PY		-	1
Select All Unselect All xpression (optional)	III	,	
able Name			
able Name QueryTable 1			1
ey Field Options			1
ISE KEY ETELDS			1

Click the SQL button under the Expression (optional) field. A Query Builder dialog box will appear. Create the SQL query Prefectures.OBJECTID = PP960_1659_Table.OBJECTID. This will join all the entries in PP960_1659_Table with the

Input both PP960_1659_Table and the Prefecture feature class. Under Fields, select all the fields that you would want to appear in the new query table.

Note: you must include Prefectures.SHAPE in order to associate all the points into polygons.

Query Builder	x
"PP960_1659_Table ADDRESSES_" "PP960_1659_Table Re, Nunch" "PP960_1659_Table Title, Nunch" "PP960_1659_Table OBJECTIO" "PP960_1659_Table OBJECTIO" "PP960_1555_Table NAVE_PY" -	
Prefectures.OBJECTID = PP960_1659_Table OBJECTID	*
Clear Verify Help Load Save OK Cancel	

corresponding polygon shape. PP960_1659_Table.OBJECTID is the ID obtained from the original point-to-polygon spatial join that created PointToPolygon960_1659.shp. This query simply associates the prefectural ID with the corresponding polygon shape.

Now, the shape file QueryTable will automatically appear in the Table of Contents pane. Right click on QueryTable and click Data \rightarrow Export Data. Save the exported data as TimeEnabled960_1659.shp.

Step 8: The exported data will change the field names of the shape file. Open the attribute table for TimeEnabled960_1659.shp and right click on all the fields to change the field names accordingly.

General Source Selectio	n Display	Symbology	Fields	Definition Query	Labels	Joins & Relates	Time	HTML Popup
Enable time on this lave	r							
Time properties								
Layer Time:	Each feat	ture has a sir	igle time	field		-		
Time Field:	Index 20			•	Sample:	1040		
nine rielu:	_		exed. In	dex the fields for				
Field Format:	YYYY			•				
Time Step Interval:	20	Year						
	20	Tea	-	•		_		
Layer Time Extent:			To:				Calcula	te
	📃 Data d	hanges freq	ently so	calculate time ext	tent autor	natically.		
Advanced settings								
Time Zone:	none					•		
	Values	are adjusted	l for day	light savings				
Time Offset:	0.00	Year	s	•				
Display data cumul	atively							
					_			
						OK Ca	ncel	Apply

Step 9: Right click on

TimeEnable960_1659.shp in the Table of Contents pane and click Properties. After adjusting the symbology, click on the Time tab. Click "Enable time on this layer." Then choose the time field and field format (YYYY). The time step interval in this case is 20 years.

Step 10: Click on the "Open Time Slider Window" button which has a picture of a clock.

In the Time Slider Options dialog box, under the Time Display tab, you can adjust the time step interval, which we set to 20 years. You can also change the display data format to YYYY.

Time Slider Options	, <i>j</i>	, canor p	? ×
Time Display Time	e Extent Playback Oth	ier	
Time zone:	<none:< th=""><th>> st for daylight saving change</th><th>₹</th></none:<>	> st for daylight saving change	₹
Time step interva	l: 20	Years 🔻	Restore Default
Time window:	1.0	Years	
Display date form	at: 2011 (y	(٧٧٧)	_
Display time form	at: <none;< th=""><th>></th><th></th></none;<>	>	
			OK Cancel

ne Display Time Extent Play	back Other		
estrict full time extent to:	🄷 TimeEnabl	ed960_1659	•
tart time:	1/1/0960	11:13:29 PM	Min Time
ind time:	1/1/1640	12:00:00 AM	Max Time

Under the Time Extent tab, you can select that time extent of the time slider by manually adjusting the start and end time or selecting the shape file for the full time extent. Under the Playback tab, you can adjust the speed of the time slider presentation.

Social Network Representation in GIS

Time Slider Op	tions	f		F	9 X
Time Display	Time Extent	Playback	Other		
Displa	y data for each	n timestamp	,		
Spe	.ed:				
		slower			faster
Play in	n specified dura	ation (secor	nds):		
		680	×		
After playing	g once:	Stop	•		
Refresh	the display whe	en dragging	; the time slider int	eractively	
				ОК	Cancel

This tutorial is for the visual representation of spatial data with interactions between nodes and their edges using ArcGIS. Lines will be drawn between coordinates representing the locations of interacting nodes, and the boldness and color of the lines can be adjusted to represent the intensity of the relationships. This data can be viewed as static datasets or as a moving time series. In order to use this method of visual representation, each relationship must occur between two actors, and each node must have XY coordinates. As examples, we demonstrate how to visually represent kinship network interactions and letter correspondences for the Song, Yuan, and Ming dynasties.

Organization of Data in Excel

Step 1: After we have generated an edgelist and attribute list, import them into a single Excel workbook as two separate spreadsheets.ⁱ After these spreadsheets have been created, open a new blank spreadsheet and copy and paste in columns A and B the names of your nodes and edges. In the column C, create a vlookup for the name of the node1 in column one and the location of the node from the attribute table. In columns D and E, do vlookups for the x and y coordinates for the location of the node.ⁱⁱ In columns F through H repeat this process for the attributes for the node2.

Step 2: Next we have to determine a year for when the relationship took place. If the kind of relationship that you are analyzing happens to have occurred in a static period of time (i.e. the sending of a letter, a marriage, etc.), and you happen to know the date, then create a column that lists all of the corresponding dates for the relationships. If the relationship occurs over a period of time, and you do not know the exact period, but you do have time data for your nodes, then construct a way of averaging the time data using node attributes.ⁱⁱⁱ

Step 3: Now that we have our time data for each of our realtionships, unless we want to show the data year-by-year, we should group the data into periods. This can be accomplished using a number of methods, but in our case we choose to use nested If statements and a Rounding function (see the **Aggregating Data in Excel** section). Using one of these methods, create a new column that lists the period in which each relationship occurred. For using the If expression, see the below example:

= IF(K2 < 1380, 1360, IF(J2 < 1400, 1380, IF(K2 < 1420, 1400, IF(K2 < 1440, 1420, IF(K2 < 1460, 1440, IF(K2 < 1480, 1460, IF(K2 < 1500, 1480, IF(K2 < 1520, 1500, IF(K2 < 1540, 1520, IF(K2 < 1560, 1540, IF(K2 < 1560, 1560, IF(K2 < 1600, 1580, IF(K2 < 1620, 1600, IF(K2 < 1640, 1620, IF(K2 < 1660, 1640, IF(K2 < 1680, 1660, FALSE))))))))))))))

This equation was used to designate 20-year time periods within the Ming dynasty. It begins by checking to see if the value in the cell with our relationship date (i.e. K2) is less than my starting period (i.e. 1380). If it is smaller, then the equation outputs 1360 (here the period I designated as 1360 represents the years 1360-1379). If the date was larger, then the equation moves to the second If statement and checks to see if the date is smaller that our second earliest period. This process is continued to the final expression, at which point, if the date is still larger than our final period (i.e. 1660) then the statement outputs FALSE.^{IV}

Creating Relationship Intensity

Step 4: Once we have our column that organizes the relationships into periods, we can assign an intensity to each relationship. Intensity can be defined however best suits your particular dataset, but the strandard method would be to generate a count of the number of interactions that occur between two unique locations during a given period of time. Because ArcGIS does not have the capability to aggregate data, we will have to do this using Excel. First,

J Format Pai

(All)

Row Labels Count of Name Anfu Anfu

Index 20

Anyan

Baodi

Baodi Chaling Chaling Zhou Chaling Zhou Huo Xian Changle Changle

 Changle

 Changle

 Changle

 17

 Changshu

 18

 Changshu

 18

 Changshu

 20

 Changshu

 21

 Changyuan

 22

 Changyuan

 23

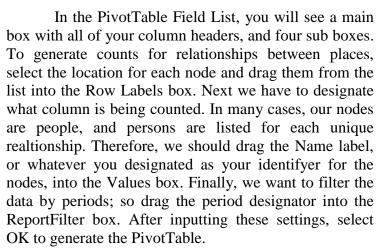
 Changshu

 24

 Changshu

 25

 Changshu


 26

 Changshu

 27

we will need to create a series of PivotTables, one for each time period. So select your columns as the pivot array, making sure to include the nodes as well as the locations. Click the Insert tab at the top of the screen, and select the PivotTable button at the far left. A Create PivotTable menu will pop up in the center of the screen. Select the Existing Worsheet button at the bottom, move to a blank sheet, and click any empty cell. After hitting OK, a new PivotTable will be generated at the cell you selected. Click the blank PivotTable in the spreadsheet to pull up the PivotTable Field List.

		1-1¥		_	_	_		_	_	Ming_Gird	mp_mont		AND LICE	_	_	-
Q	2 Hot	ne bice	t Page L	spout P	primulias	Data R	eview V	esi								
	<i>j</i>	1 100	語后	28	-	alt -	11. C	100	to be	O	too is	12 254		0	A	
	fable labi	e Potore	On Shat	en Smartiet	Screenshot	Column	Line Pa	100.00	ires Scatter	Other	Line Co	und Winte	a Show	Appendical	Test	
			44							Charts -					501-	ti Paot
	Tablet	_		trations	_			Charts		14	501	chlines	Filter	Links		
	A1		(*	f. Name	2										-	_
	A Nami -	8	C Locatio -	D	E	F Locatio -	G 32 -	H	ndex Yi - I	1	K	L.	M	N III	0	
	Pearts -	Passage -	Changzho	ALC: N		Locato ·	- Miles	141	BRILLI -	noax, 1	ving int -	index_4+	Compr.+	Court_20		
	Chen Jing	Chen Bi	u.	120.6186	31.31271	Ferghus 2	121,4069	29.65166	1368	1366	136	1360	Changzho	1		
	Wang	He Marvin	Yimu		29 30009			29.38009	1373	1377	137		Viet/Vieta	3		
	Wei(3) Yano	Yang	YNU	120.0716	58.30004	YIMU	120.0/16	29.39009	1373	13/7	13/	1,980	YNNYNNU			
	Boxiang	Daging	Jarlas	118.3238	27.03886	Jian/an	118.3238	27.03886	1390	1360	137	1360	Jen'en Je	2		
	Liang Min	Liang Yim	Xinyu	114.9311	27.80408	Xinyu Zhou	114.9311	27.80408	1392	1362	137	1360	Xnyskinys	2		
	Liang					and the second								2		
	Q1(2)	Liang Yin Sa	Junyu	1149311	27.80408	Xinyu Zhoi	Create Pive	otTable	-			9 II	harring			
	Sa	Zhongmin					Choose the	e data that yo	want to ana	line				1		
	Zhongli	9	Min Xian	119.3216	26.07395	Danyang	· Selec	a table or ra	nge				in XianD			
	Chen Jii 14)	Chen Ju(5)	Linhai		28.84313		1	ible/Kange:	Modified K 8	doelst SA:	3	156	shallinh	1		
	Cheng	Ju(5) Cheng	Lina	121.1206	28.84313	Linnai	Oper	n external da	ta source			100	maum			
	Juni	Yan	Yin Xian	121.5427	29.86632	Yin Xian							n Xien'ri	1		
	Kong	Kong						ormection na	net					2		
	Liang	Yang Kong	Pingyang	120.5564	27.67572	Pingyang	Choose with	ere you ward	the PirotTabl	e report to b	e placed -		ngyangi			
	Kong Yue		Pingyang	120 5564	27 67572	Pingyang	C See	Torksheet					agana!	2		
		Tao				· · ···g	· Det	ng Workshee	e				10.00			
	Тао		Huangyan				. 6	ocation				256	la constante	4		
	Zongru Tan	(2)	Zhou	121,2584	28.64261	Huangyan					×	Cancel	yangyan			
	Zongyuan	Tao	Huangyan							- Contraction				4		
	(2)	Zongru	Zhou	121.2584	28.64261	Huangyan	121.2584	28 64261	1367	1390	137	1360	Huangyan			
	Tao Zongyuan															
	(2)	Zongyuan	Huangyan Zhou	121,2584	28.64261	Hungver	1212504	20.64261	1367	1367	136	1360	Huengyen			
	Zhang	Zhou	Changzho							16230			. an Da			
	Hao(2)	Naniao		120.6186	31.31271	Changshu	129.7338	31.64658	1397	1360	137	1360	Changzho	1		
	Chen Ruzhi	Chen Revan	Wy Xian	100.0100	31.31271	And a lot of the second	*******	31.31271	1385	1371	137	1340	WuXerW	1		
		Dai Ruyu			29.45871			29.45871	1385	13/1	13/		PujengPu			
		Dai Feng			29.45871			29.45871	1376	1379	137		PujangPu			
	con claring		Fengchen		and there	- should		- contract of	in a	1000	1.071	1,780	- dough a			
	1. H	conded Ma	in States	Knship Es	Lauber	Kinship Attr	ALC: NO.	todified K	Educated .	Pault tab	1000000		le 1380	5141 2		

= = =

B I 및 - Ⅲ - ◎ - ▲ - ■ 要 要 達 律 國 Merge & Center

200

· A A

V Name

V Local

V Location

Avg_Index

Y2

fx Qiantane

Wrap Text

Index 20

Ro Ro

Column

Σ Values

Defer Layout U

* Condition

(h •

Note: The relationship intensities shown in GIS are the number of connections between any two given locations aggregated from people associated with these places. The connections between people associated with locations are still perserved in the Excel documents.

Step 5: Now we have an unfiltered PivotTable, but the data is not yet in the proper format. Depending on your default setting, the location data is most likely being displayed as stacked cells, with locations associated with node2 being displayed in a row below the locations

associated with node1. To fix this click on a cell within the PivotTable, then click the Design tab. Under the design tab, on the left side of the screen will be a dropdown button named Report Layout. Click on the button to bring up the drop down menu, and select the Show in Tabular Form option. Click on the button once more and select Repeat All Item Labels. Now the data will be displayed in the proper format with each pair of locations being listed in adjacent cells and an associted count given to a column to their right.

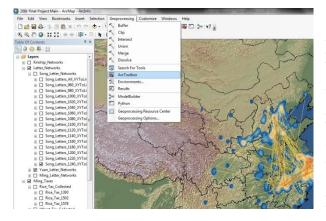
X	IJ 19 × (¹ 1 × ∓	Ming_Kinship_Worl	kbook - Microsoft Exc	el	PivotTable To	ools
Fi	le Home In:	ert Page Layout Formu	ilas Data Rev	iew View	Options D	lesign
	totals Grand Totals + Totals +		Banded Rows	15		
	Layot	Show in Compact Form	tyle Options			PivotTa
	A4	Show in Compact rollin				
- 24	A		С	D	E	F
1	Index_20	Show in Outline Form				
2						
3	Location1	Show in Tabular Form	of Name		Combined C	ount of Name
4	Anyanu —		1		AnyangQi	
5	Changzho	1	2		Changzho	
6	⊜Chong'an	Repeat All Item Labels	1		Chong'an(
7	🛛 Dantu 🚽 🚽	a search and a search	2		DantuDan	
8	Daxing		4		DaxingDa	
9	Daxing -	Do Not Repeat Item Labels	3		DaxingJia	(
10	BFengcher.		1		Fengchen	
11	■Fenghua	Fenghua Zhou	5		FenghuaF	
12	Fengyang	Fengyang	1		Fengyang	,
13	🗏 Guixi	Guixi	2		GuixiGuixi	
14	🛛 Hejin	Hejin	1		HejinHejin	
15	⊟Hua Xian	Hua Xian	2		Hua Xian H	
16	⊜Huangyan Zho	u Huangyan Zhou	1		Huangyan	
17	BHuating	Huangyan Zhou	1		HuatingHu	6

Finalizing Data in Excel

		-	Ming_k	inship	-Workbook - Microsoft Excel			Tools	
Fil	e Home	Insert Pa	ge Layou	t	Formulas Data Revie	w View	Options	Design	
ubt	otals Grand R	eport Blank	V Ro		iders 📄 Banded Rows Headers 📄 Banded Columns				
_	Layout			Piv	otTable Style Options				PivotTa
	A4	• (n	f _x	Any	ang				
	A		В		C	D	E	F	
1	Index_20	1380		1	r				
2	Search			Q					
3	. (All)				Count of Name			Count of N	ame
4	1360			-	1		AnyangQ		
5	1380				2		Changzho		
6	- 1400			E	1		Chong'an		
7	- 1420				2		DantuDar		
8	1440				4		DaxingDa		
9	- 1460				3		DaxingJia		
0	- 1480				1		Fengcher		
1	- 1500				5		Fenghuaf		
2	- 1520			-	1		Fengyang		
13					2		GuixiGuixi		
14	Select Multi	ple Items			1		HejinHejir		
15		01	C		2		Hua Xianh		
16		OK	Cano	ei 🦷	1		Huangya		
17	-	1000			1		HuatingH		
18	Huating	Huat			4		HuatingH		

Now that the data is being displayed in the proper format, the final step in the creation of the PivotTable is to select the appropriate filter. At the very top left of the PivotTable, you will find a bar named as the category you selected as the filter. Click the button to on the right side of the bar to pull up a dropdown menu. Deselect the All filter and choose a single period. After selecting OK, you will have generated intensity counts for all related locations in your selected period of time. Instead of modifying this PivotTable to generate the counts for each period, copy this table into separate sheets, creating a unique PivotTable for each given period of time.

Step 6: Since we have generated a series of PivotTables, one for each of our designated periods of time, the last step in the creation of our spreadsheet is to input the intesensity counts. The easiest way to get the data from the PivotTables back into you main spreadsheet is to do a vlookup. But before we can perform a vlookup, we will need to create a new column that expresses the locations as a single field because vlookups cannot handle multiple expressions (i.e. because our intensity data is based on the number of relationships between two places, we need to perform a vllokup for location1 and its corresponding location2). To do this use the Concatenate function in excel, selecting the the location for node1 and location for node2 as your two fields. This will generate a single column that combines the names of the two locations as a single entry.


Now we must perform this same step for each of our PivotTables, concatenating the two location columns into a third column outside of the PivotTable. Also because PivotTables are dynamic and updatable, the vlookup function has difficulty searching within them. Therefore, we

should also copy the column of counts from the PivotTable and paste the values to the left of our concatenated locations column. Go back to your main spreadsheet and create a new column with a nested If statement that performs a vlookup for each period. This formula is slightly complex so I will provide an example below:

=IF(Modified_K_Edgelist!L2=1360,VLOOKUP(Modified_K_Edgelist!M2,Pivot_table_13 60!E:F,2,FALSE), IF(Modified_K_Edgelist!L2=1380,VLOOKUP(Modified_K_Edgelist!M2,Pivot_table_1380!E:F ,2,FALSE), IF(Modified_K_Edgelist!L2=1400,VLOOKUP(Modified_K_Edgelist!M2,Pivot_table_1400!E:F ,2,FALSE), IF(Modified_K_Edgelist!L2=1420,VLOOKUP(Modified_K_Edgelist!M2,Pivot_table_1420!E:F ,2,FALSE), IF(Modified_K_Edgelist!L2=1440,VLOOKUP(Modified_K_Edgelist!M2,Pivot_table_1440!E:F ,2,FALSE), IF(Modified_K_Edgelist!L2=1440,VLOOKUP(Modified_K_Edgelist!M2,Pivot_table_1440!E:F

This formula is first matching an entry to its corresponding PivotTable; we do this by selecting the cell with our period data (i.e. Modified_K_Edgelist!L2) and setting it equal to the year of the earliest period. ^v After the date has been matched to its corresponding period, the equation uses a vlookup to search the appropriate PivotTable. Notice that in the vlookups, our concatenated location expression from our main spreadsheet (i.e. Modified_K_Edgelist!M2) is being used as the reference to find the matching term in our PivotTables (i.e. Pivot_table_xxxx!E:F). Then the vlookup is feeding back the information from the second column in the array, in this case, the column of counts that we copied from the PivotTable.

Step 7: Now that we have all of the pertinent information into a single Excel spreadsheet, there is one final thing that we must do before importing our data into ArcGIS. The function that we will be using in ArcGIS, XY to Line, does not accept data in the form of .xsl. Therefore we need to copy this data into a new workbook, and save it as a series of .csv files. If you wish to represent all of the data as one picture, simply save you main worksheet as a single .csv. However, to see the individual periods in ArcGIS, you will need to break up the data into periods, and save each period as a separate csv.^{vi}

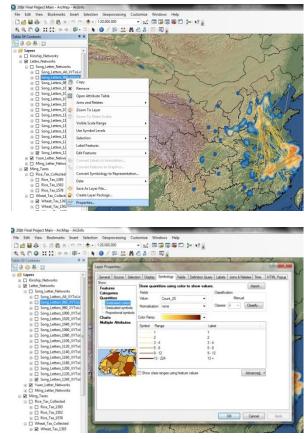
Importing the Data into ArcGIS

Step 8: After opening ArcMap and selecting your project folder, select the Geoprocessing tab at the top of the sceen and choose ArcToolbox. This should bring up a new window with various tools and functions. Click the plus sign next to Data Management Tools to

expand its subfields, and then click the plus sign next to Features. Under Features you should see a function at the very bottom called XY To Line; select this function to open a separate window.

Under the Input Table field, click the folder button and select the destination of your first .csv file. Once you have selected the file, the first two rows in the box (Input Table and

	-
ArcGIS,200r Final Project Network_Data/Excel_Ming •	2
GISi@efault.gdb\Ming_Kinship_1360_XYToLine2	8
	-
	٠
	-
	•
	12
	-
	- 1
	- 1
	- b


Repeat this process for each of your .csv files.

Changing Symbology in ArcGIS

Step 9: Now that the data has been imported into ArcGIS, our final step is to figure out how to best visually represent our realtionships. To change the appearace of the data, right click one of your layers and select Properties. This will open a separate Layer Properties window. Select the Symbology tab, and under Quantities you will see three options: Graduated Colors, Graduated Symbols, and Proportional Symbols.

For the purpose of relational data, one of the first two will likely provide the best representation. By clicking on either, and designating as the Value the column name for your intensity counts, you will get a display that shows your relationship network with intensity. If you want to make your relational lines vary by both color and thinkness, choose the Graduated Color option, select intensity counts as your value, and manually click on each line and change its thinkness.

Output Feature Class) should automatically be filled in.^{vii} Next, hit the down arrows next to the Start and End XY fields (there are 4 in total) and select the appropriate column headers. For Start X Field and Start Y feild, select the XY coordintes for the location associated with node1; then use the location for node2 for the End fields. In the final field, be sure to select the geographic coordinate system that cooresponds with the rest of your data (it is important that you are using only one coordinate system). Finally, in order to include the intensity feature that we generated in Excel, under the ID field select the appropriate column name. Select OK and ArcGIS will create a new layer in your project with the .csv file data.

XY to Line: Time-Enabled

, XY To Line		
Input Table G:\2007 Final Project\Network_Data\Time-Enabled Networks\Song_Yuan_Ming_Kinship_All.csv Upput Teature Class C:\Users\DYN_Documents\WrcGIS\Default.gdb\Song_Yuan_Ming_Kinship_All_X Start X Field X1 Start Y Field Y1 End X Field X2 End Y Field Y2 Line Type		ID (optional) ID field from the input table. This may be used to join the output features back to the input table.
GEODESIC ID (optional) Soatial Reference (optional) GCS_WGS_1984	•	
	Ŧ	
OK Cancel Environments << Hide	Help	Tool Help

Step 1: Go to ArcToolbox \rightarrow Data Management Tools \rightarrow Features \rightarrow XY to Line.

Step 2: Select a file under the Network_Data folder. All the .csv files for kinship and letter networks are organized under this folder. The Song_Yuan_Ming_Kinship_All.csv and Song_Yuan_Ming_Letters_All.csv (saved under the Time-Enabled Networks subfolder under the Network_Data folder) have the entire network data from 960 to 1659 necessary for time-enabled the network visualization. If you only want to create a static visualization, you can select the .csv file for a particular 20-year period.

Select the start and end X/Y fields. This connects the coordinates for each network pair. Under ID (optional), select Count_20, which is the intensity of the kinship or letter connection between two given locations. Click OK.

If you simply want a static network of a given 20-year period, this process is complete, since a shape file will automatically be generated in the Table of Contents pane. You can then edit the symbology using Count_20. If you want a time-enabled network, move onto Step 3.

Step 3: Repeat Step 2. However, for ID (optional), instead of Count_20, select Index_20, which is the 20-year period under which the average index years of the network pair falls. We will now join the two generated shape files based on the FID field in both shape files. This is the workaround method for the XYtoLine limitation of one attribute export under ID (optional)

Step 4: In the Table of Contents, right click on the shape file with the Index_20 attribute. Then click on Properties.

Step 5: In the Joins & Relates tab, click Add under the Joins section.

The Join Data dialog box appears.

Step 6: Select "Join attributes from a table" in the

oin Da	ita	? X
	ets you append additional data to this layer's attribute table so cample, symbolize the layer's features using this data.	ou can,
What	do you want to join to this layer?	
Join	attributes from a table	•
1.	Choose the field in this layer that the join will be based on:	
	FID	-
2.	Choose the table to join to this layer, or load the table from di	sk:
	Song_Yuan_Ming_Letters_All_TimeEnabled_NoZer	· 🔁
	Show the attribute tables of layers in this list	
3.	Choose the field in the table to base the join on:	
	FID	-
6	Join Options	
	Keep all records	
	All records in the target table are shown in the resulting ta Unmatched records will contain null values for all fields bein appended into the target table from the join table.	
	Keep only matching records	
	If a record in the target table doesn't have a match in the table, that record is removed from the resulting target tab	
	Validate Join	
Abo	ut Joining Data OK	Cancel

first drop-down menu in the Join

Relates Lists the dat table/laver.	ta that has been as		
		sociated with th	s
			۸dd
		R	emove
		Re	move All
Properties:			
			*
			~
•			Þ
	Properties:	Properties:	Re

Data dialog box. Under #1, select FID. For #2, select the other shape file with the Count_20 field. Under #3, select FID. Click OK. The shape file with the Index_20 field will now also have Count_20 as a field. This will allow us to use Count_20 for geospatial symbology and Index_20 as the time field.

ⁱ Make sure that when you name your columns, you do not use any spaces or non-standard characters. It is okay to use Chinese characters, but if you use a space instead of an underscore, then you will get an error message when importing your data into ArcGIS, and none of the functions will run properly.

ⁱⁱ If your data does not come from CBDB, you may have the locations of nodes but not their corresponding XY coordinates. If this is the case, create an additional spreadsheet within the workbook and copy the table from CBDB that lists all known locations and with their XY coordinates. Follow the same procedure as above, but when you are importing the XY coordinates, simply do a vlookup of location from the CBDB table of addresses, instead of in your attribute table.

^{III} If your relationship data does occur over a specific range, and you happen to know that range, you can represent this using ArcGIS's time function. First create two columns in your Excel sheet that list your start times and end times. Then after importing the data into ArcGIS, right click the layer, select Properties, then select the Time tab. Under the Time tab, in the Time properties field, there is an option to change layer time. By default this field will be set to "Each feature has a single time field," but if you click the dropdown arrow you can select "Each feature has a start and end time field." After selecting this option you will be prompted to import you start and time data. Simply designate the two columns you created in Excel, and your data will now be displayed over varying periods.

aneral Source Selec	tion Display Symbology Fields Definitio	I QUEIY Labels	Joins & Relates	l nme	HTML Popup	General Source Selectio	n Display Sy	mbology Fields De	finition Quer	y Labels Joins & Rel	lates Time	HTML Popu
Enable time on this l	ayer					Enable time on this laye	er					
Time properties						Time properties						
Layer Time:	Layer Time: Each feature has a single time field			Layer Time:	Each feature	has a start and end t	ime field	•				
						Start Time Field:	Index_20		-	Sample: 960		
Time Field:	Index_20	▼ Sample: 9	960			End Time Field:	Index_20		•	Sample: 960		
Field Format:	YYYY	•				Field Format:	YYYY		•]			
Time Step Interval:	20.00 Years	•				Time Step Interval:	20.00	Years	•			
Layer Time Extent:	0960 To:	1640		Calculate		Layer Time Extent:		To:		[Calcula	ate
	Data changes frequently so calculate	time extent automa	atically.				🕅 Data char	iges frequently so calo	ulate time e	xtent automatically.		
Advanced settings						Advanced settings						
Time Zone:	ne Zone:			Time Zone:	none							
Values are adjusted for daylight savings				Values are adjusted for daylight savings								
Time Offset:	0.00 Years	•				Time Offset:	0.00	Years	•			
🔲 Display data cur	nulatively					Display data cumul	latively					

^{iv} It is important to note that because of the nature of the nested If statements, the functions must be written in one direction, from smallest to largest. If written in the other direction, or if an If statement is disordered, then the date could be misclassified into a later period.

^v If your data has not been sorted into periods, i.e. has specific years that represent ranges in time, then you can perform this if statement with > or < operators (much in the same way as the period function example I provided earlier). Also, be sure to keep track of your number of If expressions and assign the appropriate number of closing parentheses. For me it was easier to first write the expression in Microsoft Word, and then copy it into the formula box in Excel.

^{vi} Instead of doing this manually, a more elegant way of creating these spreadsheets would be to write an equation in each sheet that will become an individual .csv file that searches for a given year within the x_All sheet, and copies all of the corresponding data. This could easily be accomplished with a simple vlookup that reports multiple columns for each term (in this case a year) that it identifies within the table array. If the spreadsheets were created in this way, they would be more easily updatable; all you would have to do is input your new data on the first sheet and the sheets for individual periods would automatically update.

^{vii} While opening the .csv files in ArcGIS using the XY to Line tool, you may encounter an error that will prevent you from importing some of your data files. This is due to an internal bug in the XY to Line tool function which sometimes prevents it from properly validating the .csv files. If this error occurs, red X's will appear to the left of your file destination, line type, and spatial reference, and you will be unable to choose any categories in the four XY coordinate input fields. In order to fix this problem reopen one of your .csv files in excel. At the bottom left of the page, click on a tab and open a blank spreadsheet (do not create a new workbook). Copy any of your datasets into this spreadsheet and save it as a new .csv file. Then recreate your spreadsheet within this file. By saving a new .csv file under a separate tab of a file that was already designated as a .csv, the validation error in ArcGIS will be resolved. Now you can return to the XY to Line tool, and you should be able to input all of your .csv files.