MatchingFrontier: Automated Matching for Causal Inference*

Gary King
Harvard University

Christopher Lucas
Harvard University

Richard Nielsen
MIT

Abstract

MatchingFrontier is an R package that implements the methods described in King, Lucas, and Nielsen (n.d.) for simultaneously optimizing both balance and sample size in matching methods for causal inference. MatchingFrontier supports the computation of frontiers for both continuous and discrete metrics and also provides functions for visualizing the frontier and exporting matched data sets for further analysis.

Keywords: R, matching, frontier, Mahalanobis, L1.

1. Introduction

Matching methods have become extremely popular amongst researchers working with observational data, especially when used as a nonparametric preprocessing step to reduce model dependence (Ho, Imai, King, and Stuart 2007, 2009). But despite this popularity, existing matching approaches leave researchers with two fundamental tensions. First, they are designed to maximize one metric (such as propensity score or Mahalanobis distance) but are judged against another for which they were not designed (such as L_1 or differences in means). Second, they lack a principled solution to revealing the implicit bias-variance trade off: matching methods need to optimize with respect to both imbalance (between the treated and control groups) and the number of observations pruned, but existing approaches optimize with respect to only one; users then either ignore the second or tweak it without a formal stopping rule.

MatchingFrontier resolves both tensions by consolidating previous techniques into a single, optimal, and flexible approach. The software calculates the matching solution with maximum balance for each possible sample size ($N, N - 1, N - 2, ...$) and returns each solution, the whole of which constitute the frontier, from which the user can easily choose one, several, or all subsamples with which to conduct the final analysis, given their own choice of imbalance metric and quantity of interest. MatchingFrontier solves the joint optimization problem in one run, automatically, without manual tweaking, and without iteration. Although for each subset size k, there exist a huge number of unique subsets ($\binom{N}{k}$), MatchingFrontier includes specially designed and extremely fast algorithms that give the optimal answer, usually in a few minutes or less.

*The current release of MatchingFrontier is in active development and will continue to grow over the coming months. Comments and suggestions are greatly appreciated.
2. General Framework

Matching methods are designed to reduce imbalance in data by selectively pruning observations, which in turn reduces model dependence (King and Zeng 2006; Imai, King, and Stuart 2008; Iacus, King, and Porro 2011b; Ho et al. 2007). However, pruning reduces sample size and therefore may increase variance in the eventual estimates. Users of matching are then confronted with the perennial bias-variance trade-off. Perhaps surprisingly, existing approaches to matching do not conduct the implied joint optimization of bias and variance. Rather, they improve one dimension of the optimization and leave the second to the user. Such an approach is time consuming and rarely yields the optimal solution.

King et al. (n.d.) proposes a solution to this joint optimization, which is implemented in MatchingFrontier. Discrete and continuous metrics are defined and algorithms are provided for both continuous and discrete metrics, thus rendering the method agnostic to the metric. We point users of MatchingFrontier to King et al. (n.d.) for algorithmic details and theoretical proofs. In this section, we provide definitions of the metrics so that users can choose appropriately when using makeFrontier().

For discrete metrics, we follow (Iacus, King, and Porro 2011a) and use the difference between the multivariate histograms of the treated and control groups. Formally, let \(f_{\ell_1 \cdots \ell_k} \) be the relative empirical frequency of treated units in a bin with coordinates on each of the \(X \) variables as \(\ell_1 \cdots \ell_k \) so that \(f_{\ell_1 \cdots \ell_k} = n_{T,\ell_1 \cdots \ell_k} / n_T \) where \(n_{T,\ell_1 \cdots \ell_k} \) is the number of treated units in stratum \(\ell_1 \cdots \ell_k \) and \(n_T \) is the number of treated units in all strata. We define \(g_{\ell_1 \cdots \ell_k} \) similarly among control units. Then:

\[
L_1(H) = \frac{1}{2} \sum_{\ell_1 \cdots \ell_k \in H} |f_{\ell_1 \cdots \ell_k} - g_{\ell_1 \cdots \ell_k}|
\]

(1)

For continuous metrics, we define the Average Mahalanobis Imbalance (AMI). Though easily generalized to all continuous measures of distance, we choose Mahalanobis distance. AMI is the distance between each unit \(i \) and the closest unit in the opposite group, averaged over all units: \(D = \text{mean}_i[D(X_i, X_{j(i)})] \), where the closest unit in the opposite group is \(X_{j(i)} = \text{arg min}_{j \in \{1-T_i\}}[D(X_i, X_j)] \) and \(\{1-T\} \) is the set of units in the (treatment or control) group that does not contain \(i \). MatchingFrontier defaults to AMI but can just as easily be used with \(L_1 \).

Of note is that these metrics presume a dichotomous treatment. Given recent advances in matching with continuous treatments (Iacus and King n.d.; Ratkovic n.d.), we encourage researchers to consider generalizing our algorithms (and therefore, metrics) to continuous treatment regimes.

3. Getting Started

MatchingFrontier is written in the R language (Team et al. 2012) and is currently hosted on Github and CRAN. CRAN hosts the latest stable release. You can install the current development release of MatchingFrontier with the devtools package (Wickham and Chang 2013), as follows.

```r
> library(devtools)
> install_github('ChristopherLucas/MatchingFrontier')
```
Alternatively, you can install the development version of MatchingFrontier from a *nix command line as follows.

```
$ curl -OL https://github.com/ChristopherLucas/MatchingFrontier/archive/master.zip
$ unzip master.zip
$ cd MatchingFrontier-master
$ R CMD INSTALL package
```

4. A User’s Guide

The typical MatchingFrontier workflow is displayed in Figure 1. Note that in nearly all cases, users first proceed through the two-step process of computing the frontier and then estimating quantities of interest across it. After these steps are completed, the results can be used to visually summarize the full frontier or to closely inspect a particular point on it. Next, we illustrate this workflow with the LaLonde data (LaLonde 1986; Dehejia and Wahba 1999), which is included in MatchingFrontier.

![Figure 1: A typical MatchingFrontier workflow. makeFrontier() is used to construct the frontier, then estimateEffects() is used to estimate quantities of interest for each point on the frontier, after which the user may proceed to visualize the full frontier or to inspect individual points on it.](image)

4.1. LaLonde Example

For the running example in this paper, we use a randomly selected subset of the “LaLonde” data (LaLonde 1986; Dehejia and Wahba 1999). The LaLonde data is commonly used to assess matching methods and refers to the combination of data from an experimental intervention containing 185 treated units (the National Supported Work Demonstration) with observational data. By combining the experimental data with observational data, methods can be compared to the underlying experimental benchmark. We follow LaLonde (1986) and

\[\text{For a complete description of the data, type ?lalonde after loading MatchingFrontier.}\]
MatchingFrontier

combine the results of the experimental intervention with the Current Population Survey. In King et al. (n.d.), we analyze the Lalonde data plus the full data set from the Current Population Study. In this paper, we keep the 185 treated units and randomly selected 1,000 controls from the full data. This allows users to quickly replicate and adapt the code presented in this paper. See King et al. (n.d.) for a serious substantive analysis.

The LaLonde data contains a treatment indicator “treat” (an indicator for assignment to a jobs training program), an outcome measure “re78” (income in 1978), and a number of controls (potential confounders) that we will match on during the illustration. The controls are as follows.

- **age**: subject age at time of intervention
- **education**: years of education
 - **black**: a race indicator for identification as black
 - **hispanic**: an ethnicity indicator for identification as hispanic
 - **married**: an indicator for whether or not the subject is married
 - **nodegree**: an indicator for whether or not the subject has a college degree
 - **re74**: income in 1974
 - **re75**: income in 1975

4.2. Computing the Frontier

The user must first create the frontier. To do so, use the `makeFrontier()` function, which will calculate the optimal subsample at every point on the frontier. By default, `makeFrontier()` calculates the frontier with the Average Mahalanobis Imbalance. However, as we demonstrate, MatchingFrontier works just as easily with L_1 difference.

First, calculate the Mahalanobis frontier for the LaLonde data.

```r
> # Load the package and the data
> library(MatchingFrontier)
> data('lalonde')
> # Create a vector of column names to indicate which variables we
> # want to match on. We will match on everything except the treatment
> # and the outcome.
> match.on <- colnames(lalonde)[!(colnames(lalonde) %in% c('re78', 'treat'))]
> match.on # Print variables in match.on
[1] "age"    "education" "black"    "hispanic" "married"    "nodegree"
[7] "re74"    "re75"```
> # Make the mahalanobis frontier
> mahal.frontier <- makeFrontier(dataset = lalonde,
+   treatment = 'treat',
+   outcome = 're78',
+   match.on = match.on)

Calculating Mahalanobis distances...
Calculating theoretical frontier...
Calculating information for plotting the frontier...

> mahal.frontier

An imbalance frontier with 997 points.

As shown above, match.on is a vector holding the variable names that the user wishes to match on. Because re78 is the outcome and treat is the treatment, we exclude those variable names from the vector.

By default, makeFrontier() calculates the frontier for the Average Mahalanobis Imbalance, as defined in Section 2. The default quantity of interest is the feasible sample average treatment effect on the treated or FSATT (King et al. n.d.), for which weights are calculated and returned to the user.

To instead calculate the $L_1$ frontier, simply provide optional “metric”, “QOI”, and “ratio” arguments, as follows.²

> # Make the L1 frontier
> L1.frontier <- makeFrontier(dataset = lalonde,
+   treatment = 'treat',
+   outcome = 're78',
+   match.on = match.on,
+   QOI = 'SATT',
+   metric = 'L1',
+   ratio = 'fixed')

Calculating L1 binnings...
Calculating L1 frontier... This may take a few minutes...

> L1.frontier

An imbalance frontier with 976 points.

Next, we will use the results computed above to estimate causal effects along the frontier.

4.3. Estimating Effects

Continuing with the Lalonde example, we will estimate the effects along the frontier with the estimateEffects() function, which takes the output from makeFrontier() to estimate the

²For technical explanations of these arguments, we point users to King et al. (n.d.).
effect of the treatment along all values of the frontier. With the Lalonde example, the code is as follows.

```r
> # Set base form
> my.form <- as.formula(re78 ~ treat + age + black + education + hispanic +
+ married + nodegree + re74 + re75)
> # Estimate effects for the mahalanobis frontier
> mahal.estimates <- estimateEffects(mahal.frontier,
+ 're78 ~ treat',
+ mod.dependence.formula = my.form,
+ continuous.vars = c('age', 'education', 're74', 're75',
+ prop.estimated = .1,
+ means.as.cutpoints = TRUE
+)
> # Estimate effects for the L1 frontier
> L1.estimates <- estimateEffects(L1.frontier,
+ 're78 ~ treat',
+ mod.dependence.formula = my.form,
+ continuous.vars = c('age', 'education', 're74', 're75'),
+ prop.estimated = .1,
+ means.as.cutpoints = TRUE
+)
```

estimateEffects() plots estimates of the causal effect and Athey-Imbens model dependence intervals (Athey and Imbens 2015). To do so, it requires the object returned by makeFrontier(), a model formula to use when calculating point estimates (in the above, the difference in means), and a base formula to use for the model dependence estimates (my.form above). Control variables that are continuous should be passed to continuous.vars so cutpoints can be estimated.

We've now estimated effects along the full frontier for AMI with and without controls and for $L_1$ with and without controls. Next, we will visually inspect the full frontier.

### 4.4. Plotting the Frontier

We can plot the frontier and the estimates with the plotting functions, as follows. Note that for the sake of brevity, we will only do so with the $L_1$ frontier (no controls). However, to plot the other three frontiers calculated in the previous section, simply pass the corresponding objects to the plotting functions, as the syntax is the same.

First, we will plot the frontier, where the $y$-axis is $L_1$ and the $x$-axis is the number of observations pruned. This is displayed in Figure 2 next to the code that generated it.
Next, we can plot estimates along the frontier. As in the previous section, we will use the L1 frontier without controls. To do so, we’ll use the results from `makeFrontier()` and `frontierEst()`. Figure 4 displays these results.
> # Plot estimates
> plotEstimates(L1.estimates,
+     ylim =
+     c(-10000, 3000),
+     cex.lab = 1.4,
+     cex.axis = 1.4,
+     panel.first =
+     grid(NULL,
+     NULL,
+     lwd = 2,
+     )
+     )

Figure 4: Estimates across the $L1$ frontier.

4.6. Plotting Means

Next, we can inspect covariate means along the frontier. Again, we will use the $L1$ frontier without controls. To do so, we’ll use the results from `makeFrontier()`.

```r
> # Plot estimates
> plotMeans(L1.frontier)
```

Figure 5: Estimates across the $L1$ frontier.

4.7. Inspect a Single Point on the Frontier

Lastly, users may wish to export a data set on the frontier for additional analysis. To do so, users are likely to rely on `parallelPlot()` and `generateDataset()`. Parallel plot allows the user to visually inspect multiple dimensions of a data set and requires only the output of `makeFrontier()`.

For illustration, we will create a parallel plot that displays the treated and control values on ‘age’, ‘re74’, ‘re75’, and ‘black’ for the point on the frontier where 785
observations have been dropped. We will color treated units blue and control units gray.

```r
> # Make parallel plot
> parallelPlot(L1.frontier,
+ N = 400,
+ variables = c('age',
+ 're74',
+ 're75',
+ 'black'),
+ treated.col = 'blue',
+ control.col = 'gray'
+)
```

![Parallel plot](image)

Figure 6: Parallel plot for pruning 785 observations.

Figure 6 makes obvious the fact that there are many more control than treated units and that the sample still contains a large number of controls that are not good matches for treated units, at least on these dimensions. Though this implies that perhaps we might move even further down the frontier, for illustration, let’s now export this data set, using `generateDataset()` as follows.

```r
> n <- 400 # Identify the point from which to select the data
> matched.data <- generateDataset(L1.frontier, N = n)
```

If the estimand is variable ratio, as it is by default, the exported data set will include the appropriate weights necessary for estimating the FSATT. We can now run a few simple regressions, controlling for the variables we matched on, using the matched data.\(^3\)

### 5. Conclusion

We demonstrated how to use the new R software package MatchingFrontier for causal inference with observational data. With the LaLonde data, users were shown how to compute the balance-sample size frontier, calculate estimates along it, and visualize and inspect the results.

\(^3\)Table generated by Stargazer (Hlavac 2014).
Table 1:

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>re78</th>
<th>re78</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>treat</td>
<td>−6,984.022***</td>
<td>1,011.661</td>
</tr>
<tr>
<td></td>
<td>(886.364)</td>
<td>(1,120.759)</td>
</tr>
<tr>
<td>age</td>
<td>−14.088</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(44.293)</td>
<td></td>
</tr>
<tr>
<td>education</td>
<td>306.848</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(213.445)</td>
<td></td>
</tr>
<tr>
<td>black</td>
<td>−550.212</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1,091.106)</td>
<td></td>
</tr>
<tr>
<td>hispanic</td>
<td>−1,508.171</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1,447.458)</td>
<td></td>
</tr>
<tr>
<td>married</td>
<td>441.041</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(974.394)</td>
<td></td>
</tr>
<tr>
<td>nodegree</td>
<td>−489.522</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1,165.794)</td>
<td></td>
</tr>
<tr>
<td>re74</td>
<td>0.115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.093)</td>
<td></td>
</tr>
<tr>
<td>re75</td>
<td>0.566***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.098)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>13,333.170***</td>
<td>2,234.911</td>
</tr>
<tr>
<td></td>
<td>(602.793)</td>
<td>(3,304.559)</td>
</tr>
</tbody>
</table>

Observations 400  400
R² 0.135  0.402
Adjusted R² 0.133  0.388
Residual Std. Error 8,838.675 (df = 398)  7,425.526 (df = 390)
F Statistic 62.085*** (df = 1; 398)  29.096*** (df = 9; 390)

Note: *p<0.1; **p<0.05; ***p<0.01
References


Affiliation:
Gary King
Department of Government
Harvard University
1737 Cambridge St, Cambridge, MA, USA
E-mail: king@harvard.edu
URL: http://gking.harvard.edu/

Christopher Lucas
Department of Government
Harvard University
1737 Cambridge St, Cambridge, MA, USA
E-mail: clucas@fas.harvard.edu
URL: christopherlucas.org

Richard Nielsen
Department of Political Science
Massachusetts Institute of Technology
77 Massachusetts Avenue, Cambridge, MA, USA
E-mail: rnielsen@mit.edu
URL: http://www.mit.edu/rnielsen/index.htm