
Problem Set #3 Instructor: David Laibson

Due: 25 September 2014 Economics 2010c

Problem 1 (A simple consumption problem). Consider the following

sequence problem: Find () such that

(0) = sup
{}∞=0

∞X
=0

 ln()

subject to  ∈ [0 ] +1 = ( − ) with 0 given. The associated

Bellman Equation is given by:

() = sup
∈[0]

{ln() + ((− ))} ∀.

The associated Functional Equation is given by:

()() = sup
∈[0]

{ln() + ((− ))} ∀.

We also be interested in the Finite Horizon Sequence Problem (SP):

Find () such that

0(0) = sup
{}=0

X
=0

 ln()

subject to  ∈ [0 ] +1 = ( − ) with 0 given. We also have the

associated finite horizon Bellman Equation:

() = sup
∈[0]

{ln() + +1((− ))} ∀

Note that this finite horizon set-up is the same as the infinite-horizon set-up,

except that the value functions are subscripted: {0(·) 1(·) 2(·)   (·)}.
Let’s adopt the following notation:

•  () = ln

• Let −1() ≡ ( )()
• More generally, let −−1() ≡ (−)()
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• This notation emphasizes connection between

— iterating the functional operator 

— backwards induction

• These two procedures are identical if the initial value function is the
value function that applies in the last period of the finite-horizon game

(i.e., the initial value function is ln for the current application).

a. Using backward induction (starting with  () = ln) show that:

−1 =


1 + 
≡ −1

−2 =


1 +  + 2
≡ −2

b. Using an induction argument, show that:

− = −

where

− ≡ 1− 

1− +1
 (MPC)

c. Derive the limiting consumption rule

 = (1− ) = lim
→∞

−

and the limiting value function

lim
→∞

−() ≡ ln ((1− ))

1− 
+



(1− )2
ln () 

d. Check that our limit function is a fixed point of the original functional

equation, check that

() = ()()

I.e., check that

() = sup
∈[0]

{ln() + ((− ))} 
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e. Plot a few iterations of the policy function and the value function. In

other words, backwards induct the policy and value functions from

the “seed” functions  () =  and  () = ln() Why is the policy

function falling with each iteration? How is the value function changing

with each iteration? Provide intuition.

Problem 2: True/false/uncertain. Explain your answer.

1. A temporary tax cut would do more to increase the consumption of

25-year-olds than 55-year-olds.

2. If a worker expects a 15% wage increase to occur in 2014, then con-

sumption should rise in anticipation in 2013.

3. The marginal propensity to consume out of a tax rebate should be close

to one for housholds that face a binding liquidity constraint.

Problem 3: Three period hyperbolic discounting model.

Consider a person who lives for three periods,  = 1 2 3. To simplify

exposition, I’ll refer to three “selves” of this individual. These selves are in-

dexed by their respective periods of control over the individual’s consumption

decision. At  = 1, “self one” chooses 1. At  = 2, “self two” chooses 2.

At  = 3, “self three” chooses 3. At time  = 1 the agent has the following

utility function:

ln 1 +  ln 2 + 2 ln 3

These preferences would be “standard” if we set  = 1 in which case the

discount structure would be “exponential.” However, we’ll assume 0    1

to approximate the hyperbolic discount structure observed by experimental

psychologists. Setting   1 captures the idea that, from the perspective of

the current self, the discount between today and tomorrow is sharper then

the discount between some future period and the day after that future period.

At time  = 2 the agent has the following utility function:

ln 2 +  ln 3
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Again, this utilityfunction reflects the sharp discount between the new cur-

rent period (i.e., period two) and the new tomorrow (i.e., period three).

Finally, at time  = 3 the agent has the following utility function:

ln 3

a. Prove that if  = 1, then the utility function at  = 2 is a linear trans-

formation of the last two terms of the utility function at  = 1. Prove

that if   1, then the utility function at  = 2 is not a linear trans-

formation of the last two terms of the utility function at  = 1. Prove

that if   1, then the utility function at  = 2 is not a monotonic

transformation of the last two terms of the utility function at  = 1.

I.e., show that selves one and two do not have the same rankings over

points in (2 3) space.

b. Suppose self one could choose 1 2 3 subject to the constraint, 1 +

2+ 3 ≤ 1, where 1 is the starting asset stock of the agent, and the

gross interest rate is implicitly assumed to be equal to one. To simplify

notation, assume  = 1, for this question and all remaining questions

in the problem set. Show that under this “precommitment” scenario,

self one would choose consumption levels such that

0(1) = 0(2) = 0(3)

implying that,

1 = 2 = 3

c. Now suppose that self two is given the chance to revise self one’s consump-

tion program for periods two and three. Intuitively, explain why self

two has an incentive to implement such a revision (iff  6= 1). Assume
that self two “inherits” an asset stock of 2 = 1 − 1 and is asked to

pick 2 and 3. Show that self two will choose consumption levels such

that

0(2) = 0(3)

implying that,

2 = 3
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d. Now construct the rational backwards induction solution to this problem.

Assume 3 = 3 = 1− 1− 2. Then solve self two’s problem, to find

that

0(2) = 0(3)

which implies that

2 =
2

1 + 

and hence,

3 =
2

1 + 


Now consider the problem of self one:

max
1
ln 1 +  ln 2 + 2 ln 3

subject to the constraints that future selves maximize their own inter-

ests. I.e., they pursue their own equilibrium strategies

2 =
1 − 1

1 + 

3 =
(1 − 1)

1 + 


You should find that self one sets

1 =
1

1 + 2


e. Confirm that the backwards induction solution satisfies the generalized

Euler Equation for the hyperbolic economy:

0() = 

∙
+1

+1

 +

µ
1− +1

+1

¶


¸
0(+1)

Remember to set  = 1 and  = 1. How does this Euler Equation dif-

fer from the Euler Equation in a standard exponential economy. Why

doesn’t the standard perturbation argument work in a hyperbolic econ-

omy? (Hint: the equilibrium path is not first-best optimal. So feasible,

welfare-enhancing perturbations can exist.)
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f. The equilibrium time path of consumption is pareto-inefficient. I.e., the

equilibrium path can be perturbed in a way which makes all three selves

strictly better off. Find such a perturbation. Hint: perturb 1 by -∆

and perturb 3 by∆ Note that this perturbation represents an increase

in “thriftiness” in the sense that consumption is being postponed to the

future.

g. (Optional: primarily for students who know game theory.) Now think

about this dynamic choice problem as a game between the three selves.

Show that any consumption path that satisfies the budget constraint

can be supported by a Nash equilibrium. (Hint: consider threats of

0 consumption.) Explain why the backwards induction consump-

tion path is the unique subgame perfect equilibrium consumption path.

Now think about the infinite horizon version of the model (with   1

and a positive net interest rate). Given what you know about the set

of subgame perfect equilibria of the infinite horizon prisoner’s dilemma

(e.g., the Folk Theorem), speculate about the consequences of extend-

ing the horizon to infinity in the consumption “game.”

Problem 4: A procrastination problem.

• Assume that an agent is a quasi-hyperbolic discounter with  = 1 and

0    1

• Assume that the agent faces a discrete-time infinite horizon problem.
• The agent needs to complete some task. The agent pays a punishment
cost of 1 each period that begins with the task still uncompleted.

• If a period begins with the task still uncompleted, the agent pays the
punishment cost of 1, and then decides whether to complete the task

at a cost of  units of (current) effort.

• Once the task is completed, it remains completed forever and the agent
pays no more punishment costs.

• Assume that   (1 + ). Assume too that commitment is not

available (except for question 3.)
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a. Is the following strategy an equilibrium strategy for a sophisticated agent?

“Complete the task in the current period if it hasn’t already been com-

pleted.” Assume that all selves follow this strategy. Is this an equi-

librium?

b. Is the following strategy an equilibrium strategy for a sophisticated agent?

“Do not complete the task in the current period if it hasn’t already

been completed.” Assume that all selves follow this strategy. Is this

an equilibrium?

c. If the agent could commit herself, when would she complete the task?

(For all other questions, assume that commitment is not available.)

d. When would a naive agent complete the task? What would her payoff

be in this game?

e. Assume that sophisticates follow a stationary mixed strategy equilibrium.

In each period, with probability  the sophisticate completes the task.

Explain why 0 ≤  ≤ 1 solves the following system of equations, where
 is the continuation cost for a state in which the task still uncom-

pleted, and  is the cost function of the current self.

 = 1 + + (1− )

 = min {1 +  1 +  }
 =  if 0 ≤   1

 ≤  if  = 1

f. Show that

 =
1 + 



and

 = min

½


(1− )
 1

¾


g. Explain intuitively — using the economics of the problem — why  → 1+

as → 1.

h. Explain intuitively — using the economics of the problem — why → 1 as

 → 1.
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i. In equilibrium, how long on average will it take the agent to complete this

task. Why might that be described as procrastination?
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