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Movement of water from soil to atmosphere by plant transpiration can feed precipitation, but is limited by
the hydraulic capacities of plants, which have not been uniform through time. The flowering plants that
dominate modern vegetation possess transpiration capacities that are dramatically higher than any other
plants, living or extinct. Transpiration operates at the level of the leaf, however, and how the impact of this
physiological revolution scales up to the landscape and larger environment remains unclear. Here, climate
modelling demonstrates that angiosperms help ensure aseasonally high levels of precipitation in the
modern tropics. Most strikingly, replacement of angiosperm with non-angiosperm vegetation would
result in a hotter, drier and more seasonal Amazon basin, decreasing the overall area of ever-wet rainforest
by 80 per cent. Thus, flowering plant ecological dominance has strongly altered climate and the global
hydrological cycle. Because tropical biodiversity is closely tied to precipitation and rainforest area, angios-
perm climate modification may have promoted diversification of the angiosperms themselves, as well as
radiations of diverse vertebrate and invertebrate animal lineages and of epiphytic plants. Their exceptional
potential for environmental modification may have contributed to divergent responses to similar climates
and global perturbations, like mass extinctions, before and after angiosperm evolution.
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1. INTRODUCTION
Recycling of water through evapotranspiration provides
an important contribution to precipitation, particularly
in the tropics (Salati et al. 1979), and the effect of tran-
spiration on the hydrological cycle has been studied in
the context of hypothetical deforestation (e.g. Shukla &
Mintz 1982; Oyama & Nobre 2004), glacial–interglacial
climate change (e.g. Kleidon & Lorenz 2001) and
future global warming (e.g. Cramer et al. 2001).
However, this capacity to move water from soil to atmos-
phere has not been uniform through time: the flowering
plants that now dominate most terrestrial environments
recently have been shown to have unparalleled capacities
to transpire water (Boyce et al. 2009). Because water loss
is an inevitable component of leaf gas exchange, photo-
synthesis is limited by the ability of the plant to replace
water lost through transpiration. Since the path length
from vein to stomata is an important determinant of
leaf hydraulic conductivity, both CO2 assimilation and
water transpirational loss are tightly correlated with the
density of veins within the leaf (Brodribb et al. 2007;
Boyce et al. 2009; Brodribb & Feild 2010; McKown
et al. 2010). Vein density, therefore, provides a physiologi-
cal proxy measurable in the fossil record and allows
assessment of long extinct taxa with physiologies pre-
viously unconstrained. A fourfold increase in mean and
maximum vein density has been documented with the

evolution of angiosperms over all other fossil and extant
plants (Boyce et al. 2009), indicating that the flowering
plants represent a fundamental physiological shift.
Thus, angiosperms represent an unprecedented increase
in transpiration capacities at the level of the leaf.
However, the scaling-up of this leaf-level effect to the
canopy and landscape is complexly dependent on feed-
backs between the plant, soil moisture and atmospheric
humidity. As a result, the magnitude of this biotic effect
on global climate and ecosystems is unclear.

Flowering plants dominate modern terrestrial environ-
ments except in alpine and high-latitude regions, and
they are the basis of the photosynthetic formulations in
global climate models (e.g. Collatz et al. 1991). Here,
we investigate the potential dependence of terrestrial
environments on angiosperm physiology with climate
model simulations. Standard global climate models that
are widely used by the climate science community are
modified only in that non-angiosperm physiology is
substituted globally for that of the angiosperms while
maintaining modern vegetative biomass. The environ-
mental impact of angiosperms would have been first felt
in the Cretaceous, albeit with extensively debated
timing, geography and ecology (Morley 2000; Ziegler
et al. 2003; Burnham & Johnson 2004; Jaramillo et al.
2006). Although modelling of the effect of angiosperm
evolution on Cretaceous climates is ongoing, the empha-
sis here is not on the specific climate regime in which they
originated but on determining the significance of their
elevated transpirational capacities for climate in general.
The effect of angiosperms is conflated in the Cretaceous
system with several poorly constrained or variable phys-
ical parameters, including the timing and geography of
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angiosperm ecological spread, atmospheric composition,
sea surface temperatures and palaeogeography. These
variables are both complex and inter-related. For
example, the elevated CO2 concentrations of the Cretac-
eous would both decrease the need to facilitate CO2

uptake with high maximal stomatal conductance
(Gedney et al. 2006; Betts et al. 2007; Franks & Beerling
2009) and increase average evapotranspirational demand
by increasing global temperatures, with the overall effect
on transpiration representing the summation of these
positive and negative elements. Thus, modern climate is
used here as the best-constrained system in which to
isolate and investigate angiosperm influence.

2. METHODS
The National Center for Atmospheric Research Community

Atmospheric Model v. 3.0 (Collins et al. 2006) was coupled

with the Community Land Model 3.5 (CLM 3.5; Oleson

et al. 2008). Stomatal conductance for the leaves is formu-

lated using canopy temperature, CO2 concentration, soil

moisture availability and sunlight. Gas (CO2 and H2O)

exchange across the stomata is calculated by the diffusive

flux along the gas concentration gradient and stomatal con-

ductance (Bonan 1996). Transpiration capacities, thus,

were modified by decreasing the maximum carboxylation

rate when intercellular air space is saturated with CO2

(Vmax), which decreases the effective photosynthetic/

transpirational capacity. This close link between photosyn-

thetic and hydraulic capacities is well supported throughout

land plants (Brodribb et al. 2007). The modern world with-

out flowering plants was simulated by lowering Vmax by a

factor of four (Boyce et al. 2009). All runs were integrated

for 13 years and results were averaged for the last 10 years.

The resolution of the model is approximately 2.88 latitude

and approximately 2.88 longitude—with 10 layers in the

soil and 26 layers in the atmosphere. Climatological sea sur-

face temperatures and sea ice distributions were specified.

The results presented involve the standard convection

scheme (Zhang & McFarlane 1995), but are robust to

alternative convection schemes (Emanuel 1991).

The decrease in transpiration per unit leaf area with the

loss of high angiosperm transpiration capacities could be par-

tially offset if there was an accompanying increase in total leaf

area. In such a case, a smaller overall transpiration decrease of

approximately one-half might be the most accurate; however,

this scenario is unrealistic, particularly in the tropics where

transpiration recycling is most important. The increased self-

shading that results in plants with highly elevated leaf area

index (LAI) requires open, high light environments limited

to marginal habitats and areas of recent disturbance, particu-

larly in the wet tropics (e.g. Brodribb & Feild 2008). In

practice, the highest LAI values are found in temperate coni-

fers, particularly the Pinaceae, a conifer family that has

never had more than limited presence in the lowland tropics.

Many of the groups that would have been important before

angiosperm evolution actually tend to have either intermediate

LAIs, including the often broad-leaved conifers in the

Podocarpaceae (LAI near approx. 3.0 in Dacrydium (DeLucia

et al. 2003) and Podocarpus (Fetene & Beck 2004)) and

Araucariaceae (LAI of 1–3.7 in Agathis; Silvester & Orchard

1999) that are important in the modern tropics, or have low

LAIs, particularly the cycads, tree ferns and various extinct

seed plant lineages with a distal rosette of leaves (LAI of 1.7

in Cibotium; Harrington et al. 2001). LAI might also be

expected to be lower without angiosperms given the relation-

ships of biomass production with transpiration (figure 1a)

and precipitation: a loss of transpiration leads to less precipi-

tation, which leads to a reduction in biomass and feeds back

to a further reduction in transpiration. Thus, an effect some-

where between one-quarter and one-eighth of modern

transpiration levels is deemed the most likely impact of angio-

sperm replacement, and a reduction to one-quarter of modern

levels, as a conservative estimate, is coupled with full mainten-

ance of modern leaf area as the primary point of consideration

here. In order to establish the robustness of the results, drops

in transpiration rate of one-half and one-eighth were also mod-

elled. Effects are large and are seen across all three modelled

stages of transpiration reduction (electronic supplementary

material, figure S1).

3. RESULTS
Model results indicate that the increased hydraulic
capacity of angiosperms has a large but variable impact
upon terrestrial climates, with the world being both
drier and hotter in their absence (figure 1). The largest
effects are seen in the tropics, particularly tropical
South America. The smaller influence of angiosperm
transpiration at extratropical latitudes can still be propor-
tionally large in temperate environments (with a 30–50%
reduction in precipitation in eastern North America in the
absence of angiosperms: figure 2), but is necessarily lim-
ited to the growing season when transpiration occurs and
is dwarfed in absolute terms by the impact on tropical
climates. The relationship between transpiration and
precipitation can be complex: increased angiosperm tran-
spiration can actually result in reduced precipitation in
some areas locally owing to changes induced in moisture
convergence patterns (figures 1–3). However, the overall
effect of angiosperms is still strongly positive. For
example, an additional 300 mm of precipitation per year
is received averaged over the whole of tropical South
America, including drier areas, and with local increases
that are much greater (figure 3).

In tropical South America, the impact of angiosperms is
particularly strong in the eastern part of the Amazon basin
(black box in figure 3), where precipitation is known to be
sensitive to local evapotranspiration in austral spring
around the time of the onset of the South American mon-
soon (Fu & Li 2004; Lintner & Neelin 2009). There, the
impact of angiosperm presence involves both a generalized
increase in rainfall throughout the year—including a wetter
dry season with a driest month of 45 mm month21 of
precipitation compared with a driest month of 20 mm
month21 with exclusively non-angiosperm vegetation—
and a dramatic decrease in the length of the dry season
with the largest changes occurring in austral spring
(figure 4). Observations show that the onset of the
monsoon in South America is very abrupt (Gan et al.
2004), and the timing is governed by the amount of moist-
ure in the boundary layer (Fu & Li 2004). Without the
extra boundary layer moistening from high angiosperm
transpiration rates, the monsoon would start much later
(10 January compared with 26 October; table 1) and end
slightly earlier (12 April versus 16 April) for an overall
decrease in the wet season duration of about 80 days if
this region were covered by plants other than flowering
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plants. The energy budget and surface temperatures over
tropical regions are also tied to evapotranspiration (Lee
et al. 2005). The increased transpiration in angiosperm
ecosystems decreases surface heat loss by sensible heat
and results in a large decrease in temperature over tropi-
cal/subtropical South America (figure 3a), particularly
during the dry-to-wet transition period in September
through to November (figure 4b).

The area of tropical South America (108N–208 S)
subjected to very wet conditions decreases dramatically

if the region is not covered by flowering plants
(figure 5). A replacement of angiosperms is calculated
to reduce the area of ever-wet conditions (minimum
of 100 mm precipitation in each month; Morley 2000)
in the central and eastern Amazon (208 S–108 N;
708 W–458 W) from 8.4 ! 105 km2 (observed area
9.8 ! 105 km2) to 1.6 ! 105 km2. Climate changes with-
out angiosperms are also present in other parts of the
tropics (figure 1), but the effect is smaller—presumably
owing to geographical differences. Maritime proximity
and orography help ensure high rainfall in Southeast
Asia and Malesia regardless of vegetation type, although
angiosperms still influence climate as transpiration over
tropical forests shifts convection centres inland and
away from over the oceans. African tropical forests are
already relatively dry and seasonal owing to the broad
tropical extent of continental highlands uplifted in the
last 10 Myr (Partridge 1997) and larger latitudinal
swings of the intertropical convergence zone (McGregor
& Nieuwolt 1998; Ziegler et al. 2003). However, South
America, where effects are largest, represents more than
50 per cent of global tropical rainforest area (Morley
2000), and our results predict that replacement of angio-
sperms would reduce the area of ever-wet conditions
within the Amazon basin by a factor of five.

4. DISCUSSION
The increased transpiration capacity of angiosperms
results in large increases in moisture recycling, and an
overall increase in precipitation. The largest impact is
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Figure 1. The differences in (a) mean gross primary productivity (mmol m22 s21), (b) annual evapotranspiration (mm yr21),
(c) mean air temperature (8C) 2 m above the surface, and (d) annual precipitation (mm yr21) between simulations with present
day vegetation and with vegetation lacking the high transpiration of angiosperms. Precipitation increases with angiosperms can
be larger than local transpiration increases owing to changes induced in atmospheric convection and the redistribution of moist-
ure by prevailing winds.
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Figure 2. The per cent differences in annual precipitation
((((PþA2 – P2A)/PþA) 100%), where PþA and P2A are simu-
lated precipitation with and without angiosperms).
Precipitation is higher with angiosperms over most forested
regions. The proportional changes in dry regions are exagger-
ated because there is very little precipitation.
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seen in areas with a year-round growing season, thus the
tropics in the current cool global climate. At higher lati-
tudes, the effects can still be proportionally large, but
are necessarily curtailed by leafless winters. However,
during the global warm period of the Early Cenozoic,
tropical-aspect rainforests spread extensively to temperate
latitudes in both hemispheres (Morley 2000), and the
year-round growth of angiosperms may have been
essential for maintaining the high rainfall of these
‘Boreotropical’ rainforests.

Seasonal limits on photosynthesis can also be imposed
by drought, but angiosperm effects on precipitation can
limit the duration and severity of dry seasons in areas
where rainfall is at least seasonally available (figures 4
and 5). Wet conditions can thereby be propagated out
from areas that would already have high precipitation:
ever-wet rainforest would exist in tropical South America
with or without the angiosperms, but the area of ever-
wet conditions is dramatically increased with their
presence (figure 5). Angiosperms first appeared in the
Mid-Cretaceous, which was followed by a more pro-
tracted rise to ecological dominance (Tiffney 1984;
Wing et al. 1993; Wing & Boucher 1998). Global temp-
eratures were warm before and after their ecological
spread, but climates differed dramatically. Direct model-
ling of the impact of angiosperms under Cretaceous
conditions is needed, but it is notable that the fossil
record indicates at least seasonal aridity was widespread
in the Cretaceous at both tropical and temperate
latitudes, while vegetation consistent with ever-wet con-
ditions was well established at similar temperatures at
both tropical and temperate latitudes after the rise of
angiosperm ecological dominance (Upchurch & Wolfe
1987; Morley 2000; Johnson & Ellis 2002; Burnham &
Johnson 2004; Jaramillo et al. 2006; Wing et al. 2009).

Although patterns within subgroups can be complex
(Punyasena et al. 2008), the diversities of tropical plants,
invertebrates and vertebrates are fostered by abundance
of rainfall, evenness of rainfall and the broad geographical
extent of rainforests (Reed & Fleagle 1995; Kleidon &
Mooney 2000; Hawkins et al. 2003; Leigh et al. 2004;
Jaramillo et al. 2006; Kreft & Jetz 2007)—all shown here
to be bolstered by the high transpiration rates of the angio-
sperms. For example, if the particularly strong correlation
between tropical plant diversity and number of wet days
(Kreft & Jetz 2007) is taken at face value—not including
other important factors such as regional history, geography
and nutrient dynamics in determining plant diversity—
then 50 per cent reductions in local plant diversities
would be expected to accompany the average loss of 86
wet days per year in the eastern part of the Amazon
when angiosperm vegetation is replaced (figure 5). Thus,
in no small part, angiosperm tropical diversity is the
result of the ecosystem modifications initiated by the
hydraulic physiology of angiosperms themselves.

The increases in animal diversity with increasing pre-
cipitation are probably an indirect consequence of the
impact of precipitation on plant diversity and pro-
ductivity, upon which animal diversity depends more
directly (Kay et al. 1997; Novotny et al. 2006). Since
plant epiphytes require frequent and aseasonal rainfall,
they would have benefited more directly from the
increased precipitation that angiosperms initiated
(Boyce 2008), and epiphytic angiosperms, ferns, lyco-
pods and bryophytes all radiated only after angiosperms
came to dominate tropical ecosystems (Boyce et al.
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Figure 3. (a) The differences in annual precipitation (mmyr21)
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tropical South America between simulations with the present
day angiosperm-dominated vegetation and with vegetation
lacking the high transpiration of angiosperms.
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2009; Schuettpelz & Pryer 2009). Indeed, numerous
lineages of vertebrate and invertebrate animals are also
now thought to have radiated shortly after angiosperm
diversification (Wang et al. 2009), and the propagation
of high rainfall conditions by angiosperms provides a
potential causal mechanism explaining this phenomenon.

Because angiosperms can so strongly modify their
climates, any environmental perturbation severe enough
to degrade that vegetation would be exacerbated by its
loss. Tropical South America would be both hotter and
drier without angiosperm forests—in line with the climate

change expected to accompany the current anthropogenic
degradation of rainforest vegetation (Shukla et al. 1990;
Lawton et al. 2001; Pielke et al. 2007). Along with the var-
ious other climate effects that have been hypothesized for
the End-Cretaceous bolide impact (O’Keefe & Ahrens
1989; Gupta et al. 2001), the destruction of forest cano-
pies in its immediate aftermath may be expected to have
resulted in substantially less precipitation until the veg-
etation recovered, as well as a temperature increase
owing to the loss of transpirational cooling—an effect
that is seasonally as large as 58C in the Amazon basin
today (figures 1, 3 and 4). Alternatively, the degradation
of non-angiosperm vegetation during earlier events,
such as the End-Permian (Looy et al. 1999) or Triassic/
Jurassic extinctions (McElwain et al. 2009), would have
had a much smaller feedback with climate. Thus, angios-
perm evolution should be a consideration in future studies
of mass extinctions and other environmental perturbations
like the Palaeocene/Eocene Thermal Maximum (Wing
et al. 2005) because the same angiosperm-initiated climate
modifications that contribute to the high diversity of
angiosperm ecosystems may also make those ecosystems
prone to more exaggerated responses to environmentally
destructive events.
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