Extended infrared photoresponse and gain in chalcogen-supersaturated silicon photodiodes

Aurore J. Said,1 Daniel Recht,1 Joseph T. Sullivan,2 Jeffrey M. Warrender,3 Tonio Buonsi,2 Peter D. Persans,4 and Michael J. Aziz1,a

1Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, USA
2Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
3ARDEC, Benét Laboratories, Watervliet Arsenal, New York 12189, USA
4Department of Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, USA

(Received 12 April 2011; accepted 21 June 2011; published online 17 August 2011)

Highly supersaturated solutions of selenium or sulfur in silicon were formed by ion implantation followed by nanosecond pulsed laser melting. n+p photodiodes fabricated from these materials exhibit gain (external quantum efficiency >3000%) at 12 V of reverse bias and substantial optoelectronic response to light of wavelengths as long as 1250 nm. The amount of gain and the strength of the extended response both decrease with decreasing magnitude of bias voltage, but >100% external quantum efficiency is observed even at 2 V of reverse bias. The behavior is inconsistent with our expectations for avalanche gain or photoconductive gain. © 2011 American Institute of Physics. [doi:10.1063/1.3609871]

Much effort has been focused on enhancing the magnitude of silicon’s photoresponse at near-infrared wavelengths, a spectral range of interest for surveillance, military, and energy device applications. This response is weak because of silicon’s indirect band gap of 1.12 eV.1 Recently, silicon energy device applications. This response is weak because of a spectral range of interest for surveillance, military, and a thickness corresponding to the melt depth (~350 nm). The resulting peak sulfur and selenium concentrations are 3 × 10^20/cm^3 and 2 × 10^20/cm^3, respectively, and the resulting retained doses of sulfur and selenium are 8 × 10^15/cm^2 and 7 × 10^15/cm^2, respectively.8

Figure 1(b) shows a cross-sectional view of a n+p diode made from a single melted region of an implanted wafer. Treated wafers were first laser cut to a precise square geometry around each 3 × 3 mm^2 melted region. At this stage, some samples were furnace annealed in flowing nitrogen for 30 min. Prior to contact deposition, the treated wafers were cleaned in acetone, isopropanol, and deionized water then

![Diagram](https://example.com/diagram.png)

FIG. 1. (a) Top view of an ion-implanted silicon photodiode showing the interdigitated pattern of the top contacts. (b) Cross-sectional schematic diagram of the diode. The substrate wafer (dark gray) is 750 µm thick, and the supersaturated active layer (black) is approximately 350 nm thick over an area of 3 × 3 mm^2. The 240 nm thick Ti/Ni/Ag contacts (light gray) are deposited by electron beam evaporation as a comb pattern on the top and as a filled square on the bottom spread on an area of 2.55 × 2.55 mm^2.
dipped into a 1:5 HF: H2O solution. Electron beam evaporation was used to deposit contacts made of titanium (20 nm at a rate of 0.1 nm/s), followed by nickel (20 nm at a rate of 0.1 nm/s), and followed by silver (200 nm at a rate of 0.1 to 0.25 nm/s) on both sides of the sample in a deposition chamber with base pressure between 3 and 8 × 10⁻⁷ torr. Shadow masks were employed to create interdigitated contacts (shown in Figure 1(a)) on the top (i.e., the melted side) and a square contact on the back of the sample. Coplanar I-V measurements between the top contacts confirmed that they are ohmic. For all measurements reported below, both top contacts were held at the same potential relative to the back contact.

We report steady-state, room-temperature responsivity of these diodes under reverse bias. Light from a 50 W tungsten halide lamp was passed through a monochromator scanned from 400 to 1700 nm in increments of 5 nm. The illuminated area was approximately 3 mm wide × 1 mm high and was positioned to give maximum photoresponse for each device. The monochromatic light was chopped so that diode response could be measured using a lock-in amplifier. No filters were used from 400 to 750 nm, a 650 nm long-pass filter was used from 700 to 1300 nm, and a high-resistivity anti-reflection-coated silicon wafer was used as an additional filter beyond 1100 nm. The total incident optical power at each wavelength was measured using commercial photodiodes with well-characterized response spectra. A silicon diode was used from 400 to 1000 nm, and a germanium diode was used from 1000 to 1300 nm. All measurements were made using an illumination intensity within an order of magnitude of 0.4 mW/m². The highest intensity occurred at 950 nm. External quantum efficiencies (EQEs) were computed by dividing the measured photocurrent by the incident optical power and then converting to electrons per photon. In all measurements, light was incident on the top surface of samples.

Figure 2 depicts the dependence of external quantum efficiency on reverse bias voltage for a 1 × 10¹⁶ sulfur/cm² doped sample that was not furnace annealed. This photodiode shows substantial gain (EQE > 3000%) at 12 V of reverse bias. This gain decreases with decreasing reverse bias voltage, but EQE > 100% is observed even at 2 V, as can be seen in the inset of Figure 2. The figure also shows the EQE of a commercial silicon photodiode, which did not vary with reverse bias, for comparison.

The cause and physics of gain in this system remain unclear and will be the subject of further research. Nevertheless, the available evidence appears to argue against both avalanche gain and photoconductive gain, at least in their simplest embodiments, as possible mechanisms. Avalanche gain seems to be ruled out by the observation of gain at 2 V of reverse bias. Such a small bias is insufficient to drive appreciable amounts of impact ionization in silicon. The evidence against photoconductive gain is more subtle. The photoconductive gain factor is equal to the carrier lifetime for the carrier type dominating the current divided by the transit time of that carrier type across the device. In a typical silicon pn junction, an increase in the reverse bias voltage will (a) have little effect on the carrier lifetime and (b) cause a linear or sub-linear increase in the carrier transit speed. Accordingly, for a photoconductive mechanism to account for the observed faster-than-linear increase of gain with bias, at least one of the two preceding statements, (a) or (b), must be incorrect. While we have found no evidence to justify rejecting either of these assertions in the case at hand, we recognize that there is some precedent for doing so. Both of these statements have been challenged in discussions of III-V quantum dot photodetectors. In addition, the lifetime could plausibly depend on voltage if the defect energy levels introduced by the sulfur atoms shift (e.g., as with metastable defects) or change occupancy under bias.

Figure 2 also shows that the optoelectronic response of these diodes is extended about 100 nm deeper into the infrared than that of commercial silicon photodiodes. This is more clearly illustrated in Figure 3, which depicts the data from Figure 2 with each curve’s maximum normalized to unity. Figure 3 reveals that, like gain, the long-wavelength photoresponse increases with reverse bias voltage. This suggests that gain and extended response might arise from the same physical mechanism.

FIG. 2. (Color online) EQE of an un-annealed 1 × 10¹⁶ sulfur/cm² doped photodiode for several values of reverse bias voltage. EQE of a commercial Si-photodiode is shown for reference. The inset shows a magnified view of EQE at 0 V and 2 V reverse bias compared to the commercial Si-diode.

FIG. 3. (Color online) Normalized EQE spectra of an un-annealed 1 × 10¹⁶ sulfur/cm² doped photodiode as a function of reverse bias voltage. The extension of photoresponse to wavelengths beyond 1100 nm increases with bias voltage.
The authors acknowledge Nathaniel Berry for technical assistance, Heyun Yin of Varian Semiconductor for ion implantation, and Elif Ertekin, David Hutchinson, Yu-Ting Lin, Bonna Newman, Joseph Paki, Meng-Ju Sher, Jim Carey, and Mark Winkler for helpful discussions. This research was supported in part by the US Army–ARDEC under contract W15QKN-07-P-0092 and by the U.S. Army Research Office under grant W911NF-09-1-0470. A. J. Said acknowledges financial support from the Fulbright Program. D. Recht and J. T. Sullivan were supported by the Department of Defense’s National Defense Science and Engineering and the National Science Foundation Graduate Fellowship Programs, respectively. Central facilities were used within the Harvard Center for Nanoscale Systems.

Figure 4 compares the EQE spectra at 12 V reverse bias of un-annealed samples doped with 1×10^{16} sulfur/cm² or 1×10^{16} selenium/cm² with identically prepared samples annealed for 30 min at 250 °C. EQE of a commercial Si-photodiode is shown for reference. Corresponding normalized EQE signals are reported in the inset.

FIG. 4. (Color online) External quantum efficiencies at 12 V reverse bias of un-annealed samples doped with 1×10^{16} sulfur/cm² or 1×10^{16} selenium/cm² and identically prepared samples annealed for 30 min at 250 °C. EQE of a commercial Si-photodiode is shown for reference. Corresponding normalized EQE signals are reported in the inset.