
Fast Imaging Library
of the

National Center for Image-Guided Therapy

N
A
T
I

O
NA
L CENTER

 F
O
R

I
M
A
G
E

-
GUIDED

TH

E
R
A
P
Y

Documentation for Release Version 2.2

January 19, 2015

Developed by the Medical Imaging Physics Group
Dept. of Radiology
Brigham and Women’s Hospital
75 Francis Street
Boston, MA 02115

Please direct inquires to: ncigt-imaging-toolkit@bwh.harvard.edu

Supported by the United States National Institute of Heath
NIH Grant U41 RR019703-01A.

http://www.ncigt.org

CONTENTS i

Contents

1 The NC-IGT Fast Imaging Library 1

2 Quick Start Guide 6

2.1 Prerequisites . 6

2.2 Setup . 6

2.3 MEX file demos . 6

2.3.1 Build the MEX files . 6

2.4 Important Details . 9

2.4.1 Indexing . 9

2.4.2 Data Ordering . 10

2.4.3 Anatomy of a MEX file . 10

2.5 C test files . 13

2.5.1 DICOM editing demo . 13

2.5.2 .nd to .png Demo . 13

2.5.3 Demo for simple display, using ImLib 14

3 Matlab Scripts 14

3.1 Data I/O scripts . 15

3.1.1 read_dump . 15

3.1.2 readnd . 15

3.1.3 savend . 15

3.2 Data visualization scripts . 15

3.2.1 im . 15

3.2.2 pltcmplx . 16

4 Module Index 16

4.1 Modules . 16

5 Module Documentation 17

5.1 Artifact Suppression via UNFOLD 17

5.1.1 Detailed Description . 17

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

CONTENTS ii

5.1.2 Function Documentation . 17

5.2 CINE processing functions . 23

5.2.1 Function Documentation . 23

5.3 Fourier Transform Functions . 26

5.3.1 Detailed Description . 26

5.3.2 Function Documentation . 27

5.4 DICOM File Utilities . 32

5.4.1 Detailed Description . 32

5.4.2 Function Documentation . 32

5.5 GradWarp Functions . 35

5.5.1 Function Documentation . 35

5.6 Image Manipulation Functions . 37

5.6.1 Detailed Description . 37

5.6.2 Function Documentation . 37

5.7 Vendor Specific Functions: GE . 39

5.7.1 Detailed Description . 40

5.7.2 Function Documentation . 40

5.8 Vendor Specific Functions: Siemens 43

5.8.1 Detailed Description . 43

5.8.2 Function Documentation . 43

5.9 Linear System Solvers . 44

5.9.1 Detailed Description . 45

5.9.2 Function Documentation . 45

5.10 Parallel Imaging Algorithms . 50

5.10.1 Detailed Description . 52

5.10.2 Function Documentation . 54

5.11 Filtering Functions . 72

5.11.1 Detailed Description . 73

5.11.2 Function Documentation . 73

5.12 Matrix-Vector Utility Functions . 74

5.12.1 Detailed Description . 74

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

1 The NC-IGT Fast Imaging Library 1

5.12.2 Function Documentation . 74

5.13 File I/O . 75

5.13.1 Detailed Description . 76

5.13.2 Function Documentation . 76

5.14 EPI specific functions . 80

5.14.1 Detailed Description . 80

5.14.2 Function Documentation . 81

5.15 Utility Functions . 83

5.15.1 Detailed Description . 83

5.15.2 Function Documentation . 83

5.16 EPI Ghost Ellimination via Spatial and Temporal Encoding (GESTE) 87

5.16.1 Detailed Description . 87

5.16.2 Function Documentation . 88

5.17 Image Phase Alignment Functions 90

5.17.1 Detailed Description . 90

5.17.2 Function Documentation . 91

1 The NC-IGT Fast Imaging Library

In MR imaging applications, the dominant constraint to image acquisition is time. As
the field has matured, a number of methods have been developed to reduce the length
of time needed to acquire an image by reducing the amount of data needed to re-
construct a clinically viable image. This reduction in acquired data requirements is
achieve through encodings that are complementary to the fundamental Fourier encod-
ing employed in MRI. This includes temporal-domain encodings, such as UNFOLD,
and spatial-domain encodings, as in parallel MR imaging methods such as SENSE and
GRAPPA.

This library of functions provides a number of reconstruction algorithms that accurately
employ these advanced MR imaging methods. This includes

• UNFOLD

• Parallel Imaging Methods

– SENSE

– VD-SENSE

– SPACE RIP

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

1 The NC-IGT Fast Imaging Library 2

– GRAPPA

as well as a number of associated MR image reconstruction algorithms, including

• EPI Nyquist ghost correction

• Homodyne processing of partial-Fourier data

• Gradient field inhomogeneity correction (gradwarp)

As of version 0.96, the library is compatible with both GE and Siemens MR scanners.
For GE MR scanners, file format support includes raw data output using the "P-file"
format, and the "vrgf.dat" and "ref.dat" files to respectively correct for ramp-sampling
and gradient-offset phase correction during EPI acquisitions.

This library was developed at the National Center for Image Guided Therapy by

Medical Imaging Physics Group

Dept. of Radiology

Brigham and Women’s Hospital

75 Francis Street

Boston, MA 02115

Please direct inquires to: ncigt-fil@bwh.harvard.edu

Acknowledgments

The development of this library was supported by the United States National
Institute of Heath (NIH) under Grant U41 RR019703-01A.

Contributors: Bruno Madore (BWH), W. Scott Hoge (BWH), Greg Kirk (formerly
BWH), Steven J. Haker (formerly BWH)

The FFT calculations are provided by the KISS FFT library.

KISS FFT is Copyright (c) 2003-2004 Mark Borgerding

All rights reserved.

Redistribution and use of KISS FFT in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

mailto:ncigt-fil@bwh.harvard.edu
http://www.nih.gov
http://www.nih.gov
http://kissfft.sourceforge.net

1 The NC-IGT Fast Imaging Library 3

Redistributions of KISS FFT source code must retain the
above copyright notice, this list of conditions and the
following disclaimer.

Redistributions of KISS FFT in binary form must reproduce
the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.

Neither the author of KISS FFT nor the names of any KISS
FFT contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Length 2N FFTs are handled by code derived from OOURA FFT:

Copyright(C) 1996-2001 Takuya OOURA
email: ooura -at- mmm -dot- t -dot- u-tokyo -dot- ac -dot- jp
http://momonga.t.u-tokyo.ac.jp/~ooura/fft.html
You may use, copy, modify this code for any purpose and
without fee. You may distribute this ORIGINAL package.

With version 0.9, the library now contains multiple functions to compute the Singular
Value Decomposition (SVD) of a matrix.

The core SVD functions are an implementation of the bilateral diagonalization ap-
proach first described by Golub et. al. This algorithm is known to be extremely
stable, and is drawn from the Colorado School of Mines Center for Wave
Propogation Seismic Un∗x C library.

Copyright (c) Colorado School of Mines, 2007.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

http://momonga.t.uunhbox voidb@x kern z@ char `discretionary {-}{}{}tokyo.ac.jp/~ooura/fft.html
http://www.cwp.mines.edu/cwpcodes/
http://www.cwp.mines.edu/cwpcodes/

1 The NC-IGT Fast Imaging Library 4

--
Credits: Ian Kay, Canadian Geological Survey, Ottawa, Ontario 1999.

This is a translation in C from code written in Fortran that
appeared in NETLIB, EISPACK, and SLATEC collections that was
itself a translation from an original Algol code that appeared
in:

Golub, G. and C. Reinsch (1971) Handbook for automatic computation
II, Linear Algebra, p 134-151. SpringerVerlag, New York.

See also discussions of a similar code in Numerical Recipes in C.
svd_sort: Nils Maercklin, GeoForschungsZentrum (GFZ) Potsdam,
Germany, 2001.
--

Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following
conditions are met:

Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.

Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.

Neither the name of the Colorado School of Mines nor the
names of its contributors may be used to endorse or
promote products derived from this software without
specific prior written permission.

Warranty Disclaimer:
THIS SOFTWARE IS PROVIDED BY THE COLORADO SCHOOL OF MINES AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COLORADO SCHOOL OF MINES OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

1 The NC-IGT Fast Imaging Library 5

To support both the image-phase-alignment and virtual-body-coil functions, a sec-
ond SVD implementation using a Lanczos iterative algorithm is now included. For
the purpose of estimating the singular vectors associated the largest singular value of
large matrices, this Lanczos approach is significantly faster than the more stable bi-
diagonalization approach.

This code is derived from the netlib SVDPACK, via the SVDLIBC library
(http://tedlab.mit.edu:16080/∼dr/SVDLIBC/), and modified to be
thread-safe. This code is

--
(c) Copyright 2003, Douglas Rohde

adapted from SVDPACKC, which is

(c) Copyright 1993, University of Tennessee
All Rights Reserved
--

To support GROG functions, the library has begun to transition to Eigen3 for matrix
decompositions since version 2.0. Version 2.0 uses eigen-3.1.4 (with the EIGEN_-
MPL2_ONLY flag), which is distributed under the MPL2 license:

// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

http://tedlab.mit.edu:16080/~dr/SVDLIBC/
http://mozilla.org/MPL/2.0/.

2 Quick Start Guide 6

2 Quick Start Guide

The goal of this guide is to get a new user of the Fast Imaging Library (FIL) up and
running as quickly as possible, using provided demo programs.

2.1 Prerequisites

Currently [release 2.0], the library is available on Linux (both 64-bit and 32-bit), Win-
dows (MSWin64), and Mac OS X (darwin-intel).

The library provides a binary file for the processing functions, with MEX files to call
the functions from Matlab. Thus, a C compiler is required. The library has been tested
with gcc on Linux and Mac OS X, and MS Visual Studio 2008 on Windows.

2.2 Setup

First, extract the library into a working directory. Below, we will refer to this directory
as the [igt_fil_basepath]. This should create a directory tree that includes
./demos, ./include, ./lib, and ./source_code/matlab paths.

2.3 MEX file demos

2.3.1 Build the MEX files

MEX files are C programs that are callable from Matlab. The FIL distribution contains
a number of examples in the source_code/matlab/mex directory. To set up
MEX file use, do the following:

• chdir to [igt_fil_basepath]/source_code/matlab/mex

• compile each of the matlab functions by calling buildall.m

Examples of how to use the MEX functions are located in [igt_fil_-
basepath]/demos/mex_demo/

After a cd to this directory, be certain to add both the matlab script and the path MEX
paths to the matlab path:

addpath <igt_fil_basepath>/source_code/matlab
addpath <igt_fil_basepath>/source_code/matlab/mex

The remaining portion of this section presents each the MEX demos in turn.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

2.3 MEX file demos 7

2.3.1.1 Loading the Demo Data all of the MEX demos use the same raw data.
This can be read into Matlab via readnd

k = readnd(’phantom.dat’);

This should provide 8-channels of k-space data for a resolution phantom (acquired at
1.5T using a fast spin echo sequence).

2.3.1.2 Zero-pad k-space Demo (util_demo.m) The file util_demo.m provides
a simple example on how to zero-pad an accelerated k-space data set. First, a sampling
pattern is generated. The input sampling pattern is structured with each row containing
a ky-z coordinate location. Since there is only one slice here, all of the z coordiantes
are the same. ky is subsampled by 2, capturing all ’odd’ lines.

Yo = [vec(1:2:256) ones(128,1)];

This sampling pattern is then passed to the kstretch function via

ko = kstretch(Yo, squeeze(k(:,Yo(:,1),1)), [256 256 1]);

ko should now be a zero-padded version of the subsampled k data. This can be visu-
alized using the following Matlab command:

pltcmplx(k(:,:,1), ko(:,:,1));

2.3.1.3 Partial Fourier Demo (pF_demo.m) The library includes functions to per-
form homodyne detection/syncronization for partial-Fourier data sets (as per Noll,
Nishimura, and Macovski. IEEE Trans Medical Imaging. 10(2):154-163, 1991). The
MEX file correct_pF performs this process by calling the partial_Fourier :

Y = 1:146; % specify the lines to use
k0 = correct_pF(k(:,Y,1), [256 256], 1); % perform the correction
im(k0); % visualize the result

The 3rd argument of the MEX function can be used to switch between a (0) step filter
or a (1) ramp filter. The step filter carries better SNR, while the ramp filter is more
tolerant of k-space that is off-center.

2.3.1.4 Parallel Imaging Demo (pmri_demo.m) Three parallel imaging algo-
rithms are included in the library: SENSE, GRAPPA, and SPACE RIP (see Parallel
Imaging Algorithms for more details). This demo demonstrates each of them on the
same data set. First, the data is loaded and a subsampling pattern is generated.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

2.3 MEX file demos 8

k = readnd(’phantom.dat’);

N = 256;

k = k((size(k,1)-N)/2+(1:N), (size(k,1)-N)/2+(1:N), :);

% form a variable density sampling pattern, 4x-2x-1x, with 3x total
% acceleration (suitable for self-referenced reconstructions)
Z = zeros(N,1);
Z(2:4:end) = 1;
Z((N/2) + (-(N/8-2):2:(N/8))) = 1;
Z((N/2) + (-(N/32-2):(N/32))) = 1;
Y = find(Z);

Next, coil sensitivity maps are generated from the subsampled data set:

% generate the coil sensitivity maps
W = geyser(k(Y,:,:), Y(:), [N N 8]);

Finally, images are formed from the subsampled data using various reconstruction al-
gorithms.

• SPACE RIP, using the LSQR-Hybrid algorithm to perform automatic regulariza-
tion.

% solve the system using LSQR-Hybrid space rip
Isr = srlsqr(W, ifft(fftshift(k(Y,:,:),2),[],2), Y(:));

• GRAPPA

% solve the system using GRAPPA
[Fg,Ig2] = grappa(size(W), k(Y,:,:), Y(:));

Ig2 here is the root-sum-of-squares image. If phase needs to be retained, recon-
struct the image using coil sensitivity maps instead:

Ig = sum(conj(W).*ifft2(fftshift(fftshift(Fg,1),2)), 3);

• RLS-GRAPPA

This algorithm performs the GRAPPA reconstruction in hybrid-space (ky-x) and
employs an RLS adaptive filter to rapidly compute the reconstruction parameters.
In certain cases, it is significantly faster than standard GRAPPA.

[Frlsg, Irlsg] = rlsgrappa_x(size(W), ifft(fftshift(k(Y,:,:),2),[],2), Y(:));

• standard Cartesian SENSE

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

2.4 Important Details 9

k2 = zeros(size(k));
k2(1:4:end,:,:) = k(1:4:end,:,:) * 4; % ’*4’ to compensate for the

% sparse sampling
K2 = ifft2(fftshift(fftshift(k2,1),2));
Ics = sense(permute(W,[2 1 3]), permute(K2,[2 1 3]), 4).’;

• and Variable Density SENSE

% solve the system using a variable density SENSE reconstruction
k3 = prep_vds(Y(:), permute(k(Y,:,:),[2 1 3]), [256 256 8]);
k3 = permute(k3, [2 1 3]);

K3 = ifft2(fftshift(fftshift(k3,1),2));

Ivdcs = sense(permute(W,[2 1 3]), permute(K3,[2 1 3]), 4).’;

Finally, the results are displayed

im([Ig Isr; Ics Ivdcs]);

2.3.1.5 UNFOLD Demo (unfold_demo.m) UNFOLD employs temporal varia-
tions in the sampling pattern to encode aliasing artifacts and then filters the results
to suppress the encoded artifacts.

This demo uses a temporal data set

a = readnd(’zoomed.dat’);

and all processing is done within the MEX file

z = unfold(a);

im([a squeeze(z)]);

2.4 Important Details

2.4.1 Indexing

To keep with standard C convention, all indexing in the library starts at zero. This is
particularly important in regards to specifying which phase-encode lines are acquired.
So, if in Matlab the phase encode list runs from [1 .. M], the same phase encode list in
the library would run from [0 .. (M-1)]. The MEX functions provided with the library
perform this transition automatically to give a transparent interface to Matlab.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

2.4 Important Details 10

2.4.2 Data Ordering

Except for certain parallel imaging functions, all of the data is ordered as
kx-ky-z-timeframe-coil

The parallel imaging algorithms that do not follow this convention include

1. self_ref_b1_via_geyser

2. grappa

3. all sprip_ functions, such as sprip_lsqr_recon

which are ordered ky-kx-coil for historical reasons. In short, if a function call
does not include a temporal and/or Z component as an argument, then the data should
be short-ordered, with the subsampled ky data as the first dimension.

2.4.3 Anatomy of a MEX file

Here we describe how the MEX files are structured, using unfold.c as an example.

• preamble: declare macros to give a rational name to the pointers associated with
data input/output

//
#define K_IN prhs[0]
#define FREQ_IN prhs[1]
#define WIDTH_IN prhs[2]

//
#define K_OUT plhs[0]
#define NY_OUT plhs[1]

• sanity: check that the number of inputs/outputs conform

if (nrhs < 1) {
mexPrintf("At least 1 input argument is required.");
return;

} else if (nlhs > 2) {
mexPrintf("Too many output arguments.");
return;

}

• pre: copy the data from Matlab arrays into C data structures

tmpR = mxGetPr(K_IN);
tmpI = mxGetPi(K_IN);
szK = mxGetNumberOfDimensions(K_IN);
dimK = mxGetDimensions(K_IN);

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

2.4 Important Details 11

if (!mxIsDouble(K_IN) || !mxIsComplex(K_IN)) {
mexPrintf("1st input: Need to declare a complex "

" array for the input k-space data\n");
return;

} else {
// header variables that need to be populated
hdr.recon_filt = 0.1; // Width of UNFOLD filters, in frac of bw
// default values
hdr.Nz_proc = 1;
hdr.ncoils = 1;

hdr.Ny_proc = dimK[0];
hdr.Nx = dimK[1];
if (szK == 2) {

hdr.Ny_proc = 1; // number of temporal frames to process
hdr.Nf = dimK[1];

} else if (szK == 3) {
hdr.Nf = dimK[2]; // number of temporal frames to process

} else if (szK == 4) {
hdr.Nz_proc = dimK[2];
hdr.Nf = dimK[3]; // number of temporal frames to process

} else { // (szK == 5)
hdr.Nz_proc = dimK[2];
hdr.Nf = dimK[3]; // number of temporal frames to process
hdr.ncoils = dimK[4];

}
hdr.Nf_proc = set_nfproc(hdr.Nf, 0);

//
// printf("sz = ");
// for (cnt=0;cnt<szK;cnt++) {
// printf("%d ",dimK[cnt]);
// }
//
prd = hdr.Nf * hdr.Nz_proc * hdr.Ny_proc * hdr.Nx * hdr.ncoils;

data_in = (COMPLEX *) malloc(prd * sizeof(COMPLEX));

// mexPrintf("prd = %d\n",prd);

for (cnt=0;cnt<prd;cnt++) {
data_in[cnt].re = tmpR[cnt];
data_in[cnt].im = tmpI[cnt];

}

}

• process: perform the data processing (i.e. call FIL functions)

filter_dc = (float *) malloc(hdr.Nf_proc*sizeof(float));
filter_ny = (float *) malloc(hdr.Nf_proc*sizeof(float));
filter_dckept = (float *) malloc(hdr.Nf_proc*sizeof(float));
filter_dcny = (float *) malloc(hdr.Nf_proc*sizeof(float));
near_dc = (short *) malloc(hdr.Nf_proc*sizeof(short));

// Create plans for a 1D FFT along the time (or frequency) axis

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

2.4 Important Details 12

fft_mngr_init(&mngr);

// Set-up the unfold filters
setup_unfold(&hdr, hdr.Nf_proc, filter_dc, filter_ny, filter_dckept,

filter_dcny,
near_dc, &filt_w);

full = (COMPLEX *) malloc(hdr.Nf_proc * hdr.Nz_proc * hdr.Ny_proc * hdr.Nx
hdr.ncoils * sizeof(COMPLEX));

synth_frames(hdr.ncoils, hdr.Nf, hdr.Nz_proc, hdr.Ny_proc, hdr.Nx,
data_in, hdr.Nf_proc, full);

// FFT from time to temporal frequency domain, with plan ptf (forward)
fft_t(hdr.ncoils, hdr.Nf_proc, hdr.Nz_proc, hdr.Ny_proc, hdr.Nx,

’f’, &mngr, 0, full, full);

if (mode == ’l’) {
// Keep only the DC along temp. freq. domain
unfold_filter(hdr.ncoils, hdr.Nf_proc, hdr.Nz_proc, hdr.Ny_proc,

hdr.Nx, filter_dckept, full);
} else if (mode == ’m’) {

// Filter out DC and Nyquist region (temp. freq. domain)
unfold_filter(hdr.ncoils, hdr.Nf_proc, hdr.Nz_proc, hdr.Ny_proc,

hdr.Nx, filter_dcny, full);
} else { // (mode == ’h’)

// Filter out Nyquist region (temp. freq. domain)
unfold_filter(hdr.ncoils, hdr.Nf_proc, hdr.Nz_proc, hdr.Ny_proc,

hdr.Nx, filter_ny, full);
}

fft_t(hdr.ncoils, hdr.Nf_proc, hdr.Nz_proc, hdr.Ny_proc, hdr.Nx,
’b’, &mngr, 0, full, full);

• post: copy the output data from C data structures into Matlab arrays

sz[0] = hdr.Nx;
sz[1] = hdr.Ny_proc;
sz[2] = hdr.Nz_proc;
sz[3] = hdr.Nf_proc;
//

write_nd_data("unf_out.nd", full, "dblc", 4, sz);

if (nlhs>0) {

sz[0] = hdr.Ny_proc;
sz[1] = hdr.Nx;

szK = mxGetNumberOfDimensions(K_IN);
if (szK == 2) {

scl = 2;
sz[1] = hdr.Nf;

} else if (szK == 3) {
scl = 3;
sz[2] = hdr.Nf;

} else if (szK == 4) {

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

2.5 C test files 13

scl = 4;
sz[2] = hdr.Nz_proc;
sz[3] = hdr.Nf;

} else if (szK == 5) {
scl = 5;
sz[2] = hdr.Nz_proc;
sz[3] = hdr.Nf;
sz[4] = hdr.ncoils;

}
K_OUT = mxCreateNumericArray(scl, sz,

mxDOUBLE_CLASS,
mxCOMPLEX);

tmpR = mxGetPr(K_OUT);
tmpI = mxGetPi(K_OUT);

prd = hdr.Nz_proc * hdr.Ny_proc * hdr.Nx ;

for (cntZ=0;cntZ<hdr.ncoils;cntZ++) {
for (cnt=0;cnt<prd*hdr.Nf; cnt++) {

tmpR[cnt + cntZ*hdr.Nf*prd] =
full[cnt + cntZ*hdr.Nf_proc*prd].re;

tmpI[cnt + cntZ*hdr.Nf*prd] =
full[cnt + cntZ*hdr.Nf_proc*prd].im;

}
}

}

2.5 C test files

2.5.1 DICOM editing demo

The code included in

demos/dicom_demo/

demonstrates how to edit the value associated with a specific DICOM tag in a file, and
write out the new DICOM image file.

2.5.2 .nd to .png Demo

This function is designed to convert the FIL .nd output data files into an image viewable
on any platform. It uses the PNG and ZLIB libraries to accomplish this. These libraries
are standard on Linux and Mac OS X, but may need to be installed on Windows. To
build them them on Windows, do the following

• build ZLIB

– download the ZLIB source distribution from http:///www.zlib.net

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

http:///www.zlib.net

3 Matlab Scripts 14

– unzip the source into a working directory (say, C:\src)
– cd to the zlib directory, and compile using the command nmake -f
win32\Makefile.msc

• build LIBPNG

– download the PNG source distribution from
http://www.libpng.org/pub/png/libpng.html

– unzip the source into the working directory
– cd to the lpng directory, and compile using the command nmake -f
lpng/scripts/makefile.vcwin32

Once the libraries are built, modify the Makefile.win32 file in the display directory
to point to the location of the ZLIB and LIBPNG library and header files. nd2png
should then build properly.

2.5.3 Demo for simple display, using ImLib

ImLib is a general image loading and rendering library, designed to sim-
plify the generating drawable in X-Windows systems. It is included by de-
fault in many Linux distributions. Source code for ImLib can be found here:
ftp://ftp.gnome.org/pub/GNOME/sources/imlib/1.9/

This demo code included in the

./demos/display/

directory uses ImLib to load data from a file stored in the ND-data format, and displays
the data in a simple viewer.

The display demos use an "X Server" for data display. This is available by
default on Linux and Mac. For Windows, a free version is available here:
http://xming.sourceforge.net/

Code is also included that links to ImageMagick to display a set of images. This code
works on both Linux and Windows. To setup ImageMagick on Windows, either (1)
download the latest binary version along with the MSVC 2008 Portability Pack, or (2)
download the source and compile. [ImageMagick binarys are currently compiled with
MSVC 2008, which uses ’manifests’ to manage DLL linking order. VC++ 6 doesn’t
have this, so programs compiled in VC++ 6 but linked to the ImageMagick DLL’s will
show an "R6034 error" everytime the program runs.]

3 Matlab Scripts

A few Matlab scripts are included to provide an interface to the Fast Imaging Library
functions

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

http://www.libpng.org/pub/png/libpng.html
ftp://ftp.gnome.org/pub/GNOME/sources/imlib/1.9/
http://xming.sourceforge.net/

3.1 Data I/O scripts 15

3.1 Data I/O scripts

3.1.1 read_dump

read_dump.m: This script is an interactive way to read in binary data, output by the
function dump_out

3.1.2 readnd

readnd.m: This script reads in data that was output by write_nd_data

Usage:

A = readnd(filename);

• filename A string containing the filename to read.

• A A matrix holding the data in the file.

3.1.3 savend

savend.m: This script writes to disk a Matlab matrix in a format that is readable in
C by the read_nd_data function.

Usage:

savend(filename, A, format);

• filename The name of the output file.

• A The Matlab variable to output.

• format One of the following 3-character strings: ’int’ for integers, ’flt’ for float-
ing point numbers, or ’dbl’ for double precision numbers.

3.2 Data visualization scripts

3.2.1 im

im.m: A graphical interface program to view image and k-space data. It accepts upto
4-dimensional data, and can display the magnitude, real, imaginary, or phase of the
data. Also includes Linkoping’s "GOP" colormap format to visualize magnitude and
phase simultaneously.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

4 Module Index 16

3.2.2 pltcmplx

pltcmplx.m: A graphical interface to compare two or three complex valued matri-
ces, ploting real/imag or magnitude/phase for each column of the data.

4 Module Index

4.1 Modules

Here is a list of all modules:

Artifact Suppression via UNFOLD 17

CINE processing functions 23

Fourier Transform Functions 26

DICOM File Utilities 32

GradWarp Functions 35

Image Manipulation Functions 37

Vendor Specific Functions: GE 39

Vendor Specific Functions: Siemens 43

Linear System Solvers 44

Parallel Imaging Algorithms 50

Filtering Functions 72

Matrix-Vector Utility Functions 74

File I/O 75

EPI specific functions 80

Utility Functions 83

EPI Ghost Ellimination via Spatial and Temporal Encoding (GESTE) 87

Image Phase Alignment Functions 90

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5 Module Documentation 17

5 Module Documentation

5.1 Artifact Suppression via UNFOLD

Functions

• int filter_t_init (int n, int x, int y, int c, double ∗a, double ∗b, filter_t_obj ∗obj)
• int filter_t_quit (filter_t_obj ∗obj)
• int filter_t_step (filter_t_obj ∗obj, COMPLEX ∗dataI, COMPLEX ∗dataO)
• void prep_unfold_dc (short Nx, short N_acq, short Nf, short ncoils, fil_fft_mngr
∗mngr, KCOORD ∗kline_o, KCOORD ∗kline_e, short fr1, COMPLEX ∗data,
COMPLEX ∗buf_lg, COMPLEX ∗buf_sm, float ∗filter_dc, float ∗filter_dckept,
short ∗near_dc, short filt_w, short Nf_proc, KCOORD ∗kline_c, COMPLEX
∗data_dc)

• int set_nfproc (short Nf, short flag)
• void setup_unfold (SCAN_INFO ∗hdr_ptr, int Nt, float ∗filter_dc, float ∗filter_-

ny, float ∗filter_dckept, float ∗filter_dcny, short ∗near_dc, short ∗filt_w_ptr)
• void synth_frames (short ncoils, short Nf, short Nz, short Ny, short Nx, COM-

PLEX ∗data_in, short Nf_proc, COMPLEX ∗data_out)
• void synth_frames_cine (short ncoils, short Nf_full, short fr1, short Nf, short N_-

acq, short Nx, short ky, KCOORD ∗kline_o, KCOORD ∗kline_e, COMPLEX
∗data_in, short Nf_proc, COMPLEX ∗data_out)

• void transfer_dc (short dir, short ncoils, short Nf, short Nz, short Ny, short
Nx, short filt_w, short ∗near_dc, float ∗filter, COMPLEX ∗lg_array, COMPLEX
∗sm_array)

• void unfold_filter (short ncoils, short Nf, short Nz, short Ny, short Nx, float
∗filter, COMPLEX ∗data)

• void unfold_recombine (short Nx, short Ny_proc, short Nz_proc, short Nf_proc,
short ∗near_dc, short filt_w, COMPLEX ∗dc, COMPLEX ∗full)

5.1.1 Detailed Description

The UNFOLD approach employs temporal domain processing to suppress artifacts.

The method is described in "Unaliasing by Fourier-encoding the overlaps using the
temporal dimension" (UNFOLD). Bruno Madore, Gary H. Glover, and Norbert J. Pelc.
Magn Reson Med. 42(5):813-826, Nov 1999. [DOI]

5.1.2 Function Documentation

5.1.2.1 int filter_t_init (int n, int x, int y, int c, double ∗ a, double ∗ b, filter_-
t_obj ∗ obj)

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

http://dx.doi.org/10.1002/(SICI)1522-2594(199911)42:5<813::AID-MRM1>3.0.CO;2-S

5.1 Artifact Suppression via UNFOLD 18

An implementation of a Direct Form II digital filter, for processing a temporal series of
2D images along the temporal domain.

The filter is initiallized by specifying the number of filter taps, and the set of filter
coefficients "a" (feedback) and "b" (feedforward).

filter
input state output

a[0] b[0]
I -+---------> w[0] --------->+---> O

| | |
| a[1] v b[1] |
+<--------- w[1] --------->+
| v |
. . .
. . .
. . .
| | |
| a[n] v b[n] |
+<--------- w[n] --------->+

Notes:

• at iniitalization, the feedback filter taps are normalized, so that a[0] == 1.0.

• the implementation is threaded, for improved processing speed on multicore ma-
chines.

Parameters:

n number of temporal filter taps
x size of 1st dimension of input data, Nx
y size of 2nd dimension of input data, Ny
c size of 3rd dimension of input data, Nc
a feedback coefficients
b feedforward coefficients
obj the output filter object that is initiated by the function call

5.1.2.2 int filter_t_quit (filter_t_obj ∗ obj)

release all memory associated the temporal-domain filter bank object.

5.1.2.3 int filter_t_step (filter_t_obj ∗ obj, COMPLEX ∗ dataI, COMPLEX ∗
dataO)

cycle the temporal filter bank through one step.

Note: the filter bank object should be initialized using filter_t_init() prior to this
call.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.1 Artifact Suppression via UNFOLD 19

Parameters:

obj an FIL filter bank object.

dataI input data

dataO output data

5.1.2.4 void prep_unfold_dc (short Nx, short N_acq, short Nf, short ncoils,
fil_fft_mngr ∗ mngr, KCOORD ∗ kline_o, KCOORD ∗ kline_e, short fr1, COM-
PLEX ∗ data, COMPLEX ∗ buf_lg, COMPLEX ∗ buf_sm, float ∗ filter_dc, float
∗ filter_dckept, short ∗ near_dc, short filt_w, short Nf_proc, KCOORD ∗ kline_c,
COMPLEX ∗ data_dc)

Prepare UNFOLD filter memory arrays

Parameters:

Nx Size in x direction.

N_acq Number of acquired ky-kz lines.

Nf Size time direction.

ncoils number of coils

kline_o Sampling function, odd time frames.

kline_e Sampling function, even time frames.

fr1 Whether 1st frame is considered even (0) or odd (1).

buf_lg Larger buffer, for processing.

buf_sm Smaller buffer, for processing.

filter_dc UNFOLD filter, DC region.

filter_dckept UNFOLD filter (1-filter_dc)

near_dc Frequencies around DC.

filt_w Width of DC region, in near_dc.

Nf_proc number of temporal frames, including synthetic

5.1.2.5 int set_nfproc (short Nf, short flag)

Find out how many frames should be used in the reconstruction. This must be an even
number, and a smooth transition between 1st and last frame is desirable. To do so,
temporary synthetic frames may have to be created. One has the option of a setting
based on precision (larger Nf_proc, flag=0), or speed of recon- struction (smaller Nf_-
proc, flag=1).

Parameters:

Nf Number of time frames.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.1 Artifact Suppression via UNFOLD 20

flag switch between speed vs. precision

With flag = 1, the return value is (int) 2.0∗ceil(Nf/2). This setting
provides increased recon speed and decreased memory usage, i.e., smaller Nf_proc
(e.g., for 5 frames 1-2-3-4-5, the reconstruction is done with 6 frames 1-2-3-4-5-4,
where the 4th is repeated to make Nf_proc even).

With flag = 0, the return value is 2∗Nf - 2 This setting provides increased pre-
cision, by avoiding discontinuities between the first and last frame of the data to be
processed (e.g., for 5 frames 1-2-3-4-5, the recon is done with 8 frames 1-2-3-4-5-4-
3-2, where frames 2, 3 and 4 are repeated, the transisition between 1st frame and last
frame (frame #2) being presumably smooth).

5.1.2.6 void setup_unfold (SCAN_INFO ∗ hdr_ptr, int Nt, float ∗ filter_dc, float
∗ filter_ny, float ∗ filter_dckept, float ∗ filter_dcny, short ∗ near_dc, short ∗ filt_-
w_ptr)

Set-up parameters/filters specific to the UNFOLD algorithm.

Parameters:

hdr_ptr Structure with scan info.

Nt Number of time points.

filter_dc UNFOLD filter, DC region.

filter_ny UNFOLD filter, Ny region.

filter_dckept UNFOLD filter (1-filter_dc)

filter_dcny UNFOLD filter (filter_dc∗filter_ny)

near_dc Frequencies around DC.

filt_w_ptr Width of DC region, in near_dc.

5.1.2.7 void synth_frames (short ncoils, short Nf, short Nz, short Ny, short Nx,
COMPLEX ∗ data_in, short Nf_proc, COMPLEX ∗ data_out)

Generate extra, synthetic time frames. This has two purposes: to make the number of
phases even to insure alternation between the two sampling schemes, and to make the
change between last and first frames smoother.

Parameters:

ncoils Number of receiver coils.

Nf Size time direction.

Nz Size in z direction.

Ny Size in y direction.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.1 Artifact Suppression via UNFOLD 21

Nx Size in x direction.

data_in Data input, to be extended from Nf to Nf_proc frames.

Nf_proc New size along t, including synthetic frames.

data_out output data

5.1.2.8 void synth_frames_cine (short ncoils, short Nf_full, short fr1, short Nf,
short N_acq, short Nx, short ky, KCOORD ∗ kline_o, KCOORD ∗ kline_e,
COMPLEX ∗ data_in, short Nf_proc, COMPLEX ∗ data_out)

For a given ky line, generate extra (synthetic) time frames. This has two purposes:
to make the number of phases even to insure alternation between the two sampling
schemes, and to make the change between last and first frames smoother.

Parameters:

ncoils Number of receiver coils.

Nf_full Array size time direction.

Nf Data size, <= Nf_full.

N_acq Number of k lines per frame.

Nx Size in x direction.

ky ky line being treated.

data_in Data input, to be extended from Nf to Nf_proc frames.

Nf_proc New size along t, including synthetic frames.

data_out output data

5.1.2.9 void transfer_dc (short dir, short ncoils, short Nf, short Nz, short Ny,
short Nx, short filt_w, short ∗ near_dc, float ∗ filter, COMPLEX ∗ lg_array,
COMPLEX ∗ sm_array)

When DC and Nyquist frequencies are handled seperately in an application of UN-
FOLD parad, this function can be used to copy the mult-frame DC data to a processing
buffer.

Parameters:

dir Directiion of transfer (-1 from large array to small, 1 from small to large).

ncoils Number of receiver coils.

Nf Size time direction.

Nz Size in z direction.

Ny Size in y direction.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.1 Artifact Suppression via UNFOLD 22

Nx Size in x direction.

filt_w Number of entries in near_dc[]

near_dc Location of those frequencies that correspond to near-DC frequencies.

filter Weight to give to data while transfering it (only for dir=1, from small to
large).

lg_array Array containing all temporal frequencies (length Nf along frequency
axis).

sm_array Array containing only temporal frequencies near DC (length filt_w
along frequency axis).

5.1.2.10 void unfold_filter (short ncoils, short Nf, short Nz, short Ny, short Nx,
float ∗ filter, COMPLEX ∗ data)

Apply the UNFOLD filters to the data

Parameters:

ncoils Number of receiver coils. (dim 5)

Nf Size time direction. (dim 4)

Nz Size in z direction. (dim 3)

Ny Size in y direction. (dim 2)

Nx Size in x direction. (dim 1)

filter UNFOLD filter, applied along dim 4.

data Data to filter (inplace operation: output overwrites input). size: Nx-Ny-Nz-
Nf-ncoil

5.1.2.11 void unfold_recombine (short Nx, short Ny_proc, short Nz_proc, short
Nf_proc, short ∗ near_dc, short filt_w, COMPLEX ∗ dc, COMPLEX ∗ full)

Recombine the improved DC region in ’dc’ (calculated with half the acceleration) to
the rest of the bandwidth (calculated with full acceleration).

Parameters:

Nx Size in x direction.

Nf_proc Size time direction, including synthetic frames

near_dc Frequencies around DC.

filt_w Width of DC region, in near_dc.

dc Contains improved version of DC region.

full Contains rest of bandwidth (DC removed). The output overwrites the input
values in ’full’.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.2 CINE processing functions 23

5.2 CINE processing functions

Functions

• void calc_DC_for_b1 (short Nx, short N_acq, short Ny, short Nf, short fr1, short
ncoils, KCOORD ∗kline_c, int ∗acq_record, COMPLEX ∗xkykz, COMPLEX
∗DC_xkykz)

• void nonlin_cphase (SCAN_INFO hdr, int ∗hb_length, float ∗acq_timing, float
systole_thr)

• void puzzleout_cineacq (int ∗trig_rr, int ∗trig_seg, int ∗trig_slice, SCAN_INFO
∗hdr_ptr, KCOORD ∗kline_o, KCOORD ∗kline_e, int ∗hb_length, float ∗acq_-
timing)

• void read_ecg_info (char ∗∗ecgfile, SCAN_INFO ∗hdr_ptr, int ∗trig_rr, int
∗trig_seg, int ∗trig_slice, int pass)

• void retrosp_gating_interp (short ncoils, short Nf_intrp, short Nf, short N_lines,
short Ny, short Nx, short k, short ky, float ∗cph_record, float ∗ph_recon, COM-
PLEX ∗current_line, COMPLEX ∗kcine)

• void sort_rds_data (short ∗rawdata, int z, SCAN_INFO hdr, float ∗acq_timing,
COMPLEX ∗kspace_data)

5.2.1 Function Documentation

5.2.1.1 void calc_DC_for_b1 (short Nx, short N_acq, short Ny, short Nf, short
fr1, short ncoils, KCOORD ∗ kline_c, int ∗ acq_record, COMPLEX ∗ xkykz,
COMPLEX ∗ DC_xkykz)

Calculate the DC data to be used for self-calibration purposes.

Parameters:

Nx number of points along readout

N_acq number of acquired phase encodes

Ny resolution along phase encode dimension

Nf number of temporal frames

fr1 select whether the data should be considered as an odd (fr1=0) or even (fr1=1)
temporal frame.

ncoils number of coils

kline_c a list of the acquired k-space lines

xkykz input data, size: Nx, N_acq, Nf, ncoils, Nz

DC_xkykz output coil sensitivity estimate, size: Nx,2∗N_acq,1,ncoils

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.2 CINE processing functions 24

5.2.1.2 void nonlin_cphase (SCAN_INFO hdr, int ∗ hb_length, float ∗ acq_-
timing, float systole_thr)

Calculate cardiac phase, using a non-linear model whereby diastole data get stretched
more than systole data, when accounting for arrythmia.

Parameters:

hdr Pointer to the structure with scan info.

hb_length Length of each RR interval, in units of TR (output).

acq_timing Info regarding every single TR in the entire acquisition (0. ky, 1.
linear cardiac phase, 2. slice, 3. frame number, 4. order within segment,
5. heartbeat number, 6. index in sampling function, 7. non-linear cardiac
phase).

systole_thr Fraction of a (normal, or avera- ge) heartbeat considered to belong to
systole.

5.2.1.3 void puzzleout_cineacq (int ∗ trig_rr, int ∗ trig_seg, int ∗ trig_slice,
SCAN_INFO ∗ hdr_ptr, KCOORD ∗ kline_o, KCOORD ∗ kline_e, int ∗ hb_-
length, float ∗ acq_timing)

Figure out how the cine acqui- sition proceeded, based on the timing of the R waves,
the sampling function, and scan parameters.

Parameters:

trig_rr Timing of R-waves, in units of TR.

trig_seg Segment being acquired in given RR.

trig_slice Slice being acquired in given RR.

hdr_ptr Pointer to the structure with scan info.

kline_o Sampling function, odd time frames.

kline_e Sampling function, odd time frames.

hb_length Length of each RR interval, in units of TR (output).

acq_timing Info regarding every single TR in the entire acquisition (0. ky, 1.
linear cardiac phase, 2. slice, 3. frame number, 4. order within segment,
5. heartbeat number, 6. index in sampling function, 7. non-linear cardiac
phase).

5.2.1.4 void read_ecg_info (char ∗∗ ecgfile, SCAN_INFO ∗ hdr_ptr, int ∗ trig_rr,
int ∗ trig_seg, int ∗ trig_slice, int pass)

First pass at reading the file, with ECG info, generated by the psd.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.2 CINE processing functions 25

Parameters:

ecgfile Name of the ECG info file.

hdr_ptr Pointer to the structure where the info is to be stored.

trig_rr Timing of R-waves, in units of TR.

trig_seg Segment being acquired in given RR.

trig_slice Slice being acquired in given RR.

pass For pass = 1, just find how many entries there are. For pass = 2, actually read
these entries and store in memory.

5.2.1.5 void retrosp_gating_interp (short ncoils, short Nf_intrp, short Nf, short
N_lines, short Ny, short Nx, short k, short ky, float ∗ cph_record, float ∗
ph_recon, COMPLEX ∗ current_line, COMPLEX ∗ kcine)

Sort the data gathered by the raw data server.

Parameters:

ncoils Number of receiver coils.

Nf_intrp Size time direction, after.

Nf Size time direction, before.

N_lines Number of ky-kz lines.

Ny Size y/ky direction.

Nx Size in x/kx direction.

k Index for current line.

ky ky location for current line.

cph_record Record of cardiac phase.

ph_recon Phase values desired.

current_line One k-line worth of data.

kcine Array where to store result

5.2.1.6 void sort_rds_data (short ∗ rawdata, int z, SCAN_INFO hdr, float ∗
acq_timing, COMPLEX ∗ kspace_data)

Sort the data gathered by the raw data server.

Parameters:

rawdata Raw data from the raw data server, for all slices.

z Slice to be sorted out.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.3 Fourier Transform Functions 26

hdr Scan info.
acq_timing Info regarding every single TR in the entire acquisition (0. ky, 1.

linear cardiac phase, 2. slice, 3. frame number, 4. order within segment,
5. heartbeat number, 6. index in sampling function, 7. non-linear cardiac
phase).

kspace_data Sorted data, for desired slice.

5.3 Fourier Transform Functions

An FFT resource manager and associated functions.

Functions

• int fft1d (void ∗args)
• int fft_mngr_alloc_2dfft (fil_fft_mngr ∗mngr, int M, int N, char direction)
• int fft_mngr_alloc_fft (fil_fft_mngr ∗mngr, int N, char direction)
• int fft_mngr_init (fil_fft_mngr ∗mngr)
• int fft_mngr_quit (fil_fft_mngr ∗mngr)
• void fft_t (short ncoils, short nf, short nz, short ny, short nx, char direction, fil_-

fft_mngr ∗mngr, short center, COMPLEX ∗data_in, COMPLEX ∗data_out)
• void fftx (short ncoils, short Nf, int Nyz, short Nx, char dir, fil_fft_mngr ∗mngr,

short center, COMPLEX ∗data)
• void ffty (short ncoils, short nf, short nz, short ny, short nx, char direction, fil_-

fft_mngr ∗mngr, short center, COMPLEX ∗data)
• void fftz (short ncoils, short nf, short nz, short ny, short nx, char direction, fil_-

fft_mngr ∗mngr, short center, COMPLEX ∗data_in, COMPLEX ∗data_out)
• int fil_2dfft (fil_fft_mngr ∗mngr, int M, int N, COMPLEX ∗data, char dir)
• int fil_fft (fil_fft_mngr ∗mngr, int N, COMPLEX ∗data, char dir, int unused)
• void fil_fft_shift (COMPLEX ∗data, int Nx, int Ny)

5.3.1 Detailed Description

An FFT resource manager and associated functions.

This suite of functions provides a resource manager for Fast Fourier Transforms, in
order to alleviate memory management bookkeeping.

The use of NC-IGT Fast Imaging Library (FIL) FFT manager facilitates reuse of
scratch buffers needed by the FFT functions. Scratch buffers can be allocated at the
start of a program, and used by multiple functions afterwards. Calling an FFT function
with an initialized manager will create scratch space if there is none pre-allocated. Fur-
thermore, if the FFT engine changes in the future, these fil_fft calls will remain
backwards compatible.

Usage:

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.3 Fourier Transform Functions 27

#include "fil_fft.h"

fil_fft_mngr mngr;
COMPLEX *data;

fft_mngr_init(&mngr);

data = (COMPLEX *) malloc(256 * sizeof(COMPLEX));

...

fil_fft(&mngr, 256, data, ’f’, 1);

...

fft_mngr_quit(&mngr);

Each manager allocates space for upto 512 different length-plus-f/b combinations. If
your program needs more than 512 different FFTs, then use additional managers.

5.3.2 Function Documentation

5.3.2.1 int fft1d (void ∗ args)

Computes a 1D FFT

To call this function, first declare a variable to hold the function arguments:

fft1d_args args;

Then, populate the variable,

args.direction = ’f’; // FFT direction: ’f’ or ’b’
args.data = in; // pointer to COMPLEX data to be transformed
args.n = N; // length of data buffer
args.buf = buf; // pointer to temporary COMPLEX buffer
args.center = 0; // k-space center is in the middle of the data
args.mngr = mngr; // a pointer to an FFT manager

Then call the function:

fft1d((void *) &args);

This structure allows calls to fft1d to be multi-threaded.

Inverse FFTs are scaled by the length of the data vector, so that a ’round trip’ of and
FFT followed by an IFFT will leave the data at the same amplitude.

Parameters:

args a pointer to an fft1d_args variable

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.3 Fourier Transform Functions 28

5.3.2.2 int fft_mngr_alloc_2dfft (fil_fft_mngr ∗ mngr, int M, int N, char direc-
tion)

Allocate an manager object for 2D FFTs.

Parameters:

mngr an fil_fft manager

M length of dim 1

N length of dim 2

direction ’f’:forward FFT :: ’b’:inverse FFT

5.3.2.3 int fft_mngr_alloc_fft (fil_fft_mngr ∗ mngr, int N, char direction)

Allocate an manager object for 1D FFTs.

Parameters:

mngr an fil_fft manager

N length of requested fft

direction ’f’:forward :: ’b’:inverse

5.3.2.4 int fft_mngr_init (fil_fft_mngr ∗ mngr)

Initialize the FFT manager.

The number of different FFT sizes needs to be declared before calling this initialization
function.

Usage:

fil_fft_mngr mngr;

fft_mngr_init(&mngr);

Parameters:

mngr a pointer to a FFT manager

5.3.2.5 int fft_mngr_quit (fil_fft_mngr ∗ mngr)

Free all FFT-related memory allocations, and release the manager.

Parameters:

mngr an FFT manager

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.3 Fourier Transform Functions 29

5.3.2.6 void fft_t (short ncoils, short nf, short nz, short ny, short nx, char
direction, fil_fft_mngr ∗ mngr, short center, COMPLEX ∗ data_in, COMPLEX
∗ data_out)

FFT from time to frequency, or vice-versa. The input is a dataset ordered (nx -x- ny -x-
nz -x- nf -x- ncoils), and the FFT is performed only in the temporal frequency direction
(2nd dimension).

Parameters:

ncoils Number of coils. (dim 5)

nf Number of time frames. (dim 4)

nz Size along kz. (dim 3)

ny Size along ky. (dim 2)

nx Size along x or kx. (dim 1)

direction ’f’ : forward FFT, or ’b’ : inverse FFT

mngr a pointer to an FFT manager

center is center of k-space in the center of the data? set to 0 if DC is at 0, otherwise
DC assumed to be at nf/2

data_in Input data

data_out Output data. If it is the same as data_in, input data simply gets over-
written.

5.3.2.7 void fftx (short ncoils, short Nf, int Nyz, short Nx, char dir, fil_fft_mngr
∗ mngr, short center, COMPLEX ∗ data)

FFT along x or kx. The input is a data-set ordered (Nx -x- (Ny∗Nz) -x- Nf -x- ncoils
), and an FFT is performed only in the x/kx direction.

Parameters:

ncoils number of coils

Nf size in the temporal frame direction.

Nyz size in the Nyz direction.

Nx size in the x/kx direction.

dir ’f’ : forward FFT, or ’b’ : inverse FFT

mngr a pointer to an FFT manager

center 0 if DC is at (0,0), otherwise DC assumed to be at (Nx/2,Nyz/2)

data Data to FFT. The input data gets overwritten by the output data.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.3 Fourier Transform Functions 30

5.3.2.8 void ffty (short ncoils, short nf, short nz, short ny, short nx, char
direction, fil_fft_mngr ∗ mngr, short center, COMPLEX ∗ data)

FFT along y or ky. The input is a data-set ordered (nx -x- ny -x- nz -x- nf -x- ncoils),
and an FFT is performed only in the y/ky direction.

Parameters:

ncoils Number of coils. (dim 5)

nf Number of time frames. (dim 4)

nz Size along kz. (dim 3)

ny Size along ky. (dim 2)

nx Size along x or kx. (dim 1)

direction ’f’ : forward FFT, or ’b’ : inverse FFT

mngr a pointer to an FFT manager

center 0 if DC is at (0,0), otherwise DC assumed to be at (Nx/2,Ny/2)

data Data to FFT. The input data gets overwritten by the output data.

5.3.2.9 void fftz (short ncoils, short nf, short nz, short ny, short nx, char
direction, fil_fft_mngr ∗ mngr, short center, COMPLEX ∗ data_in, COMPLEX
∗ data_out)

FFT along z or kz. The input is a data-set ordered as (nx -x- ny -x- nz -x- nf -x- ncoils),
and an FFT is performed only in the z/kz direction.

Parameters:

ncoils Number of coils. (dim 5)

nf Number of time frames. (dim 4)

nz Size along kz. (dim 3)

ny Size along ky. (dim 2)

nx Size along x or kx. (dim 1)

direction ’f’ : forward FFT, or ’b’ : inverse FFT

mngr a pointer to an FFT manager

center 0 if DC is at (0,0), otherwise DC assumed to be at (Nx/2,Ny/2)

data_in Input data

data_out Output data. If it is the same as data_in, input data simply gets over-
written.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.3 Fourier Transform Functions 31

5.3.2.10 int fil_2dfft (fil_fft_mngr ∗ mngr, int M, int N, COMPLEX ∗ data,
char dir)

Perform a 2D FFT on the data.

Note: to match Matlab’s "ifft2", the output must be scaled by 1/(M∗N).

Parameters:

mngr an FFT manager

M dim-1 length of the data set

N dim-2 length of the data set

data a pointer to the data buffer to transform

dir FFT direction forward "f" or backward "b"

5.3.2.11 int fil_fft (fil_fft_mngr ∗ mngr, int N, COMPLEX ∗ data, char dir, int
unused)

Perform a 1D FFT on the data.

Note: consistent with the underlying FFT engines used in this function, the inverse
FFT (when dir = ’b’;) is not scaled to unity.

Parameters:

mngr an FFT manager

N the length of the data set

data a pointer to the data buffer to transform

dir FFT direction forward ’f’ or backward ’b’

unused (unused)

5.3.2.12 void fil_fft_shift (COMPLEX ∗ data, int Nx, int Ny)

Perform an FFT shift on the data, swapping the 1st/3rd and 2nd/4th quadrants of the
data space.

Parameters:

data pointer to the input data

Nx dim 1 of the data

Ny dim 2 of the data

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.4 DICOM File Utilities 32

5.4 DICOM File Utilities

Functions

• void edit_dicom (LIST_NODE ∗list, short tag0, short tag1, char ∗filename, char
∗im_hdr, int ∗hdrsize_ptr, void ∗newvalue, short newvalue_length)

• void eval_dicom (LIST_NODE ∗list, short tag0, short tag1, char ∗filename, char
∗value, char ∗value_type, short max_length)

• LIST_NODE find_tag (LIST_NODE ∗list, short tag0, short tag1)
• void get_dicom_info (char ∗filename, LIST_NODE ∗list, short Nmax)
• int is_dicom (char ∗filename)
• void print_list (LIST_NODE ∗list, char ∗filename)
• short write_ima (SCAN_INFO hdr, short flip_h, short flip_v, short rot_90, char
∗∗imfile, int imnum, int z_anat, COMPLEX ∗buf, COMPLEX ∗result, char
∗path_out)

5.4.1 Detailed Description

A set of functions to read/edit/write DICOM headers and files.

The model followed by these functions is the following:

• The DICOM header information is read for a file

• The header is parsed to construct a dictionary (the ’list’)

• For requests for tag values, the tag location is determined from the list, and the
value is determined from the file itself.

• The edit tag function should be used primarily for changing the value of an ex-
isting tag, e.g. to change the image number.

• Writing a new DICOM file consists of writing the header information, followed
by the image data itself.

Testing has been done with DICOM files generated by GE scanners.

5.4.2 Function Documentation

5.4.2.1 void edit_dicom (LIST_NODE ∗ list, short tag0, short tag1, char ∗
filename, char ∗ im_hdr, int ∗ hdrsize_ptr, void ∗ newvalue, short newvalue_-
length)

Change the value of one entry, in a DICOM header.

Parameters:

list List of DICOM entries.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.4 DICOM File Utilities 33

tag0 Specific tag. first 16 bits of the tag,

tag1 the second set of 16 bits of the tag.

filename Name of DICOM file, where im_hdr comes from.

im_hdr DICOM header, stored in a char array.

hdrsize_ptr The size of the DICOM header. If editing the header changes the size,
the new size is returned.

newvalue New value to be inserted in header.

newvalue_length Length in bytes of newvalue. Unless this is a char string, this
info tends to be redundant with newvalue_type.

5.4.2.2 void eval_dicom (LIST_NODE ∗ list, short tag0, short tag1, char ∗
filename, char ∗ value, char ∗ value_type, short max_length)

Find the value of one particular DICOM entry.

Parameters:

list List of DICOM entries.

tag0 A Specific tag. tag0 contains the first 16 bits

tag1 tag1 contains the 2nd set of 16 bits

filename Name of DICOM file.

value Pointer to where the value should be written.

value_type String giving the variable type expected (char, float, double, long.
ulong, short, ushort)

max_length Maximum length, in bytes, to be written out (i.e., size allocated at
the address ’value’.

5.4.2.3 LIST_NODE find_tag (LIST_NODE ∗ list, short tag0, short tag1)

In a list of DICOM entries, finds a given tag, and return the associated entry. The
returned entry contains the info on where (offset), how (VR) and how much (length)
should be read, to get the value associated with the tag.

Returns:

DICOM entry relating to this tag, extracted from the list of all entries.

Parameters:

list List of DICOM entries.

tag0 Specific tag. tag0 contains the first 16 bits,

tag1 tag1 the second set of 16 bits.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.4 DICOM File Utilities 34

5.4.2.4 void get_dicom_info (char ∗ filename, LIST_NODE ∗ list, short Nmax)

Takes a DICOM file, and extracts all the tags. Each entry includes the tag number, the
VR accociated with the tag, the length of the value field, and the offset in bytes from
the beginning of the file to the value field.

Parameters:

filename Name of DICOM file.

list List of tag entries extracted from file.

Nmax maximum number of entries to be considered (proportional to the amount
of memory allocated for the list).

5.4.2.5 int is_dicom (char ∗ filename)

Returns 1 if the file is a DICOM file and 0 otherwise.

Parameters:

filename Name of DICOM file

5.4.2.6 void print_list (LIST_NODE ∗ list, char ∗ filename)

Print out a list of all DICOM tags in a file, along with VR values, offset values, the
length of the value field and the actual value. The ’list’ was first built using get_-
dicom_info().

Parameters:

list List of DICOM entries.

filename Name of DICOM file.

5.4.2.7 short write_ima (SCAN_INFO hdr, short flip_h, short flip_v, short rot_-
90, char ∗∗ imfile, int imnum, int z_anat, COMPLEX ∗ buf, COMPLEX ∗ result,
char ∗ path_out)

Finish cropping, rotating, flipping, shifting the result, and write it out as a dicom
file.

Parameters:

hdr header information, associated with ∗buf

flip_h Flag to flip horizontally.

flip_v Flag to flip vertically.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.5 GradWarp Functions 35

rot_90 Flag to rotate +90 (=+1) or -90 (=-1) degrees.

imfile input DICOM file, for header information

imnum Number of the slice being written out (between 1 and Nz).

z_anat Current z loc, anatomical ordering

buf input data

result Reconstructed image data

path_out Directory where to write result.

5.5 GradWarp Functions

Functions

• void gwarp_apply2 (float W[], float hpp[], float vpp[], float ∗hpixs, float ∗vpixs,
int N_h, int N_v, float mag[])

• void gwarp_calc (float ∗tl, float ∗tr, float ∗br, float ∗bl, int N_h, int N_v, float
hpixs[], float vpixs[], float ∗d, float ∗u, float W[], float hpp[], float vpp[], char
∗fname)

• void gwarp_prep (float tl[], float tr[], float br[], float bl[], int N_h, int N_v, float
hpixs[], float vpixs[], float d[], float u[])

• int gwarp_read_parms (char ∗fname, GWARP_PARMS ∗gwp)

5.5.1 Function Documentation

5.5.1.1 void gwarp_apply2 (float W[], float hpp[], float vpp[], float ∗ hpixs,
float ∗ vpixs, int N_h, int N_v, float mag[])

Parameters:

W the weighting factor

hpp unwarped location in the horizontal direction

vpp unwarped location in the vertical direction

hpixs locations along the horizontal axis where pixels are found

vpixs locations along the vertical axis where pixels are found

N_h Number of pixels in horizontal direction

N_v number of pixels in vertical direction

mag image data

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.5 GradWarp Functions 36

5.5.1.2 void gwarp_calc (float ∗ tl, float ∗ tr, float ∗ br, float ∗ bl, int N_h, int
N_v, float hpixs[], float vpixs[], float ∗ d, float ∗ u, float W[], float hpp[], float
vpp[], char ∗ fname)

outputs: W, hpp, vpp

Parameters:

tl (unused) top left coordinate (x,y,z), in cm

tr (unused) top right coordinate (x,y,z), in cm

br (unused) bottom right coordinate (x,y,z), in cm

bl bottom left coordinate (x,y,z), in cm

N_h Number of horizontal

N_v number of vertical

hpixs horizontal pixels (length = N_out)

vpixs vertical pixels (length = N_out)

d scale factors (length = 2)

u unit vector directions (length = 6)

W the weighting factor (length = N_h∗N_v)

hpp unwarped location in the horizontal direction (length = N_h∗N_v)

vpp unwarped location in the vertical direction (length = N_h∗N_v)

fname input filename for the gradwarp spherical harmonic correction coefficients.
Set to NULL if unavailable.

5.5.1.3 void gwarp_prep (float tl[], float tr[], float br[], float bl[], int N_h, int
N_v, float hpixs[], float vpixs[], float d[], float u[])

compute the ’d’ and ’u’ vectors, based on the size of the FOV and the number of pixels
along each image dimension.

Parameters:

tl top left coordinate (x,y,z), in cm

tr top right coordinate (x,y,z), in cm

br bottom left coordinate (x,y,z), in cm

bl bottom right coordinate (x,y,z), in cm

N_h Number of h

N_v Number of v

hpixs locations along the horizontal axis where pixels are found

vpixs locations along the vertical axis where pixels are found

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.6 Image Manipulation Functions 37

5.5.1.4 int gwarp_read_parms (char ∗ fname, GWARP_PARMS ∗ gwp)

Function to parse the GE gradwarp spherical harmonic correction file.

Parameters:

fname input filename

gwp the destination, structure of gradwarp parameters

5.6 Image Manipulation Functions

Routines to scale, interpolate, flip, and rotate images.

Functions

• void find_annotation (int slice, float loc0, char ras0, float slthick, float scanspac-
ing, int locs_brth, int ∗rot3, float ∗ctr, float tloc0, float tloc1, float ∗loc_ptr, char
∗ras_ptr)

• void interplin_ima (short Nx, short Ny, short Ny_int, short N_out, float off_-
phdir, COMPLEX ∗data, float ∗data_int)

• void interpsinc_ima (short Nx, short Ny, short Ny_int, short N_out, float off_-
phdir, COMPLEX ∗data, float ∗data_int)

• void orientation (float x_tl, float y_tl, float z_tl, float x_tr, float y_tr, float z_tr,
float x_br, float y_br, float z_br, int ∗rot1, int ∗rot2, int p_pos, int p_entry, short
∗flip_h_ptr, short ∗flip_v_ptr, short ∗rot_90_ptr)

• void rot_and_flip (short rot_90, short flip_h, short flip_v, short N_out, float ∗im_-
out)

• short rot_and_flip_data_obj (short rot_90, short flip_h, short flip_v, DATA_OBJ
∗obj)

5.6.1 Detailed Description

Routines to scale, interpolate, flip, and rotate images.

5.6.2 Function Documentation

5.6.2.1 void find_annotation (int slice, float loc0, char ras0, float slthick, float
scanspacing, int locs_brth, int ∗ rot3, float ∗ ctr, float tloc0, float tloc1, float ∗
loc_ptr, char ∗ ras_ptr)

Figure out the location and RAS (1 char for right vs anterior vs superior, for sagital-like,
coronal-like or axial-like planes respectively). This is used for image annotation, e.g.,
I5.2 would be an axial-like plane 5.2 mm from isocenter, in the inferior direction.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.6 Image Manipulation Functions 38

Parameters:

slice Number of the slice being treated (between 1 and N_sl).

loc0 Location of first slice.

ras0 Axis for value loc0.

slthick Slice thickness (mm).

scanspacing Spacing between slices (mm).

locs_brth Number of slices acquired per breathold duration.

rot3 Third line of rotation matrix, i.e. through slice direction.

ctr 3 element position vector for FOV center.

tloc0 Distance from isocenter, as expressed in the epic code in rsp_info[0].rsptloc,
for the first slice.

tloc1 Distance from isocenter, in rsp_info[0].rsptloc, for the 2nd slice.

loc_ptr Location of current slice.

ras_ptr Axis for value loc.

5.6.2.2 void interplin_ima (short Nx, short Ny, short Ny_int, short N_out, float
off_phdir, COMPLEX ∗ data, float ∗ data_int)

Interpolate (linearly) the reconstruction image to the image size expected by GE’s
Signa display tools, and shift by prescribed amount in phase-encoding direction.

(Note: phase information is discarded)

5.6.2.3 void interpsinc_ima (short Nx, short Ny, short Ny_int, short N_out,
float off_phdir, COMPLEX ∗ data, float ∗ data_int)

Interpolate (using a sinc function) image to the image size expected by GE’s Signa
display tools, and shift by prescribed amount in phase-encoding direction.

(Note: phase information is discarded)

5.6.2.4 void orientation (float x_tl, float y_tl, float z_tl, float x_tr, float y_tr,
float z_tr, float x_br, float y_br, float z_br, int ∗ rot1, int ∗ rot2, int p_pos, int
p_entry, short ∗ flip_h_ptr, short ∗ flip_v_ptr, short ∗ rot_90_ptr)

Determine if the output needs to be rotated and/or flipped.

Parameters:

x_tl Coordinates for top left corner

x_tr Coordinates for top right corner

x_br Coordinates for bottom right corner

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.7 Vendor Specific Functions: GE 39

rot1 First line of rotation matrix, i.e. frequency-encoding direction.

rot2 Second line pf rotation matrix, i.e. phase-encoding direction.

p_pos Patient position (1 for supine, 2 for prone, 4 for left decub, 8 for right
decub).

p_entry Patient entry (’1’ for head first, ’2’ for feet first).

flip_h_ptr Flag to flip horizontally.

flip_v_ptr Flag to flip vertically.

rot_90_ptr Flag to rotate +90 (=+1) or -90 (=-1)

5.6.2.5 void rot_and_flip (short rot_90, short flip_h, short flip_v, short N_out,
float ∗ im_out)

Rotate and/or flip a square magnitude (i.e. not complex) image.

Parameters:

rot_90 Flag to rotate +90 (=+1) or -90 (=-1) degrees.

flip_h Flag to flip horizontally.

flip_v Flag to flip vertically.

N_out Dimension of square, output image.

im_out Magnitude image to rotate and/or flip.

5.6.2.6 short rot_and_flip_data_obj (short rot_90, short flip_h, short flip_v,
DATA_OBJ ∗ obj)

Rotate and/or flip any data object.

Parameters:

rot_90 Flag to rotate +90 (=+1) or -90 (=-1) degrees.

flip_h Flag to flip horizontally.

flip_v Flag to flip vertically.

obj image to rotate and/or flip. Image must be square, but can be any DATA_OBJ
data type

5.7 Vendor Specific Functions: GE

Functions

• int apply_epi_phase_ge (COMPLEX ∗k, int xres, int yres, int ncoils, DATA_-
OBJ ∗refdat, int expidir)

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.7 Vendor Specific Functions: GE 40

• int apply_vrgf_ge (COMPLEX ∗k, int nz, int ∗sz, char ∗fname, COMPLEX
∗∗ko)

• int correct_epi_phase_ge (COMPLEX ∗k, int xres, int yres, int ncoils, char
∗fname, int expidir)

• void correct_fcard (SCAN_INFO hdr, COMPLEX ∗kspace_data)
• int read_data_from_Pfile (SCAN_INFO ∗hdr, DATA_OBJ ∗rawframe, DATA_-

OBJ ∗vrgf, FILE ∗fid, char ∗buf, char ∗buf2, int slice, int vol, int nbaselines)
• short read_data_ge (char ∗∗Pnames, int z, SCAN_INFO hdr, KCOORD ∗kline,

KCOORD ∗kline_o, KCOORD ∗kline_e, COMPLEX ∗kspace_data)
• short read_hdr_ge (char ∗Pname, SCAN_INFO ∗hdr_ptr)
• int read_vrgf_ge (char ∗fname, int Nx, char endian, DATA_OBJ ∗H)

5.7.1 Detailed Description

Functions specific to GE MR scanners, mostly for reading files generated by GE scan-
ners.

5.7.2 Function Documentation

5.7.2.1 int apply_epi_phase_ge (COMPLEX ∗ k, int xres, int yres, int ncoils,
DATA_OBJ ∗ refdat, int expidir)

Applies EPI phase correction to the k-space data. The input data is assumed to be sized
[ky kx c], where c can be coils, slices, etc. A linear and constant phase correction term
should be provided in the ’refdat’ object.

Parameters:

k input data to correct, of size [yres xres ncoils]

xres number of points along readout

yres number of points along phase-encode direction

ncoils number of frames/coils

refdat a data object derived from the ref.dat file

expidir the direction of the applied shift. Choices are limited to +1 or -1.

5.7.2.2 int apply_vrgf_ge (COMPLEX ∗ k, int nz, int ∗ sz, char ∗ fname, COM-
PLEX ∗∗ ko)

Applies the VRGF correction matrix to EPI k-space data, to compensate for ramp-
sampling during acquisition.

The VRGF data matrix is applied only to the first two dimensions of the input k-space
data, i.e. the same matrix is applied to all coils and/or time frames.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.7 Vendor Specific Functions: GE 41

DEPRECIATED: this function is to be replaced by read_vrgf_ge and correct_-
rampsamp

Parameters:

k input data to correct (output over-writes the input)

nz number of dimension to the data

sz an array holding the size of each data dimension. Holds the size of the output
data matrix when the function successfully returns.

fname the filename holding the VRGF correction data (default: "vrgf.dat")

ko output data

5.7.2.3 int correct_epi_phase_ge (COMPLEX ∗ k, int xres, int yres, int ncoils,
char ∗ fname, int expidir)

Applies EPI phase correction to the k-space data. The input data is assumed to be sized
[ky kx c], where c can be coils, slices, etc. A linear and constant phase correction term
is read from the supplied ref.dat file, and applied to both odd and even lines to align
them.

Parameters:

k input data to correct (output over-writes the input)

xres number of points along readout

yres number of points along phase-encode direction

ncoils number of frames/coils

fname the filename holding the EPI phase correction data (default: "ref.dat")

expidir the direction of the applied shift. Choices are limited to +1 or -1.

5.7.2.4 void correct_fcard (SCAN_INFO hdr, COMPLEX ∗ kspace_data)

Fastcard sequences skip the first view of each segment, for the first cardiac phase. The
reason has to do with the time it takes to detect an R wave, and that it would alread
by too late to acquire the first view of the seg- ment. Fill-in the missing data using
closest-neighbours.

Parameters:

hdr Structure with scan info.

kspace_data Input k-space data.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.7 Vendor Specific Functions: GE 42

5.7.2.5 int read_data_from_Pfile (SCAN_INFO ∗ hdr, DATA_OBJ ∗ rawframe,
DATA_OBJ ∗ vrgf, FILE ∗ fid, char ∗ buf, char ∗ buf2, int slice, int vol, int
nbaselines)

A function to read raw data from a GE P-file. Will return data corresponding to a
specific slice or volume, if requested.

Parameters:

hdr the scan information associated with the data

rawframe the output data buffer to fill

vrgf the rampsamp correction data. set to NULL if not available or needed

fid FILE handle to read from

buf a pre-allocated scratch buffer of size: 2 ∗ hdr.Nsl ∗ hdr.ncoils ∗ hdr.frame_size
∗ (hdr.Ny+nbaselines) ∗ sizeof(short)

buf2 a pre-allocated (COMPLEX ∗) scratch buffer of size: hdr.Nsl ∗ hdr.ncoils
∗ hdr.frame_size ∗ hdr.Ny ∗ sizeof(DATATYPE) DATATYPE is declared by
the ’type’ field of rawframe. It can be "fltc" or "dblc" (the default)

slice the slice number to read. set to -1 to read all slices.

vol the volume number (time point) to read

5.7.2.6 short read_data_ge (char ∗∗ Pnames, int z, SCAN_INFO hdr, KCO-
ORD ∗ kline, KCOORD ∗ kline_o, KCOORD ∗ kline_e, COMPLEX ∗ kspace_-
data)

Read the input k-space data from GE P-files, for cardiac applications with temporal
encoding

Parameters:

Pnames an array of filename

hdr Structure with scan info.

kspace_data the returned k-space data

5.7.2.7 short read_hdr_ge (char ∗ Pname, SCAN_INFO ∗ hdr_ptr)

Read the image scan header from a GE P file to find relevant imaging information.

Parameters:

Pname Name of the P file containing the header to be read.

hdr_ptr Pointer to the structure where the info is to be stored.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.8 Vendor Specific Functions: Siemens 43

5.7.2.8 int read_vrgf_ge (char ∗ fname, int Nx, char endian, DATA_OBJ ∗ H)

read in the GE ramp-sampling correction file. Use correct_rampsamp to apply to the
measured data.

Parameters:

fname the filename holding the VRGF correction data (default: "vrgf.dat" if
passed a NULL)

Nx length of readout data

endian endian-ness of the vrgf.dat file {’l’,’b’} [little-endian by default]

H the data object for the ramp-sampling correction operator. Memory will be
allocated if the H.data memory is NULL.

5.8 Vendor Specific Functions: Siemens

Functions

• int parse_vrgf_siemens (char ∗fname, DATA_OBJ ∗H)
• int read_data_from_measdat (SCAN_INFO ∗hdr, DATA_OBJ ∗rawframe,

DATA_OBJ ∗vrgf, FILE ∗fid, char ∗buf, char ∗buf2, int slice, int vol, int ngc_-
flag)

5.8.1 Detailed Description

Functions specific to Siemens MR scanners, mostly for reading data files generated by
Siemens scanners.

5.8.2 Function Documentation

5.8.2.1 int parse_vrgf_siemens (char ∗ fname, DATA_OBJ ∗ H)

parse the meas∗.dat file, and compute the ramp-sampling regridding operator

Parameters:

fname the filename for the EPI data (or data descriptor file)

H the data object for the ramp-sampling correction operator. Memory will be
allocated if the H.data memory is NULL.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.9 Linear System Solvers 44

5.8.2.2 int read_data_from_measdat (SCAN_INFO ∗ hdr, DATA_OBJ ∗
rawframe, DATA_OBJ ∗ vrgf, FILE ∗ fid, char ∗ buf, char ∗ buf2, int slice,
int vol, int ngc_flag)

A function to read raw data from a Siemens meas_∗.dat file. Will return data corre-
sponding to a specific slice or volume, if requested.

&& (chn_num == (hdr->ncoils-1))) {

&& (chn_num == (hdr->ncoils-1))) {

Parameters:

hdr the scan information associated with the data

rawframe the output data buffer to fill

vrgf the rampsamp correction data. set to NULL if not available or needed

fid FILE handle to read from

buf a pre-allocated scratch buffer of size: 2 ∗ hdr.Nsl ∗ hdr.ncoils ∗ hdr.frame_size
∗ (hdr.Ny+nbaselines) ∗ sizeof(float)

buf2 a pre-allocated (COMPLEX ∗) scratch buffer of size: hdr.Nsl ∗ hdr.ncoils
∗ hdr.frame_size ∗ hdr.Ny ∗ sizeof(DATATYPE) DATATYPE is declared by
the ’type’ field of rawframe. It can be "fltc" or "dblc" (the default)

slice the slice number to read. set to -1 to read all slices.

vol the volume number (time point) to read. (multiple calls to this function are
needed to read all volumes)

ngc_flag for EPI data, set to 1 in order apply internal ghost correct using pre-
echo-train data. (default: 0==off) ∗

5.9 Linear System Solvers

standard numerical solutions to linear system problems

Functions

• double ∗ alloc1double (size_t n1)
• double ∗∗ alloc2double (size_t n1, size_t n2)
• void cgsolv (COMPLEX ∗A, int n, COMPLEX ∗b, COMPLEX ∗x, int k_max,

double thresh)
• void compute_pinv (double ∗∗u, double w[], double ∗∗v, short n, short m, dou-

ble ∗∗S_inv)
• int compute_svd (double ∗∗a, int m, int n, double w[], double ∗∗v)
• void free1double (double ∗p)
• void free2double (double ∗∗p)

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.9 Linear System Solvers 45

• int lsv (COMPLEX ∗A, int m, int n, COMPLEX ∗x0, double ∗sigma, COM-
PLEX ∗v, float thresh)

• int rank_one_est (COMPLEX ∗C, float ∗mask, int Nx, int Ny, double ∗d, COM-
PLEX ∗u, COMPLEX ∗v, int tid)

• void svd_backsubstitute (double ∗∗u, double w[], double ∗∗v, int n, int m, dou-
ble b[], double x[])

• void svd_sort (double ∗∗u, double ∗w, double ∗∗v, int m, int n)

5.9.1 Detailed Description

standard numerical solutions to linear system problems

A linear of system of equations can be ordered as

Ax = b

where A is a system matrix of size m-by-n, b is a vector of measured data, and x is the
solution vector—which after solution describes a linear combination of values from A
to form b.

5.9.2 Function Documentation

5.9.2.1 double∗ alloc1double (size_t n1)

1D vector memory allocation for SVD routines

5.9.2.2 double∗∗ alloc2double (size_t n1, size_t n2)

2D array allocation, e.g. A[][], for SVD routines.

5.9.2.3 void cgsolv (COMPLEX ∗ A, int n, COMPLEX ∗ b, COMPLEX ∗ x,
int k_max, double thresh)

Generic CG solver

Solves the problem Ax = b using the method of conjugate gradients. A must be conju-
gate symmetric, which implies that x and b are vectors of equal length, n.

Design based on the practical CG algorithm in “Matrix Computations” by Golub and
Van Loan.

One can specify either a fixed number of iterations, or a residual error stopping crite-
rion. To use the default values, (k_max = 20, thresh = 1e-9), declare ’0’ as the input
values for k_max and thresh.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.9 Linear System Solvers 46

Parameters:

A system matrix, must be complex-conjugate symmetric

n length of data vector

b objective vector

x solution

k_max maximum number of iterations

thresh residual error threshold

5.9.2.4 void compute_pinv (double ∗∗ u, double w[], double ∗∗ v, short n, short
m, double ∗∗ S_inv)

Computes the inverse of the sensitivity matrix, using the output of compute_svd(). It is
given by v times the singular values w and the traspose of u. This function is simmilar
to svd_backsubstitute(), but does not multiply by b. It returns the inverse matrix instead
of a solution given by the inverse times b.

Parameters:

u left singular vectors

w array of singular values

v right singular vectors, transposed

n number of rows in v

m number of rows in u

S_inv Pseudo-inverse of A

5.9.2.5 int compute_svd (double ∗∗ a, int m, int n, double w[], double ∗∗ v)

Computes the singular value decomposition (SVD) of a matrix, A = UΣV H , where
U and V are matrices with orthogonal columns, and Σ is a diagonal matrix holding the
singular values, σi, associated with the singular vectors.

The most common use for an SVD is to compute a psuedo-inverse of the matrix A,
in order to solve the linear system Ax = b. Once the SVD has been computed, the
solution can be formed via

x = V Σ−1UT b

This can be perfomed computationally using the function svd_backsubstitute().

In the case of small singular values, e.g. 0 < σi < 1, computing the inverse of Σ will
induce excessively large contributions from the associated singular vectors. Thus, it
is common to specify a threshold—discarding singular values and associated vectors

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.9 Linear System Solvers 47

below the threshold to limit such effects. To peform this in C programs, one needs to
set all singular values below the threshold to zero.

Note, this function accepts only real-valued input. To find the SVD of a complex-
valued matrix, one can split the real and imaginary components as

Ax = (re{A}+ jim{A})x = b

[
re{A} −im{A}
im{A} re{A}

] [
re{x}
im{x}

]
=

[
re{b}
im{b}

]
Usage:

double **A;
double **U;
double *W;
double **V;
double **A_inv;

A = alloc2double(m,n);
V = alloc2double(n,n);
W = alloc1double(n);
A_inv = alloc2double(n,m);

compute_svd(A, m, n, W, V);
U = A;
compute_pinv(U, W, V, n, m, A_inv);

free2double(A);
free2double(V);
free1double(W);
free2double(A_inv);

Credits: from CWP/SU. Similar to code in Netlib’s EISPACK and CLAPACK. See
also discussions in NR in C

Parameters:

a input matrix to decompose, will be overwritten by the left signular vectors
m number of rows in a
n number of columns in a
w an array of output singular values
v a matrix output of the right signular vectors, transposed

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.9 Linear System Solvers 48

5.9.2.6 void free1double (double ∗ p)

free memory allocated by alloc1double().

5.9.2.7 void free2double (double ∗∗ p)

free memory allocated by alloc2double().

5.9.2.8 int lsv (COMPLEX ∗ A, int m, int n, COMPLEX ∗ x0, double ∗ sigma,
COMPLEX ∗ v, float thresh)

Estimate of the dominant Left Singular Vector

The function employs an iterative algorithm that solves

max
x

‖AHx‖

to estimate the left singular vector associated with the largest singular value. (from this
vector, the singular value and associated right singular vector can also be determined.
)

If A is tall-and-thin, i.e. the number of rows, m, is much larger than the number of
columns, n, then this algorithm is significantly faster than computing the SVD directly.

The function is most useful when only a rank-one estimate of the matrix is desired.

Parameters:

A the input matrix.

m number of rows in input matrix.

n number of columns in input matrix. Note, it is assumed that m>>n

x0 the output vector. size: m x 1 (needs to be pre-allocated)

thresh [opt] convergent threshold (default=1e-4)

5.9.2.9 int rank_one_est (COMPLEX ∗ C, float ∗ mask, int Nx, int Ny, double
∗ d, COMPLEX ∗ u, COMPLEX ∗ v, int tid)

uses Lanczos algorithm to determine singular vectors associated with the largest signu-
lar value.

Parameters:

C input data

Nx number of rows in input data

Ny number of columns in input data

d the largest signular value. (Set to NULL if undesired)

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.9 Linear System Solvers 49

u the right singular vector associated with the largest singular value. (Set to NULL
if undesired)

v the left signular vector associated with the largest singular value. (Set to NULL
if undesired)

tid thread id for the Lanczos algorithm code. Set to zero is not using threads.

5.9.2.10 void svd_backsubstitute (double ∗∗ u, double w[], double ∗∗ v, int n,
int m, double b[], double x[])

Perform back substitution of the singular value decomposittion, operation on the ob-
jective, b, to compute the solution, x, of the linear system of equations.

Back-substition can be performed much more quickly that explicitly computing the
pseudo-inverse. However, if the inverse will be used to operate on multiple data sets
(as in UNFOLD-SENSE), it is preferable to compute the inverse once and then apply
it to all time frames in the series.

Credits: from CWP/SU. Similar to code in Netlib’s EISPACK and CLAPACK. See
also discussions in Numerical Recipes in C.

Parameters:

u Left singular vectors

w Array of singular values

v right signular vectors

n number of rows in u

m number of columns in v

b objective

x output

5.9.2.11 void svd_sort (double ∗∗ u, double ∗ w, double ∗∗ v, int m, int n)

Sort the singular values and corresponding singular vectors in descending order

Assumes the input of the singular value decomposition of a matrix a[][] of the form:
a[][] = u[][] w[] vt [][]

Credits: Nils Maercklin, GeoForschungsZentrum (GFZ) Potsdam, Germany, 2001.

Parameters:

u left singular vectors

w array of singular values

v right singular vectors, transposed

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.10 Parallel Imaging Algorithms 50

5.10 Parallel Imaging Algorithms

Image reconstruction methods for subsampled data acquired using multiple receiver
coils.

Functions

• int apply_vbc_coefs (DATA_OBJ ∗input, DATA_OBJ ∗output, DATA_OBJ
∗vbc_obj)

• int compute_root_sum_of_squares (DATA_OBJ ∗input, DATA_OBJ ∗output,
double ∗max)

• int compute_virtual_body_coil (DATA_OBJ ∗input, DATA_OBJ ∗output,
DATA_OBJ ∗vbc_obj)

• int export_grappa_coef (GRAPPA_PARMS ∗∗gparm, DATA_OBJ ∗gexport, int
ncoil, int nslc)

• void generate_b1_filter (int fill_fac, short Ny, short Nz_proc, float ∗samp_dens,
float ∗filt_b1)

• int grappa (COMPLEX ∗I, int ∗PhaseLines, dataheader ∗hdr, COMPLEX ∗O,
int ∗Nlines, int ∗∗OutPhaseLines, int YKS, int XKS, float radius, int ndk, int
∗dks_in)

• int grappa_calc_parms (dataheader ∗hdr, COMPLEX ∗O, int YKS, int ∗indx0,
int XKS, int ∗indx3, int nacs, int ∗acsl, int kxnum, COMPLEX ∗∗gparm, int
fullsqr, int direction)

• int grappa_calc_recon_coef (COMPLEX ∗O, int ∗PhaseLines, dataheader ∗hdr,
GRAPPA_PARMS ∗gparm, float radius)

• int grappa_for_cine (short Nx, short N_acq, short Ny, int Ny_proc, short Nz_-
proc, short Nf, short ncoils, short fill_fac, short fr1, int first_line, float pF, KCO-
ORD ∗kline_c, float ∗samp_dens, float ∗weight_pF, COMPLEX ∗buf2, COM-
PLEX ∗b1, COMPLEX ∗data, COMPLEX ∗full)

• int grappa_recon (dataheader ∗hdr, COMPLEX ∗O, int YKS, int ∗indx0, int
XKS, int ∗indx3, int ∗bins, COMPLEX ∗gparm, float radius)

• int grappa_recon__all_slices (DATA_OBJ ∗data_frame, int ∗phase_list, int
∗nphz, GRAPPA_PARMS ∗∗gparm_all)

• int grog_generate_eigd (GRAPPA_PARMS ∗∗gparm, int ncoil, int nslc)
• int grog_grid_2Ddata (DATA_OBJ ∗smpl_x, DATA_OBJ ∗smpl_y, DATA_OBJ
∗kdata, DATA_OBJ ∗src, DATA_OBJ ∗new_x, DATA_OBJ ∗new_y, DATA_-
OBJ ∗kdata_out, GRAPPA_PARMS ∗gparms)

• int import_grappa_coef (GRAPPA_PARMS ∗∗∗gparm_out, DATA_OBJ
∗gimport)

• int inv_sens_matrix (short ncoils, short npts, float thresh, double ∗∗a, double ∗w,
double ∗∗v, double ∗wgt_roe, double ∗wgt, double ∗∗S, double ∗∗S_buf, double
∗∗S_inv, double ∗∗S_inv_buf)

• int rlsgrappa (COMPLEX ∗I, int ∗PhaseLines, dataheader ∗hdr, COMPLEX ∗O,
int ∗Nlines, int ∗∗OutPhaseLines, int YKS, float radius, int ndk, int ∗dks_in,
float lambda)

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.10 Parallel Imaging Algorithms 51

• void self_ref_b1_basic (COMPLEX ∗kspace_data, float b1snr_thr, short Ny,
short Nx, short Nz, short ncoils, short Nf, fil_fft_mngr ∗mngr, COMPLEX ∗b1)

• void self_ref_b1_for_cine (COMPLEX ∗kspace_data, float sigmak, float b1snr_-
thr, short N_acq, short Nx, short Ny, short Ny_proc, short Nz_proc, short ncoils,
short Nf, short fr1, short fill_fac, short first_line, float ∗filt_b1, KCOORD
∗kline_o, KCOORD ∗kline_e, float ∗samp_dens, fil_fft_mngr ∗mngr, COM-
PLEX ∗bufsp, COMPLEX ∗b1)

• int self_ref_b1_via_geyser (COMPLEX ∗datain, dataheader ∗hdr, int
∗PhaseLines, COMPLEX ∗ptrW, fil_fft_mngr ∗mngr, int m)

• int spacerip_for_cine (short Nx, short N_o, short N_e, short N_c, short Ny, int
Ny_proc, short Nz_proc, short Nf, short ncoils, float pF, KCOORD ∗kline_o,
KCOORD ∗kline_e, KCOORD ∗kline_c, COMPLEX ∗b1, COMPLEX ∗buf,
COMPLEX ∗data, COMPLEX ∗spacerip, short recon_flag)

• int sprip3d_conv_pts2y (int nph, int ∗phz_y, int ∗phz_z, int M, int N, int ∗Y)
• void sprip3d_lsqr_init (int nph, int M, int N, int L)
• void sprip3d_lsqr_post ()
• void sprip3d_lsqrsolv (int ∗Y, int nph, int m, int n, int L, COMPLEX ∗W,

COMPLEX ∗Sk, COMPLEX ∗∗I, float ∗inlams, int lamsize, int maxits, dou-
ble ∗xnormout, double ∗Rout, int tid)

• void sprip_cgsolv (int ∗Y, int nph, int n, int L, COMPLEX ∗Wx0, COMPLEX
∗u, COMPLEX ∗x, COMPLEX lambda, int k_max, int tid)

• void sprip_cgsr_init (int nph, int N, int L, int threadnum)
• void sprip_cgsr_post ()
• void sprip_cgsr_recon (float ∗phz_encode_list, int P, int N, int M, int L, COM-

PLEX ∗W, COMPLEX ∗Sk, double tau, int maxits, COMPLEX ∗rho, int tmax)
• void sprip_lsqr_init (int nph, int N, int L, int threadnum, int lamsize, int maxits)
• void sprip_lsqr_post ()
• void sprip_lsqr_recon (float ∗phz_encode_list, int P, int N, int M, int L, COM-

PLEX ∗W, COMPLEX ∗Sk, float ∗lams, int numlams, COMPLEX ∗D, int max-
its, COMPLEX ∗∗rho, double ∗xout, double ∗rout, int tmax, float ∗usedlams)

• void sprip_lsqrsolv (int ∗Y, int nph, int N, int L, COMPLEX ∗Wx0, COMPLEX
∗Sk, COMPLEX ∗∗I, float ∗lams, int lamsize, COMPLEX ∗D, int maxits, dou-
ble ∗xnormout, double ∗Rout, int tid, float ∗lout)

• void vdsense (short Nx, short N_acq, short Ny, short Ny_proc, short Nz_proc,
short Nf, short ncoils, short fill_fac, short fr1, short first_line, float pF, fil_fft_-
mngr ∗mngr, KCOORD ∗kline_o, KCOORD ∗kline_e, float ∗samp_dens, float
∗weight_pF, COMPLEX ∗buf, DATATYPE ∗Uarray, COMPLEX ∗data, COM-
PLEX ∗vdsen_ima)

• void vdsense_apply (short Nx, short Ny, short Nz, short Nf, short ncoils, COM-
PLEX ∗sen_before, DATATYPE ∗Uarray, COMPLEX ∗sen_after)

• void vdsense_prep (short Nx, short Ny, short Nz, short ncoils, float thresh, int
accel, XCOORD ∗alias, COMPLEX ∗b1, DATATYPE ∗Uarray)

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.10 Parallel Imaging Algorithms 52

5.10.1 Detailed Description

Image reconstruction methods for subsampled data acquired using multiple receiver
coils.

Parallel imaging employs multiple receiver coils, which effectively apply a spatial-
domain encoding in addition to the Fourier-domain encoding traditionally employed
by MR imaging.

With multiple coils, the MR data acquisition can be modeled by the following signal
equation [A]:

sl(k) =
∫

V

ρ(r)Wl(r)e−jk·rdr

One approch to solve this inverse problem computationally is to first discretize the
terms and then concatenate the equations for all coils to form a single linear system of
equations.

s = Pρ

where P is described by an estimate of the coil sensitivity maps and the phase-encoding
pattern employed. The library provides one approach to estimating coil sensitivity
maps, using self-referenced data [D].

Two methods in the NC-IGT fast imaging library employ this approach, SENSE [A]
and SPACE RIP[F]. The SENSE functions provide reconstruction of uniformly sub-
sampled data, i.e. where the distance is k-space between each phase-encode line is
the same. Variable density SENSE [B] can be employed in those cases where low-
frequency and high-frequency k-space are each uniformly sub-sampled, but at different
rates. E.g. 2x in the low-frequency range, and 4x in the high-frequency range.

For sampling patterns with a wider variety of k-space distances, that is non-uniform
subsampling, one can employ SPACE RIP. Two iterative linear system solvers are
provided for SPACE RIP reconstructions: CG [E] and LSQR-Hybrid [I]. At high-
acceleration factors, it is often useful to employ regularization.

[
s
0

]
=

[
P
λI

]
ρ

The LSQR-Hybrid method can efficiently find all of the solutions corresponding to a
number of regularization parameter values. The "best" image as measured by L-curve
methods is then presented as the solution. For a single regularization parameter, CG is
slightly faster than LSQR-Hybrid, so this method is provided as well.

An alternate approach to solving the inverse problem is to view the acquisition in k-
space as a convolution between two spatial-domain functions. This is the approach
taken by GRAPPA [G]. This method does not explicitly employ estimates of the coil

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.10 Parallel Imaging Algorithms 53

sensitivity maps. Rather it maps various output data points together to estimate a con-
volution kernel combining data from all coils.

Modelling GRAPPA as a matrix operator [L], one can modify the target distance for
reconstructed points at will using an Eigen decomposition of the operator [M]. Since
Ver 2.0, the library includes functions to compute GRAPPA coefficients suitable for
GROG, as well as functions to apply GROG in multi-line radial acquisitions as in
PROPELLER [N].

The NC-IGT GRAPPA implementation can reconstruct data acquired using non-
uniform sampling patterns, although the visual results typically contain more noise
than a corresponding SPACE RIP reconstruction. GRAPPA is the method of choice,
however, in cases where aliasing due to a reduced-field-of-view is present in addition
to aliasing resulting from subsampling.

It is noted as well that combinations of GRAPPA, VD-SENSE, and SPACE RIP, can
often produce better images than any single algorithm alone.

References

A. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: Sensitivity
encoding for fast MRI. Magn Reson Med 1999; 42(5):952-62.

B. Madore B. Using UNFOLD to remove artifacts in parallel imaging and in partial-
Fourier imaging. Magn Reson Med 2002; 48(3):493-501.

C. Kellman P, Epstein FH, McVeigh ER. Adaptive sensitivity encoding incorporat-
ing temporal filtering (TSENSE). Magn Reson Med 2001; 45(5):846-852.

D. McKenzie CA, Yeh EN, Ohliger MA, Price MD, Sodickson DK. Self-calibrating
parallel imaging with automatic coil sensitivity extraction. Magn Reson Med
2002; 47(3):529-538.

E. Pruessmann KP, Weiger M, Bornert P, Boesiger P. Advances in sensitivity encod-
ing with arbitrary k-space trajectories. Magn Reson Med 2001; 46(4):638-651.

F. Kyriakos WE, Panych LP, Kacher DF, Westin CF, Bao SM, Mulkern RV, Jolesz
FA. Sensitivity profiles from an array of coils for encoding and reconstruction in
parallel (SPACE RIP). Magn Reson Med 2000; 44(2):301-308.

G. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B,
Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA).
Magn Reson Med 2002; 47(6):1202-1210.

H. Hoge WS, Brooks DH, Madore B, Kyriakos WE. A tour of accelerated par-
allel MR imaging from a linear systems perspective. Concepts in MR 2005;
27A(1):17-37

I. Hoge WS, Kilmer ME, Haker SJ, Brooks DH, Kyriakos WE. Fast regularized
reconstruction of non-uniformly subsampled parallel MRI data. in Proc of 2006

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.10 Parallel Imaging Algorithms 54

IEEE Intl Symp on Biomedical Imaging (ISBI06). Arlington, VA, USA, 2006;
714-717.

J. Buehrer M, Boesiger P, and Kozerke S. "Virtual body coil calibration for phased-
array imaging." 17th ISMRM Scientific Meeting, page 759, Honolulu, HI, 2009.

K. Buehrer M, Pruessmann KP, Boesiger P, and Kozerke S. Array compression for
MRI with large coil arrays. Magn Reson Med, 57(6):1131-1139, June 2007.

L. Griswold MA, Blaimer M, Breuer F, Heidemann RM, Mueller M, and Jakob PM.
Parallel magnetic resonance imaging using the GRAPPA operator formalism.
Magn Reson Med, 54(6):1553-1556, Oct 2005

M. Seiberlich N, Breuer FA, Blaimer M, Barkauskas K, Jakob PM, and Gris-
wold MA. "Non-Cartesian data reconstruction using GRAPPA operator gridding
(GROG)." Magn Reson Med, 58(6):1257-1265, Dec 2007.

N. Pipe JG. "Motion correction with PROPELLER MRI: Application to head mo-
tion and free-breathing cardiac imaging". Magn Reson Med, 42(5):963-969, Nov
1999.

5.10.2 Function Documentation

5.10.2.1 int apply_vbc_coefs (DATA_OBJ ∗ input, DATA_OBJ ∗ output,
DATA_OBJ ∗ vbc_obj)

apply a set of coefficients calculated by compute_virtual_body_coil to a new set of
input data.

If the output object is that same as the input, the input data will be overwritten, and the
size adjusted accordingly

Parameters:

input the input coil data, sized [x-y-c] or [x-y-z-c]

vbc_obj returns the coil combination coeficients, if non-NULL

5.10.2.2 int compute_root_sum_of_squares (DATA_OBJ ∗ input, DATA_OBJ ∗
output, double ∗ max)

Computes the root-sum-of-squares image from the input data.

input data can be either 3d: x-y-c, or 4d: x-y-z-c

The scaling factor needed to normalize the image (set the max pixel value to ’1’) is
returned in ’max’

Parameters:

input input data

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.10 Parallel Imaging Algorithms 55

output output data (magnitude only, no phase)

max image normalization scale factor (calculated, but not applied)

5.10.2.3 int compute_virtual_body_coil (DATA_OBJ ∗ input, DATA_OBJ ∗ out-
put, DATA_OBJ ∗ vbc_obj)

An implementation of [J], which builds on ideas in [K] for identifying alternate sub-
spaces for reciever coil representations. This implementation normalizes each of the
coils, and finds the dominant subspace support along the coil dimension of the data.
This generates a virtual body coil, which can be used in parallel imaging to produce
image reconstructions with more homogeneous illumination in a self-referenced way.

Usage:

With SENSE or SPACE RIP, one can renormalize the sensitivity estimates before the
reconstruction step:

self_ref_b1_via_geyser(K, hdr, PhaseLines, W, mngr, 0);
compute_virtual_body_coil(W, hdr.Nx, hdr.Ny, hdr.ncoils, Bv);
for (cnt=0;cnt<hdr.ncoils;cnt++) {
for (cnt2=0;cnt2<hdr.Nx*hdr.Ny;cnt2++) {

W[cnt*hdr.Nx*hdr.Ny + cnt2] =
complex_division(W[cnt*hdr.Nx*hdr.Ny + cnt2],

Bv[cnt2]);
}

}

Alternatively, after reconstructing with GRAPPA, one can find the associated virtual
body coil image via the projection across all coil images. See the grappa.c MEX
file for an example.

Note that the virtual body coil image contains phase information, so it can be used in
applications were a root-sum-of-squares body coil estimate is unsuitable.

Parameters:

input the input coil data, sized [x-y-c] or [x-y-z-c]

output the output virtual body coil. If (output->data == NULL), memory will be
allocated.

vbc_obj returns the coil combination coeficients, if non-NULL

5.10.2.4 int export_grappa_coef (GRAPPA_PARMS ∗∗ gparm, DATA_OBJ ∗
gexport, int ncoil, int nslc)

Converts an array of grappa parameters into a DATA_OBJ suitable for output to a .nd
file, using write_nd_data2. Each location in the array is assumed to be for a specific

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.10 Parallel Imaging Algorithms 56

slice of data, and the grappa kernel is presumed to be the same size (resulting in the
same number of grappa coefficients) for each slice.

The returned data object will have the meta-data field populated, with a brief descrip-
tion of how the coefficients are arranged. This meta-data can be decoded in matlab
using load_gparms.m or in C using import_grappa_coef(), with the data properly orga-
nized so that previously generated coefficients can be correctly used in future applica-
tions.

Parameters:

gparm the input array of grappa parameters, one set for each slice

gexport the output data object

ncoil the number of coils associated with the grappa parameters

nslc the number of slices in the input array

5.10.2.5 void generate_b1_filter (int fill_fac, short Ny, short Nz_proc, float ∗
samp_dens, float ∗ filt_b1)

Generate a 2D Gaussian filter to extract the ky-kz region, near k-space center, to be
used for sensitivity mapping.

Parameters:

samp_dens Sampling density

filt_b1 Gaussian filter to select ky-kz region to be used for B1 mapping.

5.10.2.6 int grappa (COMPLEX ∗ I, int ∗ PhaseLines, dataheader ∗ hdr, COM-
PLEX ∗ O, int ∗ Nlines, int ∗∗ OutPhaseLines, int YKS, int XKS, float radius,
int ndk, int ∗ dks_in)

An implementation of “Generalized autocalibrating partially parallel acquisitions,” by
M. A. Griswold, P. M. Jakob, et. al.. Mag Reson Med, 47(6):1202-1210. Jun 2002.
[DOI]

Processing is done in k-space, coil-by-coil. The reconstructed data includes all coils.
To form an image, one can use root-sum-of-squares.

[depreciated]

Parameters:

I input data

PhaseLines input phase index list

hdr header associated with input data

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

http://dx.doi.org/10.1002/mrm.10171

5.10 Parallel Imaging Algorithms 57

O buffer to hold output data. This should be Nvertical x xres x Ncoils, i.e. zero
padded

Nlines number of non-zero output lines

OutPhaseLines list of output non-zero lines (will be malloced)

YKS grappa-kernel size, y-dim (2 or 4)

XKS grappa-kernel size, x-dim (must be odd)

radius size of reconstruction radius along freq-encode dimension. In some cases
(e.g. coil sensitivity estimation) the full read-out length is not needed

ndk number of Delta k’s to compute. If zero, then the dks list is computed auto-
matically.

dks_in the list of Delta k’s to compute. Set to NULL if ndk = 0.

5.10.2.7 int grappa_calc_parms (dataheader ∗ hdr, COMPLEX ∗ O, int YKS,
int ∗ indx0, int XKS, int ∗ indx3, int nacs, int ∗ acsl, int kxnum, COMPLEX ∗∗
gparm, int fullsqr, int direction)

Calculate GRAPPA reconstruction parameters for the given data.

called by grappa

Example: for a 2x5 GRAPPA kernel, to reconstruct data sampled at 2x
acceleration... YKS = 2; indx0 = {-1,1}; XKS = 5; indx3 =
{-2,-1,0,1,2};

Parameters:

hdr header associated with input data

O zero-padded k-space data

YKS size of kernel along phase encode direction (length of indx0)

indx0 phase encode offsets for kernel

XKS size of kernel along read-out direction (length of indx3)

indx3 sample offsets along readout

nacs number of ACS lines

acsl array of ACS line indices

kxnum number of readout (k_x) points used for calibration

gparm the output GRAPPA parameters. Pass a NULL pointer, memory for the
parameters will be allocated and returned.

fullsqr for GROG: set to 1 if full dx set is needed, 2 for both dx and dy data set.
set to 0 otherwise

direction for GROG: modifies the yoffset value by {0 [default],+1,-1}.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.10 Parallel Imaging Algorithms 58

5.10.2.8 int grappa_calc_recon_coef (COMPLEX ∗ O, int ∗ PhaseLines, data-
header ∗ hdr, GRAPPA_PARMS ∗ gparm, float radius)

The primary function for calculating GRAPPA coefficients.

Input the source calibration data (ACS) and the phase lines where that data was ac-
quired, and the parameters will be returned in ’gparm’.

Parameters:

O buffer holding zero-padded input data. This should be Nvertical x xres x Ncoils

PhaseLines input list of phase index showing which lines of O have data.

hdr header associated with input data

gparm need to predeclare the kernel size (gparm->YKS and gparm->XKS) and
gparm->parray (set to NULL). ndk and dks may also be preset, or set to
ndk=0 and dks=NULL for values computed from PhaseLines. For standard
GRAPPA parameters, set hdr->grog = 0; For GROG, use hdr->grog = 1 for
a square parameter set, suitable for GROG along the phase encode direction.
use hdr->grog = 2 for an additional set of parameters suitable for GROG
along the readout direction.

radius width, (0.0 .. 1.0], along the readout line to use in calibration

5.10.2.9 int grappa_for_cine (short Nx, short N_acq, short Ny, int Ny_proc,
short Nz_proc, short Nf, short ncoils, short fill_fac, short fr1, int first_line, float
pF, KCOORD ∗ kline_c, float ∗ samp_dens, float ∗ weight_pF, COMPLEX ∗
buf2, COMPLEX ∗ b1, COMPLEX ∗ data, COMPLEX ∗ full)

A function to call GRAPPA from cine_unf

Parameters:

Nx Size of input dataset, along kx (readout)

N_acq k locs acquired / frame (in ky-kz plane)

Ny Size of input dataset, along ky (phase)

Ny_proc Ny used for processing, in vdsense

Nz_proc Nz used for processing

Nf number of frames (either time or phase)

ncoils Number of coils

fill_fac fill factor, to accomodate non-int samp pts

fr1 whether 1st frame considered even (0) or odd (1)

first_line First y line kept, when cropping recon FOV

pF partial-Fourier (1=fully sampled, 0.5=50% sampled)

kline_c array of acquired phase encode lines

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.10 Parallel Imaging Algorithms 59

b1 pointer to coil sensitivity map data

data pointer to input data

full pointer to reconstructed data

5.10.2.10 int grappa_recon (dataheader ∗ hdr, COMPLEX ∗ O, int YKS, int ∗
indx0, int XKS, int ∗ indx3, int ∗ bins, COMPLEX ∗ gparm, float radius)

reconstruct the missing data using GRAPPA.

called by grappa

Parameters:

hdr structure describing the data

O the (zero-padded) input data

YKS size of kernel along phase encode direction

indx0 phase encode offsets for kernel

XKS size of kernel along read-out direction

indx3 sample offsets along readout

bins an array dscribing the data along the phase encoding dimension. 0 : empty ;
1 : raw data ; 2 : ACS line

gparm pointer to the GRAPPA reconstruction parameters

radius size of reconstruction radius along freq-encode dimension

5.10.2.11 int grappa_recon__all_slices (DATA_OBJ ∗ data_frame, int ∗ phase_-
list, int ∗ nphz, GRAPPA_PARMS ∗∗ gparm_all)

A GRAPPA reconstruction wrapper to reconstruct a stack of slices in a single pass.

Parameters:

data_frame The input k-space data: ndim should equal ’4’, sized: kx-ky-z-coil
type: double-complex (’dblc’)

phase_list List of phase encode locations

nphz number of phase encode locations

gparm_all An initialized memory buffer object

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.10 Parallel Imaging Algorithms 60

5.10.2.12 int grog_generate_eigd (GRAPPA_PARMS ∗∗ gparm, int ncoil, int
nslc)

Derives the eigen-vectors and eigen-values needed by GROG from the input GRAPPA
parameters.

These are stored in the .eig_d and .eig_v pointers of the GRAPPA_OBJ, over-writing
whatever may have been there previously.

Parameters:

gparm input array of GRAPPA parameters, suitable for GROG (set gparm->grog
= 1 or 2 prior to generating gparm coefficients)

ncoil number of coils assocated with the input array

nslc number of slices assocated with the input array

5.10.2.13 int grog_grid_2Ddata (DATA_OBJ ∗ smpl_x, DATA_OBJ ∗ smpl_y,
DATA_OBJ ∗ kdata, DATA_OBJ ∗ src, DATA_OBJ ∗ new_x, DATA_OBJ ∗
new_y, DATA_OBJ ∗ kdata_out, GRAPPA_PARMS ∗ gparms)

A function to shift k-space data locations, using GROG.

the input data is a triplet array, [smpl_x, smpl_y, kdata] that is transformed to [new_x,
new_y, kdata_out]. The first 5 elements are specified, while the 6th is computed.

Parameters:

smpl_x a 1D (double / "dblr") array of sample point locations, along the x (hori-
zontal) axis

smpl_y a 1D (double / "dblr") array of sample point locations, along the y (verti-
cal) axis

kdata a 1D (complex double / "dblc") array of sampled k-space data, at each
{smpl_x,smpl_y} point in the previous two arrays

src a 1D (short int / "intr") array of indices, indicating which kdata point should
be used for each output target listed in {new_x,new_y}

new_x a 1D (double / "dblr") array of destination grid locations, along x

new_y a 1D (double / "dblr") array of destination grid locations, along y

kdata_out a 1D (complex double / "dblc") array of computed k-space data, at the
points specified by {new_x,new_y}

gparms a pointer to the GROG parameters

5.10.2.14 int import_grappa_coef (GRAPPA_PARMS ∗∗∗ gparm_out, DATA_-
OBJ ∗ gimport)

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.10 Parallel Imaging Algorithms 61

Converts a DATA_OBJECT, with an approriately defined and consistent metadata field,
into an array of grappa parameters suitable for subsequent GRAPPA reconstruction
calls. Each location in the array is assumed to be for a specific slice of data, and the
grappa kernel is presumed to be the same size (resulting in the same number of grappa
coefficients) for each slice.

(data format for gimport needs to be ’dblc’)

Parameters:

gparm_out a pointer to an (empty) array of GRAPPA parameters. This function
will replace the data pointer with newly allocated memory.

gimport the input data object

5.10.2.15 int inv_sens_matrix (short ncoils, short npts, float thresh, double ∗∗
a, double ∗ w, double ∗∗ v, double ∗ wgt_roe, double ∗ wgt, double ∗∗ S, double
∗∗ S_buf, double ∗∗ S_inv, double ∗∗ S_inv_buf)

Estimate the inverse of the sensitivity matrix, for each pixel.

The threshold paramter is described in Madore B. "UNFOLD-SENSE: A parallel
MRI method with self-calibration and artifact suppression." Magn Reson Med 2004;
52(2):310–320.

At the expense of artifact content (presumed to be suppressed with UNFOLD later in
the processing), a matrix with less noise (i.e. greater regularization) for the ith entry
will be obtained. If the npts vectors representing how each one of the overlapped
points is seen by the coils were orthogonal, optimum SNR (i.e. the Roemer case)
would be achieved. Since the solution obtained by matrix inversion would amplify
noise beyond the threshold, fool the recon to believe these vectors are more orthogonal
than they really are, so that it finds smaller weights. The vector for the ith component,
the one under consideration, is left unchanged, while the npts-1 others are made more
orthogonal to it. Each one of these npts-1 vectors has a component parallel, and one
orthogonal to the ith (unit) vector uv[]. Vectors are made more orthogonal to uv[]
by keeping only a fraction of the parallel component (and leaving the orthogonal one
untouched). The goal of the iterative process is to find the right value that brings noise
amplification down to a factor of thresh.

The implication is that the reconstructed image will have less noise than a standard
psuedo-inverse, at the expense of greater artifact. It is assumed that these artifacts will
then be eliminated using UNFOLD.

If UNFOLD is not being used, then one can use a very large value for thresh to suppress
these iterations.

Parameters:

ncoils Number of receiver coils.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.10 Parallel Imaging Algorithms 62

npts Number of non-degenerate points (npts <= n_s, the acceleration seen by
SENSE).

thresh Noise threshold.
a Matrix to invert for the SENSE recon of npts pixels. (of size 2∗ncoils x 2∗accel
w Singular values, in the SENSE recon. (of size 2∗accel)
v Required for backsubstitution, in the SENSE recon. (of size (2∗accel)
wgt_roe Weights as in Roemer et al.
wgt Weights with present method.
S Sensitivity matrix, copy of "a".
S_buf Modified version of S.
S_inv Inverse of the sensitivity matrix. (2∗accel x 2∗ncoils)
S_inv_buf Unfinished version of S_inv.

5.10.2.16 int rlsgrappa (COMPLEX ∗ I, int ∗ PhaseLines, dataheader ∗ hdr,
COMPLEX ∗ O, int ∗ Nlines, int ∗∗ OutPhaseLines, int YKS, float radius, int
ndk, int ∗ dks_in, float lambda)

An implementation of “RLS-GRAPPA: Reconstructing parallel MRI data with adap-
tive filters,” by W S Hoge, F Gallego, Z Xiao, and D H Brooks, to appear in Proc 2008
IEEE Intl Symp on Biomedical Imaging, May 2008.

Processing is done in hybrid-space, ky-x, coil-by-coil with GRAPPA reconstruction
coefficients calculated simlutaneously with missing data reconstruction using an adap-
ative RLS filter. Currently only ’RLS-along-x’ is supported.

Parameters:

I input data
PhaseLines input phase index list
hdr header associated with input data
O buffer to hold output data. This should be Nvertical x xres x Ncoils, i.e. zero

padded
Nlines number of non-zero output lines
OutPhaseLines list of output non-zero lines (will be malloced)
YKS grappa-kernel size, y-dim (2 or 4)
radius size of reconstruction radius along freq-encode dimension. In some cases

(e.g. coil sensitivity estimation) the full read-out length is not needed
ndk number of Delta k’s to compute. If zero, then the dks list is computed auto-

matically.
dks_in the list of Delta k’s to compute. Set to NULL if ndk = 0.
lambda the rls forgetting factor

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.10 Parallel Imaging Algorithms 63

5.10.2.17 void self_ref_b1_basic (COMPLEX ∗ kspace_data, float b1snr_thr,
short Ny, short Nx, short Nz, short ncoils, short Nf, fil_fft_mngr ∗ mngr,
COMPLEX ∗ b1)

Calculate B1 sensitivity maps from raw kspace data.

This is a very basic function: it applies only a 1/2 sinusoidal filter only along ky;
assumes kspace is fully sampled with the DC coordinate in the center of k-space. An
fftshift is during processing to ensure that the estimated coil sensitivities have smooth
phase.

Parameters:

kspace_data kspace data of size (ky, kx, z, coils, t).

b1snr_thr SNR threshold for sensitivity maps.

Ny Dimension along the y/ky direction.

Nx Dimension along the x/kx direction.

Nz Dimension along the z/kz direction.

ncoils Number of coil elements in array.

Nf Number of frames in kspace_data.

mngr FFT manager

b1 B1 sensitivity maps. Size: nx-ny-nz-ncoils

5.10.2.18 void self_ref_b1_for_cine (COMPLEX ∗ kspace_data, float sigmak,
float b1snr_thr, short N_acq, short Nx, short Ny, short Ny_proc, short Nz_-
proc, short ncoils, short Nf, short fr1, short fill_fac, short first_line, float ∗
filt_b1, KCOORD ∗ kline_o, KCOORD ∗ kline_e, float ∗ samp_dens, fil_fft_-
mngr ∗ mngr, COMPLEX ∗ bufsp, COMPLEX ∗ b1)

Calculate B1 sensitivity maps from the dynamic data itself (i.e. self- referenced). It
uses a combination of the strategies as part of GRAPPA (k- space center sampled more
densely) and TSENSE (UNFOLD-based approach).

Parameters:

kspace_data Re-ordered data of size (Nx, N_acq, Nz, nph, ncoils).

sigmak Noise level in kspace_data, as determined by eval_knoise_cine.

b1snr_thr SNR threshold for sensitivity maps.

N_acq Number of sampled lines per frame.

Nx Dimension along the x/kx direction.

Ny Dimension along the y/ky direction.

Ny_proc > Ny if sampling density > 1 at ky∼=0.

Nz_proc Dimension along the z/kz direction.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.10 Parallel Imaging Algorithms 64

ncoils Number of coil elements in array.

Nf Number of frames in kspace_data.

fr1 1st frame considered even (0) or odd (1)

fill_fac Factor to make ky lines integer.

first_line First line for cropping (0 = off).

filt_b1 Filter to select ky-kz region for B1 sensitivity mapping.

kline_o Sampling function, odd frames.

kline_e Sampling function, even frames.

samp_dens Sampling density, in ky-kz plane.

mngr FFT manager

bufsp Memory space, to work in.

b1 calculated B1 sensitivity maps.

5.10.2.19 int self_ref_b1_via_geyser (COMPLEX ∗ datain, dataheader ∗ hdr,
int ∗ PhaseLines, COMPLEX ∗ ptrW, fil_fft_mngr ∗ mngr, int m)

Compute the coil sensitivity estimate for one frame of data, using GRAPPA as an
intermediary to fill in any gaps (of 2∆k) in the low-frequency coordinate range of the
acquired k-space data.

For reference, see Hoge WS and Brooks DH, "Using GRAPPA to improve auto-
calibrated coil sensitivity estimation for the SENSE family of parallel imaging re-
construction algorithms," Magn. Reson. Med., Magn Reson Med, 2008; 60(2):462-
467.

Parameters:

datain input k-space data (size: P-N-L)

hdr a header to describe the data and associated output matrix size

PhaseLines a list of acquired phase encode indices, of length P

ptrW A buffer to store output coil sensitivity maps. (size: M-N-L)

mngr a pointer to an FFT manager

m binary flag: use a mask? default: 0

5.10.2.20 int spacerip_for_cine (short Nx, short N_o, short N_e, short N_-
c, short Ny, int Ny_proc, short Nz_proc, short Nf, short ncoils, float pF,
KCOORD ∗ kline_o, KCOORD ∗ kline_e, KCOORD ∗ kline_c, COMPLEX ∗
b1, COMPLEX ∗ buf, COMPLEX ∗ data, COMPLEX ∗ spacerip, short recon_-
flag)

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.10 Parallel Imaging Algorithms 65

An implementation of "Sensitivity profiles from an array of coils for encoding and
reconstruction in parallel (SPACE RIP)." W. E. Kyriakos, et. al. Magn Reson Med.
44(2):301-308, August 2000.

SPACE RIP can be used to reconstruct data sampled non-uniformly on a rectilinear
sampling grid.

Parameters:

Nx Size of input dataset, along kx (readout)

N_o k locs acquired in odd ky-kz frames

N_e k locs acquired in even ky-kz frames

N_c k locs acquired in combined frames

Ny Full matrix size along ky (phase)

Ny_proc Ny used for processing, in vdsense

Nz_proc Nz used for processing

Nf number of frames (either time or phase)

ncoils Number of coils

pF partial-Fourier (1=fully sampled, 0.5=50% sampled)

kline_o lines acquired on ’odd’ frames

kline_e lines acquired on ’even’ frames

kline_c lines acquired on combined frames

b1 pointer to sensitivity map data

buf pointer to available memory block

data pointer to input data

spacerip pointer to reconstructed data

recon_flag 0 for low t freqs, 1 for high t freqs

5.10.2.21 int sprip3d_conv_pts2y (int nph, int ∗ phz_y, int ∗ phz_z, int M, int
N, int ∗ Y)

calculate the array index values for the specified acquired phase encode points. i.e.
maps (phz_y,phz_z) = (2,1) of a (MxN =) 10 x 8 image to y = 12

y[i] = phz_z[i] ∗ M + phz_y[i]

01234567
0
1
2 .x......
3

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.10 Parallel Imaging Algorithms 66

4
5
6
7
8
9

Note: the C convention (which is followed here) is to start counting at zero, which
differs from Matlab, which starts counting vector elements at one.

Parameters:

nph number of acquired phase encode points

phz_y y locs of each phase encode point

phz_z z locs of each phase encode point

M total span of the FOV, along y

N total span of the FOV, along z

Y calcuated list of array index values

5.10.2.22 void sprip3d_lsqr_init (int nph, int M, int N, int L)

setup the memory allocation and FFT configuration for the LSQR reconstruction algo-
rithm of 3D imaging data, sprip3d_lsqrsolv().

Parameters:

nph number of acquired phase encode lines

M total span of the phase-encode dimension

N total span of the phase-encode dimension

L number of coils

5.10.2.23 void sprip3d_lsqr_post ()

tear-down the memory allocation and FFT configuration used during the LSQR recon-
structions of 3D data.

5.10.2.24 void sprip3d_lsqrsolv (int ∗ Y, int nph, int m, int n, int L, COMPLEX
∗ W, COMPLEX ∗ Sk, COMPLEX ∗∗ I, float ∗ inlams, int lamsize, int maxits,
double ∗ xnormout, double ∗ Rout, int tid)

Solves the inverse problem associated with one slice of the 3D SPACE RIP recon-
struction algorithm, utilizing fast matrix vector products available via FFT operations
and embedded Krylov techniques to quickly find solutions associated with multiple
regularization values.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.10 Parallel Imaging Algorithms 67

Parameters:

Y phase encode index list

nph number of phase encodes

m size of full phase encode span along y

n size of full phase encode span along z

L number of coils

W (M,N,L) coil sensitivity data

Sk (nph,L) acquired data

I pointer to reconstructed image data. If this value points to an existing memory
block, a single image is returned, corresponding to the highest regularization
parameter value with no aliasing in the image. If a NULL pointer is passed,
then all reconstructions (one for each lambda) is returned. After copying the
most desirable image, free the buffer to prevent memory leaks.

inlams list of lambda’s

lamsize number of lambda’s in the lams list

maxits max number of iterations

xnormout returns the norm of solution, for each lambda

Rout returns the norm of residual error, for each lambda

tid unused

5.10.2.25 void sprip_cgsolv (int ∗ Y, int nph, int n, int L, COMPLEX ∗ Wx0,
COMPLEX ∗ u, COMPLEX ∗ x, COMPLEX lambda, int k_max, int tid)

Solves the inverse problem associated with one column of the SPACE RIP reconstruc-
tion algorithm, utilizing fast matrix vector products available via FFT operations

Parameters:

Y phase encode index list

nph number of phase encodes

n size of full phase encode span

L number of coils

Wx0 (n,L) coil sensitivity data

u (nph,L) acquired data

x (length n) reconstructed image data

lambda DLS regularization setting

k_max max number of iterations

tid thread id

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.10 Parallel Imaging Algorithms 68

5.10.2.26 void sprip_cgsr_init (int nph, int N, int L, int threadnum)

Set up memory allocation blocks and FFT plans needed for cgsolv

Parameters:

nph number of acquired phase encode lines

N total span of the phase-encode dimension

L number of coils

threadnum number of threads to prepare for

5.10.2.27 void sprip_cgsr_post ()

Tear-down the allocated memory blocks and FFT mananger used with cgsolv

5.10.2.28 void sprip_cgsr_recon (float ∗ phz_encode_list, int P, int N, int M, int
L, COMPLEX ∗ W, COMPLEX ∗ Sk, double tau, int maxits, COMPLEX ∗ rho,
int tmax)

Reconstruct an image using the Space-RIP paradigm, solving the linear system via the
method of conjugate gradients

Parameters:

phz_encode_list the phase encodes used (length P vector) range = [0, N-1], <
with the center of k-space at N/2

P number of phase encodes used

N number of reconstructed samples along phase encode direction

M number of samples along readout direction

L number of coils

W coil sensitivity estimate in spatial domain of size (N,M,L)

Sk acquired data in k-space domain of size (P,M,L)

tau the regularization parameter

maxits max number of iterations

rho the reconstructed image (size = M-by-N)

tmax max number of threads to use. valid range: [0..M] If 0, then default number
is used. set to non-zero if memory workspace is pre-allocated.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.10 Parallel Imaging Algorithms 69

5.10.2.29 void sprip_lsqr_init (int nph, int N, int L, int threadnum, int lamsize,
int maxits)

setup the memory allocation and FFT manager for the LSQR reconstruction algorithm,
lsqrsolv.

Parameters:

nph number of acquired phase encode lines

N total span of the phase-encode dimension

L number of coils

threadnum number of threads to prepare for

lamsize maximum number of lambda’s

maxits maximum number of iterations

5.10.2.30 void sprip_lsqr_post ()

tear-down the memory allocation and FFT manager used during the LSQR reconstruc-
tions.

5.10.2.31 void sprip_lsqr_recon (float ∗ phz_encode_list, int P, int N, int M, int
L, COMPLEX ∗ W, COMPLEX ∗ Sk, float ∗ lams, int numlams, COMPLEX ∗
D, int maxits, COMPLEX ∗∗ rho, double ∗ xout, double ∗ rout, int tmax, float
∗ usedlams)

reconstruct an image using the SPACE-RIP paradigm, solving the linear system us-
ing the LSQR-Hybrid algorithm. This algorithm embeds the regularization parameter
search within each iteration, efficiently producing multiple solutions for each regular-
ization paramater (lambda) value.

Efficiently solves:
min

x
{‖Ax− b‖2 + λ‖Dx‖2}

for multiple vales of λ, where D is a diagonal regularization operator matrix.

Parameters:

phz_encode_list the phase encodes used (length P vector) range = [0, N-1], with
the center of k-space at N/2

P number of phase encodes used

N number of reconstructed samples along phase encode direction

M number of samples along readout direction

L number of coils

W coil sensitivity estimate in spatial domain of size (N, M, L)

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.10 Parallel Imaging Algorithms 70

Sk acquired data in k-space domain of size (P, M, L, nimgs)

lams array of regularization parameter. values (if ∗lams == NULL, use the default
of 10∧{-4} to 10∧1 on a logarithmic scale.)

numlams number of lambda values in the array (max=50). if zero, then de-
fault=20 is used

D a length N vector for varied regularization along the reconstructed dimension.
Set to NULL to use the identity matrix.

maxits the maximum number of iterations

rho the reconstructed image(s). If given a pointer, then the algorithm will return
one image of size M-by-N. if (∗rho==NULL), it will return an image for each
of the regularization values. To avoid memory leaks, clear the returned buffer
after the most desirable image is copied.

xout returns the estimated norm of the solution for each lambda

rout returns the norm of residual error, for each lambda

tmax maximum number of threads to use

usedlams an array of size M, used to return the regularization value determined
by the LSQR-Hybrid algorithm for each solved problem.

5.10.2.32 void sprip_lsqrsolv (int ∗ Y, int nph, int N, int L, COMPLEX ∗ Wx0,
COMPLEX ∗ Sk, COMPLEX ∗∗ I, float ∗ lams, int lamsize, COMPLEX ∗ D,
int maxits, double ∗ xnormout, double ∗ Rout, int tid, float ∗ lout)

Solves the inverse problem associated with one column of the SPACE RIP reconstruc-
tion algorithm, utilizing fast matrix vector products available via FFT operations and
embedded Krylov techniques to quickly find solutions associated with multiple regu-
larization values.

Parameters:

Y phase encode index list

nph number of phase encodes

N size of full phase encode span

L number of coils

Wx0 (N,L) coil sensitivity data

Sk (nph,L) acquired data

I reconstructed image data

lams list of lambda’s

lamsize number of lambda’s in the lams list

D a vector to use in non-I regularization. Set to NULL if not needed/desired.

maxits max number of iterations

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.10 Parallel Imaging Algorithms 71

xnormout returns the norm of solution, for each lambda

Rout returns the norm of residual error, for each lambda

tid thread id

5.10.2.33 void vdsense (short Nx, short N_acq, short Ny, short Ny_proc, short
Nz_proc, short Nf, short ncoils, short fill_fac, short fr1, short first_line, float pF,
fil_fft_mngr ∗ mngr, KCOORD ∗ kline_o, KCOORD ∗ kline_e, float ∗ samp_-
dens, float ∗ weight_pF, COMPLEX ∗ buf, DATATYPE ∗ Uarray, COMPLEX ∗
data, COMPLEX ∗ vdsen_ima)

The reconstruction strategy implemented by Variable density SENSE (VD-SENSE) is
to apply a Cartesian SENSE reconstruction to data that is not necessarily uniformly
sub-sampled. The processing proceeds in three steps.

First, the coil sensitivity estimates are used to construct reconstruction (or un-mixing or
un-aliasing) operators, based on the highest acceleration factor employed in the sam-
pling scheme. Second, the raw data is zero padded and transformed to the spatial
domain. Finally, the reconstruction operators are applied to the spatial domain repre-
sentation of the acquired image data, to form the un-aliased image.

Parameters:

Nx Size in x direction

N_acq number of acquired samples along y

Ny Size in y direction

Ny_proc Ny used for processing

Nz_proc Nz used for processing (number of slices)

Nf Size in time direction

ncoils number of coils

fill_fac fill factor, to accomodate non-int samp pts

fr1 whether 1st frame considered even (0) or odd (1)

first_line First y line kept, when cropping recon FOV

pF partial-Fourier (1=fully sampled, 0.5=50% sampled)

mngr a pointer to an FFT manager

Uarray Contains an inverted SENSE matrix U for each pixel, to perform the una-
liasing.

5.10.2.34 void vdsense_apply (short Nx, short Ny, short Nz, short Nf, short
ncoils, COMPLEX ∗ sen_before, DATATYPE ∗ Uarray, COMPLEX ∗ sen_after)

Apply variable-density SENSE.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.11 Filtering Functions 72

Parameters:

Nx Size in x direction.
Ny Size in y direction.
Nz Size in z direction.
Nf Size time direction.
ncoils Number of receiver coils.
sen_before Data, before vdsense. (size: Nx∗Ny∗Nz∗Nf∗ncoils∗sizeof(COMPLEX)

)
Uarray Contains an inverted matrix U for each pixel, to unalias.
sen_after Data, after vdsense. (size: Nx∗Ny∗Nz∗Nf∗sizeof(COMPLEX))

5.10.2.35 void vdsense_prep (short Nx, short Ny, short Nz, short ncoils, float
thresh, int accel, XCOORD ∗ alias, COMPLEX ∗ b1, DATATYPE ∗ Uarray)

Invert sensitivity matrices, in preparation for a vdsense reconstruction.

See inv_sens_matrix() for a description of the thresh parameter.

Parameters:

Nx Size in x direction.
Ny Size in y direction.
Nz Size in z direction.
ncoils Number of receiver coils.
thresh Threshold for noise tolerance.
accel the maximum delta k in the sampling pattern
alias Description of the aliasing PSF (where aliasing comes from).
b1 B1 sensitivity maps. (size: Nx∗Ny∗Nz∗sizeof(COMPLEX))
Uarray Array where all the inverted matrices will be stored. (size:

Nx∗Ny∗Nz∗ncoils∗sizeof(COMPLEX))

5.11 Filtering Functions

Functions to apply spatial and temporal filters to k-space data.

Functions

• void apodization (SCAN_INFO hdr, int Nx, float ∗fx, int Ny, float ∗fy, int Nz,
float ∗fz, KCOORD ∗kline_o, KCOORD ∗kline_e, COMPLEX ∗data)

• void apply_ramp (COMPLEX ∗data, short Nx, short Ny, short nph, short ncoils,
float rampx, float rampy)

• void fermi (short N, float trw, float ∗f)

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.11 Filtering Functions 73

5.11.1 Detailed Description

Functions to apply spatial and temporal filters to k-space data.

5.11.2 Function Documentation

5.11.2.1 void apodization (SCAN_INFO hdr, int Nx, float ∗ fx, int Ny, float ∗
fy, int Nz, float ∗ fz, KCOORD ∗ kline_o, KCOORD ∗ kline_e, COMPLEX ∗
data)

Apply an apodization filter, to reduce ringing.

Parameters:

hdr scan information

Nx Number of points along kx.

fx Filter function along kx.

Ny Number of points along ky.

fy Filter function along ky.

Nz Number of points along kz.

fz Filter function along kz.

kline_o Sampling function, odd time frames.

kline_e Sampling function, even time frames.

data k-space matrix to filter

5.11.2.2 void apply_ramp (COMPLEX ∗ data, short Nx, short Ny, short nph,
short ncoils, float rampx, float rampy)

Apply a phase ramp to kspace data, to shift the image in the spatial domain.

Parameters:

data Data to apply a phase ramp to.

Nx Size in kx direction.

Ny Size in ky direction.

nph Size time direction.

ncoils Number of receiver coils.

rampx Phase increment from x pixel to next.

rampy Phase increment from y pixel to next.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.12 Matrix-Vector Utility Functions 74

5.11.2.3 void fermi (short N, float trw, float ∗ f)

Generate a fermi filter.

Parameters:

N Number of points.
trw Width of transition region where the filter passes from 1% to 99%, expressed

as a fraction of the full bandwidth.

5.12 Matrix-Vector Utility Functions

Functions

• COMPLEX inner_product (COMPLEX ∗a, COMPLEX ∗b, int n)
• void matrix_transpose (COMPLEX ∗A, int m, int n)
• void matrix_vector_product (COMPLEX ∗A, COMPLEX ∗b, int m, int n, COM-

PLEX ∗res)
• void matrix_vector_product_threaded (COMPLEX ∗A, COMPLEX ∗b, int m,

int n, COMPLEX ∗res, int numthread)

5.12.1 Detailed Description

A collection of matrix-vector utilities for use with complex-valued data structures

5.12.2 Function Documentation

5.12.2.1 COMPLEX inner_product (COMPLEX ∗ a, COMPLEX ∗ b, int n)

Calculate the inner product,
∑n

i=1 a∗i bi, of two complex vectors

Parameters:

a pointer to first vector
b pointer to second vector
n length of the vectors

5.12.2.2 void matrix_transpose (COMPLEX ∗ A, int m, int n)

Perform A = AT where (m,n) is the size of the input matrix

Parameters:

A pointer to input data array
m number of rows in the data
n number of columns in the data

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.13 File I/O 75

5.12.2.3 void matrix_vector_product (COMPLEX ∗ A, COMPLEX ∗ b, int m,
int n, COMPLEX ∗ res)

Compute a matrix vector product, x = Ab, where xi =
∑

j Ai,jbj .

Parameters:

A a pointer to the complex matrix (m rows, n columns)
b a pointer to the complex vector (n entrys)
m number of rows in A
n number of columns in A
res a pointer to the result, a complex vector, x = Ab, (m entrys)

5.12.2.4 void matrix_vector_product_threaded (COMPLEX ∗ A, COMPLEX ∗
b, int m, int n, COMPLEX ∗ res, int numthread)

A threaded version of matrix_vector_product

Parameters:

A a pointer to the complex matrix (m rows, n columns)
b a pointer to the complex vector (n entrys)
m number of rows in A
n number of columns in A
res a pointer to the result, a complex vector, x = A′b, (m entrys)
numthread default=16

5.13 File I/O

Functions to read and write image and data files.

Functions

• void copy_data_obj (DATA_OBJ ∗dest, DATA_OBJ ∗src)
• void display_params (SCAN_INFO hdr)
• void dump_out (char ∗name, int nc_out, int nf_out, int nz_out, int ny_out, int

nx_out, short temp, COMPLEX ∗bin)
• void free_data_obj (DATA_OBJ ∗data_obj)
• void init_data_obj (DATA_OBJ ∗data)
• int read_nd_data (char ∗filename, char ∗∗ptr, char ∗frmt, int ∗size, int ∗szI)
• int read_nd_data2 (char ∗filename, DATA_OBJ ∗dat)
• int write_nd_data (char ∗filename, void ∗bin, char ∗frmt, int size, int ∗sz)
• int write_nd_data2 (char ∗filename, DATA_OBJ ∗dat)

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.13 File I/O 76

5.13.1 Detailed Description

Functions to read and write image and data files.

The library provides a number of functions to pass data back and forth between C and
Matlab.

One method is the .nd data format, which is a straight forward way to save real or
complex multi-dimensional data. The .nd file format is:

• 4-byte int giving the total number of bytes in the file (filesize)

• 4-byte char string ’nddf’, to specify the ND data format

• 4-byte int giving the number of dimensions in the array. (size)

• array of 4-byte ints, of length (size), giving number of samples in each dimension

• 4-byte char string declaring the data type. The first 3 chars declare the data type,
with the last char for real or complex.

The seven possibilities are:

– (short, 16b) integers, real or complex : ’intr’ or ’intc’

– floats, real or complex : ’fltr’ or ’fltc’

– doubles, real or complex : ’dblr’ or ’dblc’

– (8b) character data (strings) : ’char’

• followed by ’the data’

Version 2 allows meta-data describing the data to also be stored.

• 4-byte int describing the length of the meta-data block, in bytes [8 +
sizeof(char)∗[number of metadata bytes]],

• 4-byte char string ’meta’,

• the meta-data.

Alternatively, one can use the dump_out function to write memory contents to disk.
This format writes the raw binary data in one file, and then writes an associated text
file describing the format of the data.

5.13.2 Function Documentation

5.13.2.1 void copy_data_obj (DATA_OBJ ∗ dest, DATA_OBJ ∗ src)

clone a copy of a data object

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.13 File I/O 77

if dest is a clean object, then the memory will be allocated.

if not, (i.e. dest has pre-allocated data memory) the copy will proceed if (dest->init
>= src->init).

5.13.2.2 void display_params (SCAN_INFO hdr)

Display some of the scan parameters contained in the SCAN_INFO header

5.13.2.3 void dump_out (char ∗ name, int nc_out, int nf_out, int nz_out, int
ny_out, int nx_out, short temp, COMPLEX ∗ bin)

Write data to file, for debugging. The fuection output two files, one file is a binary for-
mat with the data. The second, with suffix ’_dims’ records the data structure (number
of coils, frames, Nz, Ny, Nx, etc.). Data can be read in to Matlab using read_dump
.

Parameters:

name output filename

nc_out number of coils

nf_out number of temporal frames

nz_out number of slices

ny_out size along phase-encode dimension

nx_out size along read-out dimension

temp (unused)

bin the data to write to disk

5.13.2.4 void free_data_obj (DATA_OBJ ∗ data_obj)

release all allocated memory associated with the input data object.

• sets the data_obj->type to NULL

• frees the data_obj->data

• clears the data_obj->init value (to ’0’)

• frees the data_obj->metadata, if non-NULL

5.13.2.5 void init_data_obj (DATA_OBJ ∗ data)

initialize the data points and array values for an empty data object

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.13 File I/O 78

5.13.2.6 int read_nd_data (char ∗ filename, char ∗∗ ptr, char ∗ frmt, int ∗ size,
int ∗ szI)

import/read an N-D data array file (output by savend)

Usage:

COMPLEX *data;
char *tmpp;
int n, cnt, sz[4];
char dtype[5] = {0,0,0,0,0};

read_nd_data("inputdata.nd", &tmpp, dtype, &n, sz);
if (strcmp(dtype,"dblc")==0) {

data = (COMPLEX *) tmpp;
}
printf("read_nd_data read an %s %d-dimensional array of size ",dtype,n);
for (cnt=0; cnt<n; cnt++) { printf(" %d",sz[cnt]);} printf(".\n");

Returns:

Returns a 0 if read is successful, a non-zero value otherwise. Error messages are
reported to STDERR.

Parameters:

filename Output filename.

ptr pointer to the data buffer to read data to.

frmt pointer the file format char field.

size pointer the returned number of dimensions in the data.

szI pointer to an array that holds the number of elements in dimension.

5.13.2.7 int read_nd_data2 (char ∗ filename, DATA_OBJ ∗ dat)

import/read an N-D data array file (output by savend)

Usage:

DATA_OBJ img;

init_data_obj(&img);
read_nd_data2("inputdata.nd", &img);

printf("read_nd_data2 read an %s %d-dimensional array of size ",dtype,n);
for (cnt=0; cnt<n; cnt++) { printf(" %d",sz[cnt]);} printf(".\n");

Returns:

Returns a 0 if read is successful, a non-zero value otherwise. Error messages are
reported to STDERR.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.13 File I/O 79

This version (version 2) can read meta-data stored at the end of the file.

Parameters:

filename Output filename.

dat pointer to the data object to populate.

5.13.2.8 int write_nd_data (char ∗ filename, void ∗ bin, char ∗ frmt, int size, int
∗ sz)

write an N-D data array to disk suitable for readnd

Usage:

int sz[4];
COMPLEX *ImageData;

sz[0] = (int)hdr.xres;
sz[1] = (int)hdr.yres;
sz[2] = (int)hdr.CinePhases;
sz[3] = (int)hdr.Ncoils;
write_nd_data("I.dat", ImageData, "dblc", 4, sz);

Returns:

Returns a 0 if read is successful, a non-zero value otherwise. Error messages are re-
ported to STDERR.

Parameters:

filename input data filename

bin a pointer to the output data

frmt a format descriptor of the data type: ’char’, ’intr’, ’intc’, ’fltr’, ’fltc’, ’dblr’,
or ’dblc’.

size the number of dimensions spanned by the data

sz the number of elements in each dimension

5.13.2.9 int write_nd_data2 (char ∗ filename, DATA_OBJ ∗ dat)

export/write an N-D data array file (to be read by readnd) along with any associated
meta-data

Usage:

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.14 EPI specific functions 80

DATA_OBJ img;

init_data_obj(&img);

// some processing, saving the data to img.data

write_nd_data2("img_data.nd", &img);

This version (version 2) will append meta-data stored in the img.metadata field of the
object

Parameters:

filename Output filename.
dat pointer to the data object to write.

5.14 EPI specific functions

Provides common corrections needed for EPI data.

Functions

• int calc_vrgf_data_matrix (DATA_OBJ ∗vrgf, int input_res, int output_res, float
time_attack, float time_flat, float time_decay, float time_sample_delay, float
time_sampling_window)

• int correct_rampsamp (DATA_OBJ ∗k, DATA_OBJ ∗vrgf, void ∗scratchbuf)
• int ngc_apply_phase_shift (DATA_OBJ ∗k, DATA_OBJ ∗ramp, fil_fft_mngr
∗mngr, NGC_MEM ∗ngc_mem)

• int ngc_compute_phase_shift (DATA_OBJ ∗ngc_even, DATA_OBJ ∗ngc_odd,
DATA_OBJ ∗ramp, fil_fft_mngr ∗mngr, NGC_MEM ∗ngc_mem)

• int ngc_mem_init (int ∗sz, int nEl, NGC_MEM ∗ngc_mem)
• int ngc_mem_quit (NGC_MEM ∗ngc_mem)

5.14.1 Detailed Description

Provides common corrections needed for EPI data.

These functions include that ability to grid data acquired on EPI readout gradient ramps
and to correct for offsets between even and odd EPI readout lines.

See also:

• EPI Ghost Ellimination via Spatial and Temporal Encoding (GESTE)

• Vendor Specific Functions: GE

• Vendor Specific Functions: Siemens

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.14 EPI specific functions 81

5.14.2 Function Documentation

5.14.2.1 int calc_vrgf_data_matrix (DATA_OBJ ∗ vrgf, int input_res, int
output_res, float time_attack, float time_flat, float time_decay, float time_sample_-
delay, float time_sampling_window)

This function computes the matrix to regrid EPI data that is sampled on the readout
gradient attack and decay slopes.

Parameters:

vrgf the output regridding matrix

input_res number of input data on readout

output_res number of data points on the readout line after gridding

time_attack the ’ramp up’ time for the gradient (in msec)

time_flat the ’flat top’ time for the gradient (in msec)

time_decay the ’ramp down’ time for the gradient (in msec)

time_sample_delay the time (in msec) between the start of the readout gradient
and the start of the sampling window

time_sampling_window length of time (in msec) the sampling window is ’on’

5.14.2.2 int correct_rampsamp (DATA_OBJ ∗ k, DATA_OBJ ∗ vrgf, void ∗
scratchbuf)

a function to regrid EPI data sampled on gradient ramps, using the provided gridding
object

Parameters:

k the input ramp-sampled data (of type "fltc" or "dblc")

vrgf the ramp-sampling gridding matrix. Needs to be of type "fltr", with vrgf.sz[0]
== k.sz[0]

scratchbuf A pointer to some workspace memory. Needs to be as large as the
(dblc) input data memory size. If NULL, the temporary scratch space will be
internally allocated.

5.14.2.3 int ngc_apply_phase_shift (DATA_OBJ ∗ k, DATA_OBJ ∗ ramp, fil_-
fft_mngr ∗ mngr, NGC_MEM ∗ ngc_mem)

Applies a pre-estimated phase correction to correct the k-space shift between the
odd/even lines of EPI data.

Parameters:

k input k-space data, of size [Nx Ny Ncoil]

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.14 EPI specific functions 82

ramp input phase correction data, of length [ncoil]

mngr and FIL FFT manager

ngc_mem an pre-initialized NGC object to hold the memory buffers

5.14.2.4 int ngc_compute_phase_shift (DATA_OBJ ∗ ngc_even, DATA_OBJ ∗
ngc_odd, DATA_OBJ ∗ ramp, fil_fft_mngr ∗ mngr, NGC_MEM ∗ ngc_mem)

Computes the estimated shift (for each coil of data) based on cross-correlation between
the input even and odd EPI readout lines.

Input data type can be either "dblc" of "fltc".

Parameters:

ngc_even input set of even (+Gx) EPI phase reference lines. Should be 2D, with
size [Nx Ncoils]

ngc_odd input set of odd (-Gx) EPI phase reference lines. Should be 2D, with
size [Nx Ncoils]

ramp an object to store the output estimated phase correction for each coil. Should
be a "fltr" object of length [Ncoils]. If ramp->data is set to NULL, data object
will be initialized internally.

mngr an FIL FFT manager

ngc_mem an pre-initialized NGC object to hold the memory buffers

5.14.2.5 int ngc_mem_init (int ∗ sz, int nEl, NGC_MEM ∗ ngc_mem)

Initializes the memory structures needed for Nyquist ghost correction when using the
3-line-at-start-of-echo-train method.

Parameters:

sz a 2D int array holding the Nx and ncoil sizes of the data used to estimate the
phase correction values

nEl the number of complex data value elements (Nx ∗ Ny ∗ ncoil) in the EPI data
to be corrected

ngc_mem the NGC memory object to hold the initialized memory

5.14.2.6 int ngc_mem_quit (NGC_MEM ∗ ngc_mem)

Free the NGC memory

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.15 Utility Functions 83

5.15 Utility Functions

Functions

• void calc_samp_dens (KCOORD ∗kline_o, KCOORD ∗kline_e, short N_acq,
short Nz_proc, int fill_fac, short Ny, float ∗samp_dens)

• float eval_knoise (SCAN_INFO hdr, COMPLEX ∗kspace_data, KCOORD
∗kline_o, COMPLEX ∗bufspace)

• void extract_ksubset (short ncoils, short nf, short nx, KCOORD ∗kline_full,
KCOORD ∗kline_sub, short nl_full, short nl_sub, COMPLEX ∗fullmat, COM-
PLEX ∗submat)

• void fil_version ()
• int imnum_out (short next_im, short z_anat, short Nf, short ncoils, short dump_-

b1maps)
• void kstretch (short Nx, short Ny, short Nz_proc, short N_acq, short fill_fac,

short ifr, short fr1, KCOORD ∗kline_o, KCOORD ∗kline_e, COMPLEX ∗data,
COMPLEX ∗data_str)

• void select_kcenter (short firsty, short lasty, short Ny, short firstz, short lastz,
short Nz, float ∗filt)

• int slice_number (int z, int Nsl, int z_first, char ∗application)
• void weigh_kykz (short ncoils, short nf, short nz, short ny, short nx, float
∗weight, COMPLEX ∗data)

5.15.1 Detailed Description

5.15.2 Function Documentation

5.15.2.1 void calc_samp_dens (KCOORD ∗ kline_o, KCOORD ∗ kline_e, short
N_acq, short Nz_proc, int fill_fac, short Ny, float ∗ samp_dens)

Calculate the sampling density.

Parameters:

kline_o Sampling function, odd time frames.

kline_e Sampling function, even time frames.

N_acq Number of acquired lines per frame, i.e., length of kline_o and _e.

Nz_proc Size along z, in processing.

fill_fac Factor to make ky lines integer.

Ny Matrix size along y, actual dataset.

samp_dens Sampling density, size = Nz_proc∗fill_fac∗Ny.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.15 Utility Functions 84

5.15.2.2 float eval_knoise (SCAN_INFO hdr, COMPLEX ∗ kspace_data, KCO-
ORD ∗ kline_o, COMPLEX ∗ bufspace)

Evaluate the standard deviation of the noise on the k-space data. The returned value is
used to set the regularization threshold in vdsense.

Get an estimate of the noise level. Look only at the corners of the kx-ky space (don’t
look at the central 20% part on both axes, which may contain a lot of signal). Subtract
the time average to remove most of the remaining signal. Odd and even time frames are
different, so use different time averages. The remaining data should be mostly noise.
Find its standard deviation.

Parameters:

hdr Contains scan info.

kspace_data k-space data (size ncoils∗Nf∗N_acq∗Nx)

kline_o Sampling function, odd time frames.

bufspace Memory space to work in. (size:ncoils∗Nf∗N_acq∗Nx)

5.15.2.3 void extract_ksubset (short ncoils, short nf, short nx, KCOORD ∗
kline_full, KCOORD ∗ kline_sub, short nl_full, short nl_sub, COMPLEX ∗
fullmat, COMPLEX ∗ submat)

From a matrix with k-space lines listed in kline_full, generate a subset matrix featuring
only the lines listed in kline_sub.

Parameters:

ncoils Number of coils.

nf Number of time frames.

nx Size along x or kx.

kline_full List of ky/kz for lines in fullmat

kline_sub List of ky/kz for lines in submat

nl_full Number of lines in kline_full.

nl_sub Number of lines in kline_sub.

fullmat Full matrix to subsample.

submat Subsampled matrix.

5.15.2.4 void fil_version ()

Output the current version and compile time of the library.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.15 Utility Functions 85

5.15.2.5 int imnum_out (short next_im, short z_anat, short Nf, short ncoils,
short dump_b1maps)

Calculates the image number for the next image to be written out.

Returns:

if (dump_b1maps == 1),
next_im+z_anat*(Nf+ncoils);

else,
next_im+z_anat*Nf;

Parameters:

next_im 1st image number to use for output.
z_anat Slice number, in anatomical order.
Nf Number of time frames.
ncoils number of receiver coils.
dump_b1maps Flag to display the B1 maps.

5.15.2.6 void kstretch (short Nx, short Ny, short Nz_proc, short N_acq, short
fill_fac, short ifr, short fr1, KCOORD ∗ kline_o, KCOORD ∗ kline_e, COM-
PLEX ∗ data, COMPLEX ∗ data_str)

zero-pads the k-space data set, placing sub-sampled data in the full-sized data matrix
with zeros at unsampled locations.

Take the compact representation of k-space, with a list of N_acq lines, each one with
Nx real and imaginary values, and ’stretch’ it into its normal shape, a cube having Nx
by (fill_fac∗Ny) by Nz_proc complex elements. (Note that due to sparse sampling and
filling, fill_fac∗Ny∗Nz_proc is typically much greater than N_acq).

Parameters:

Nx Size in kx direction.
Ny Size in ky direction.
Nz_proc Size in kz direction.
N_acq Number of acquired ky-kz lines.
fill_fac Factor by which raw data must be stretched so that all the (fractional) ky

lines become integers.
ifr Time frame under consideration.
fr1 Whether 1st frame is considered even (0) or odd (1).
kline_o Sampling function, odd time frames.
kline_e Sampling function, even time frames.
data Data to uncompress.
data_str Uncompressed version of data.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.15 Utility Functions 86

5.15.2.7 void select_kcenter (short firsty, short lasty, short Ny, short firstz, short
lastz, short Nz, float ∗ filt)

Generate a 2D Gaussian filter to extract a central region in the ky-kz plane.

Parameters:

firsty 1st ky line in selected region.

lasty Last ky line in selected region.

Ny Size of filter along ky.

firstz 1st kz line in selected region.

lastz Last kz line in selected region.

Nz Size of filter along kz.

filt Calculated filter.

5.15.2.8 int slice_number (int z, int Nsl, int z_first, char ∗ application)

Convert the order in which slies are acquired into the anatomical order in which the
output should be written.

Parameters:

z Slice number, according to acquisition.

Nsl Number of slices

application Specific MR application under consideration.

5.15.2.9 void weigh_kykz (short ncoils, short nf, short nz, short ny, short nx,
float ∗ weight, COMPLEX ∗ data)

Apply a correction in the ky-kz plane, e.g., to correct for sampling density.

data[kx][ky] = data[kx][ky] / weight[ky];

Parameters:

ncoils Number of coils.

nf Number of time frames.

nz Size along kz.

ny Size along ky.

nx Size along x or kx.

weight Correction to apply in ky-kz plane.

data Data to be corrected.

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.16 EPI Ghost Ellimination via Spatial and Temporal Encoding (GESTE) 87

5.16 EPI Ghost Ellimination via Spatial and Temporal Encoding
(GESTE)

Functions

• int geste_calibrate__all_slices (DATA_OBJ ∗combo, float ∗phase_list,
GESTE_MEM ∗mem)

• void geste_init (GESTE_MEM ∗mem_obj, DATA_OBJ ∗data_frame)
• int geste_interleave_frames (DATA_OBJ ∗even_frame, DATA_OBJ ∗odd_-

frame, DATA_OBJ ∗combo, int mode, GESTE_MEM ∗mem)
• void geste_quit (GESTE_MEM ∗mem_obj)
• int geste_recon__all_slices (DATA_OBJ ∗data_frame, float ∗phase_list,

DATA_OBJ ∗img, GESTE_MEM ∗mem, int polarity)
• int pull_readout_data (int ndim, int ∗sz, COMPLEX ∗P, int indx_in, COMPLEX
∗Pfull, int indx_out)

• int run_geste (DATA_OBJ ∗even_frame, DATA_OBJ ∗odd_frame, DATA_OBJ
∗raw_frame, float ∗phase_list, DATA_OBJ ∗img, GESTE_MEM ∗mem)

5.16.1 Detailed Description

This category of functions is designed to remove Nyquist ghosts from EPI images. It
is a C-code implementation of the method described in [Q].

The strategy is to use temporal encoding in a series of EPI acquisitions, so that each line
of k-space is acquired using readout gradients of alternating polarity over the course of
the image series.

If one interleaves data from either all the positive or all the negative readouts in two
frames that were acquired in this fashion, the gradient errors associated with each read-
out polarity will be consistent. This reduces Nyquist ghosts substantially. The authors
of PLACE [R] showed that when these images are combined coherrently, the Nyquist
ghosting can be further reduced due to ghost cancelation. These images result in lower
temporal resolution, however, due to the need for data interleaving.

In GESTE, the Nyquist-ghost-free PLACE image is used to calibrate parallel imaging
reconstruction coefficients. These coefficients are then used in the original data to re-
construct two images at each time frame: one associated with negative readout polarity
gradients, and one associated with the positive readout polarity gradients. When these
images are combined coherently, residual pMRI artifacts will cancel, yeilding images
with superior ghost suppression while maintaining the original temporal resolution.

For an example on how to call the GESTE functions, consult the geste.c Matlab MEX
file.

Q. Hoge WS, Tan H, and Kraft RA, "Robust Elimination of EPI Nyquist Ghosts
via Spatial and Temporal Encoding." Magn Reson Med, 2010; 64(6):1781-1791.
DOI

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

http://dx.doi.org/10.1002/mrm.22564

5.16 EPI Ghost Ellimination via Spatial and Temporal Encoding (GESTE) 88

R. "Correction for geometric distortion and N/2 ghosting in EPI by phase labeling
for additional coordinate encoding (PLACE)." Qing-San Xiang and Frank Q. Ye.
Magn Reson Med, 57(4):731-741, 2007. DOI

5.16.2 Function Documentation

5.16.2.1 int geste_calibrate__all_slices (DATA_OBJ ∗ combo, float ∗ phase_list,
GESTE_MEM ∗ mem)

Using data combined from two interleaved frames, calculate the GRAPPA reconstruc-
tion parameters for all slices.

Parameters:

combo the calibration data frame. 4D, size: kx-ky-z-coil

phase_list (unused) a list of the sampled phase encode lines.

mem an initialized GESTE object of scratch memory buffers

5.16.2.2 void geste_init (GESTE_MEM ∗ mem_obj, DATA_OBJ ∗ data_frame)

Initialize the memory buffers required by GESTE. For the data_frame, only the size of
the supported data needs to be declared prior to calling the init function.

Parameters:

mem_obj GESTE object of sratch memory buffers

data_frame a pointer to a 4D data object (sized kx-ky-slices-coil) to be processed
by GESTE (for image size information)

5.16.2.3 int geste_interleave_frames (DATA_OBJ ∗ even_frame, DATA_OBJ ∗
odd_frame, DATA_OBJ ∗ combo, int mode, GESTE_MEM ∗ mem)

The first step of GESTE (comparable to PLACE):

A interleave input kspace of alternating readout polarity.

B phase align the interleaved images in the image domain,

C and then add the two frames

D if (mode==0), convert the output back in to k-space domain

Parameters:

even_frame frame1: even lines are positive readout k-space

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

http://dx.doi.org/10.1002/mrm.21187

5.16 EPI Ghost Ellimination via Spatial and Temporal Encoding (GESTE) 89

odd_frame frame2: odd lines are positive readout k-space

combo combined data

mode if mode=0: revert the output data back to k-space before returning

mem an initialized memory object

5.16.2.4 void geste_quit (GESTE_MEM ∗ mem_obj)

Clear and release the GESTE memory buffers.

An array of objects holding GRAPPA reconstruction paramemters can be cleared as
well. If not needed, set mem_obj->nslices to ’0’ and mem_obj->gparm to ’NULL’.

Parameters:

mem_obj GESTE object of sratch memory buffers

5.16.2.5 int geste_recon__all_slices (DATA_OBJ ∗ data_frame, float ∗ phase_list,
DATA_OBJ ∗ img, GESTE_MEM ∗ mem, int polarity)

GESTE reconstruction of EPI data frames using previously calculated GRAPPA pa-
rameters.

Parameters:

data_frame The raw input EPI data: ndim should equal ’4’, sized: kx-ky-z-coil
type: double-complex (’dblc’)

phase_list (UNUSED). List of phase encode locations

img A preallocated data array to store the reconstructed image. sized: x-y-z-coil

mem An initialized memory buffer object

polarity declare whether first k-space line is positive (1, align to even lines) or
negative (0, align to odd lines).

5.16.2.6 int pull_readout_data (int ndim, int ∗ sz, COMPLEX ∗ P, int indx_in,
COMPLEX ∗ Pfull, int indx_out)

This auxillary function is used to extract all readout data of the same polarity from an
EPI data set.

P, and Pfull should be the same size, with dimensions ordered as: kx-ky-z-coil

It assumes that every other line of k-space is sampled at the same polarity.

Parameters:

ndim number of dimensions in data set

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.17 Image Phase Alignment Functions 90

sz size array, describing each dimension

P the source data

indx_in the first index of source data to read

Pfull the destination buffer

indx_out the first index for the data destination

5.16.2.7 int run_geste (DATA_OBJ ∗ even_frame, DATA_OBJ ∗ odd_frame,
DATA_OBJ ∗ raw_frame, float ∗ phase_list, DATA_OBJ ∗ img, GESTE_MEM ∗
mem)

An example GESTE reconstruction function, geared towards an fMRI application.

Send two raw images in, get one reconstructed image back.

Parameters:

even_frame raw input EPI data frame. Even lines have positive readout data

odd_frame raw input EPI data frame. Odd lines have positive readout data

raw_frame raw input EPI data frame, the frame to reconstruct. Could/should be
equal to either even_frame or odd_frame

phase_list (UNUSED). List of phase encode locations

img reconstructed image, from raw_frame data

mem memory buffer object.

5.17 Image Phase Alignment Functions

Functions

• int align_image_phase (COMPLEX ∗P, COMPLEX ∗N, int nz, int ∗sz, float
∗∗phzL, COMPLEX ∗∗phzC, int tmax, short int mode)

• int calc_phase_correlation (Phase_Correlation_Args ∗arg)
• void fit_line_to_phase (COMPLEX ∗v, float ∗mask, int N, float ∗ramp)
• int unwrap_phase (double ∗b, float ∗mask, int N)

5.17.1 Detailed Description

This category of functions is designed to support image phase alignment, to idenitify
and remove phase differences introduced by a shifts in kspace betwen two images,

This is useful in Nyquist ghost removal [O] to align data acquired on positive and
negative readout gradients in EPI imaging, and in rigid image registration [P].

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.17 Image Phase Alignment Functions 91

O. Hoge WS, Tan H, and Kraft RA, "A method to remove Nyquist ghosts from echo
planar imaging (EPI) using UNFOLD." in Proc ISMRM 17th Scientific Meeting,
pg 571, 2009.

P. Hoge WS, "A subspace identification extension to the phase correlation method,”
IEEE Trans. Medical Imaging, 22(2):277-280, Feb. 2003.

5.17.2 Function Documentation

5.17.2.1 int align_image_phase (COMPLEX ∗ P, COMPLEX ∗ N, int nz, int ∗
sz, float ∗∗ phzL, COMPLEX ∗∗ phzC, int tmax, short int mode)

Align the phase of two input images. This function will modify P and N so that when
added coherently, the addition is constructive.

All dimensions beyond the first two will be corrected.

Parameters:

P image associated with pos readout data

N image associated with neg readout data

nz number of input image dimensions

sz array of sizes for each dimension. Note, P and N need to be identical in size

phzL UNUSED

phzC UNUSED

tmax maximum number of threads

mode if mode=0, the phase shift is split equally to both P and N. if mode=1, the
phase shift is applied only to N

5.17.2.2 int calc_phase_correlation (Phase_Correlation_Args ∗ arg)

Calculates the phase correlation (normalized cross correlation) between two input ma-
trices

C = conj(A).∗B ./ abs(A.∗conj(A))

So that the function is threadable, the input must be a pointer to the structure:

typedef struct{
COMPLEX *A; // input 1
COMPLEX *B; // input 2
int Nx; // number of rows in A,B
int Ny; // number of cols in A,B
COMPLEX *C; // output
short int mode; // 0: split phase correction between A,B; 1: apply phase correction to B only

} Phase_Correlation_Args;

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

5.17 Image Phase Alignment Functions 92

5.17.2.3 void fit_line_to_phase (COMPLEX ∗ v, float ∗ mask, int N, float ∗
ramp)

Solves a simple LMS problem to find the slope of a line fit to the (presumed) unwrapped
phase of the input vector.

Parameters:

v the input vector

mask a windowing vector of the same length, to provide a weighted LMS fit if
needed.

N length of v

ramp the estimate of the line slope.

5.17.2.4 int unwrap_phase (double ∗ b, float ∗ mask, int N)

A 1D phase unwrapping algorithm.

Parameters:

b input vector of phase (angle) values

mask optional binary weighting vector

N length of input vectors

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

Index
align_image_phase

phasealign, 90
alloc1double

solvers, 44
alloc2double

solvers, 44
apodization

filtering, 72
apply_epi_phase_ge

ge, 39
apply_ramp

filtering, 72
apply_vbc_coefs

parallel_imaging, 53
apply_vrgf_ge

ge, 39
Artifact Suppression via UNFOLD, 16

calc_DC_for_b1
cine, 22

calc_phase_correlation
phasealign, 90

calc_samp_dens
util, 82

calc_vrgf_data_matrix
epi, 80

cgsolv
solvers, 44

cine
calc_DC_for_b1, 22
nonlin_cphase, 22
puzzleout_cineacq, 23
read_ecg_info, 23
retrosp_gating_interp, 24
sort_rds_data, 24

CINE processing functions, 22
compute_pinv

solvers, 45
compute_root_sum_of_squares

parallel_imaging, 53
compute_svd

solvers, 45
compute_virtual_body_coil

parallel_imaging, 54
copy_data_obj

io, 75
correct_epi_phase_ge

ge, 40
correct_fcard

ge, 40
correct_rampsamp

epi, 80

dicom
edit_dicom, 31
eval_dicom, 32
find_tag, 32
get_dicom_info, 32
is_dicom, 33
print_list, 33
write_ima, 33

DICOM File Utilities, 31
display_params

io, 76
dump_out

io, 76

edit_dicom
dicom, 31

epi
calc_vrgf_data_matrix, 80
correct_rampsamp, 80
ngc_apply_phase_shift, 80
ngc_compute_phase_shift, 81
ngc_mem_init, 81
ngc_mem_quit, 81

EPI Ghost Ellimination via Spatial and
Temporal Encoding (GESTE),
86

EPI specific functions, 79
eval_dicom

dicom, 32
eval_knoise

util, 82
export_grappa_coef

parallel_imaging, 54

INDEX 94

extract_ksubset
util, 83

fermi
filtering, 72

fft1d
filfft, 26

fft_mngr_alloc_2dfft
filfft, 26

fft_mngr_alloc_fft
filfft, 27

fft_mngr_init
filfft, 27

fft_mngr_quit
filfft, 27

fft_t
filfft, 27

fftx
filfft, 28

ffty
filfft, 28

fftz
filfft, 29

fil_2dfft
filfft, 29

fil_fft
filfft, 30

fil_fft_shift
filfft, 30

fil_version
util, 83

File I/O, 74
filfft

fft1d, 26
fft_mngr_alloc_2dfft, 26
fft_mngr_alloc_fft, 27
fft_mngr_init, 27
fft_mngr_quit, 27
fft_t, 27
fftx, 28
ffty, 28
fftz, 29
fil_2dfft, 29
fil_fft, 30
fil_fft_shift, 30

filter_t_init

unfold, 16
filter_t_quit

unfold, 17
filter_t_step

unfold, 17
filtering

apodization, 72
apply_ramp, 72
fermi, 72

Filtering Functions, 71
find_annotation

image, 36
find_tag

dicom, 32
fit_line_to_phase

phasealign, 90
Fourier Transform Functions, 25
free1double

solvers, 46
free2double

solvers, 47
free_data_obj

io, 76

ge
apply_epi_phase_ge, 39
apply_vrgf_ge, 39
correct_epi_phase_ge, 40
correct_fcard, 40
read_data_from_Pfile, 40
read_data_ge, 41
read_hdr_ge, 41
read_vrgf_ge, 41

generate_b1_filter
parallel_imaging, 55

geste
geste_calibrate__all_slices, 87
geste_init, 87
geste_interleave_frames, 87
geste_quit, 88
geste_recon__all_slices, 88
pull_readout_data, 88
run_geste, 89

geste_calibrate__all_slices
geste, 87

geste_init

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

INDEX 95

geste, 87
geste_interleave_frames

geste, 87
geste_quit

geste, 88
geste_recon__all_slices

geste, 88
get_dicom_info

dicom, 32
gradwarp

gwarp_apply2, 34
gwarp_calc, 34
gwarp_prep, 35
gwarp_read_parms, 35

GradWarp Functions, 34
grappa

parallel_imaging, 55
grappa_calc_parms

parallel_imaging, 56
grappa_calc_recon_coef

parallel_imaging, 56
grappa_for_cine

parallel_imaging, 57
grappa_recon

parallel_imaging, 58
grappa_recon__all_slices

parallel_imaging, 58
grog_generate_eigd

parallel_imaging, 58
grog_grid_2Ddata

parallel_imaging, 59
gwarp_apply2

gradwarp, 34
gwarp_calc

gradwarp, 34
gwarp_prep

gradwarp, 35
gwarp_read_parms

gradwarp, 35

image
find_annotation, 36
interplin_ima, 37
interpsinc_ima, 37
orientation, 37
rot_and_flip, 38

rot_and_flip_data_obj, 38
Image Manipulation Functions, 36
Image Phase Alignment Functions, 89
imnum_out

util, 83
import_grappa_coef

parallel_imaging, 59
init_data_obj

io, 76
inner_product

matvectk, 73
interplin_ima

image, 37
interpsinc_ima

image, 37
inv_sens_matrix

parallel_imaging, 60
io

copy_data_obj, 75
display_params, 76
dump_out, 76
free_data_obj, 76
init_data_obj, 76
read_nd_data, 76
read_nd_data2, 77
write_nd_data, 78
write_nd_data2, 78

is_dicom
dicom, 33

kstretch
util, 84

Linear System Solvers, 43
lsv

solvers, 47

Matrix-Vector Utility Functions, 73
matrix_transpose

matvectk, 73
matrix_vector_product

matvectk, 73
matrix_vector_product_threaded

matvectk, 74
matvectk

inner_product, 73

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

INDEX 96

matrix_transpose, 73
matrix_vector_product, 73
matrix_vector_product_threaded, 74

ngc_apply_phase_shift
epi, 80

ngc_compute_phase_shift
epi, 81

ngc_mem_init
epi, 81

ngc_mem_quit
epi, 81

nonlin_cphase
cine, 22

orientation
image, 37

Parallel Imaging Algorithms, 49
parallel_imaging

apply_vbc_coefs, 53
compute_root_sum_of_squares, 53
compute_virtual_body_coil, 54
export_grappa_coef, 54
generate_b1_filter, 55
grappa, 55
grappa_calc_parms, 56
grappa_calc_recon_coef, 56
grappa_for_cine, 57
grappa_recon, 58
grappa_recon__all_slices, 58
grog_generate_eigd, 58
grog_grid_2Ddata, 59
import_grappa_coef, 59
inv_sens_matrix, 60
rlsgrappa, 61
self_ref_b1_basic, 61
self_ref_b1_for_cine, 62
self_ref_b1_via_geyser, 63
spacerip_for_cine, 63
sprip3d_conv_pts2y, 64
sprip3d_lsqr_init, 65
sprip3d_lsqr_post, 65
sprip3d_lsqrsolv, 65
sprip_cgsolv, 66
sprip_cgsr_init, 66

sprip_cgsr_post, 67
sprip_cgsr_recon, 67
sprip_lsqr_init, 67
sprip_lsqr_post, 68
sprip_lsqr_recon, 68
sprip_lsqrsolv, 69
vdsense, 70
vdsense_apply, 70
vdsense_prep, 71

parse_vrgf_siemens
siemens, 42

phasealign
align_image_phase, 90
calc_phase_correlation, 90
fit_line_to_phase, 90
unwrap_phase, 91

prep_unfold_dc
unfold, 18

print_list
dicom, 33

pull_readout_data
geste, 88

puzzleout_cineacq
cine, 23

rank_one_est
solvers, 47

read_data_from_measdat
siemens, 42

read_data_from_Pfile
ge, 40

read_data_ge
ge, 41

read_ecg_info
cine, 23

read_hdr_ge
ge, 41

read_nd_data
io, 76

read_nd_data2
io, 77

read_vrgf_ge
ge, 41

retrosp_gating_interp
cine, 24

rlsgrappa

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

INDEX 97

parallel_imaging, 61
rot_and_flip

image, 38
rot_and_flip_data_obj

image, 38
run_geste

geste, 89

select_kcenter
util, 84

self_ref_b1_basic
parallel_imaging, 61

self_ref_b1_for_cine
parallel_imaging, 62

self_ref_b1_via_geyser
parallel_imaging, 63

set_nfproc
unfold, 18

setup_unfold
unfold, 19

siemens
parse_vrgf_siemens, 42
read_data_from_measdat, 42

slice_number
util, 85

solvers
alloc1double, 44
alloc2double, 44
cgsolv, 44
compute_pinv, 45
compute_svd, 45
free1double, 46
free2double, 47
lsv, 47
rank_one_est, 47
svd_backsubstitute, 48
svd_sort, 48

sort_rds_data
cine, 24

spacerip_for_cine
parallel_imaging, 63

sprip3d_conv_pts2y
parallel_imaging, 64

sprip3d_lsqr_init
parallel_imaging, 65

sprip3d_lsqr_post

parallel_imaging, 65
sprip3d_lsqrsolv

parallel_imaging, 65
sprip_cgsolv

parallel_imaging, 66
sprip_cgsr_init

parallel_imaging, 66
sprip_cgsr_post

parallel_imaging, 67
sprip_cgsr_recon

parallel_imaging, 67
sprip_lsqr_init

parallel_imaging, 67
sprip_lsqr_post

parallel_imaging, 68
sprip_lsqr_recon

parallel_imaging, 68
sprip_lsqrsolv

parallel_imaging, 69
svd_backsubstitute

solvers, 48
svd_sort

solvers, 48
synth_frames

unfold, 19
synth_frames_cine

unfold, 20

transfer_dc
unfold, 20

unfold
filter_t_init, 16
filter_t_quit, 17
filter_t_step, 17
prep_unfold_dc, 18
set_nfproc, 18
setup_unfold, 19
synth_frames, 19
synth_frames_cine, 20
transfer_dc, 20
unfold_filter, 21
unfold_recombine, 21

unfold_filter
unfold, 21

unfold_recombine

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

INDEX 98

unfold, 21
unwrap_phase

phasealign, 91
util

calc_samp_dens, 82
eval_knoise, 82
extract_ksubset, 83
fil_version, 83
imnum_out, 83
kstretch, 84
select_kcenter, 84
slice_number, 85
weigh_kykz, 85

Utility Functions, 82

vdsense
parallel_imaging, 70

vdsense_apply
parallel_imaging, 70

vdsense_prep
parallel_imaging, 71

Vendor Specific Functions: GE, 38
Vendor Specific Functions: Siemens, 42

weigh_kykz
util, 85

write_ima
dicom, 33

write_nd_data
io, 78

write_nd_data2
io, 78

Generated on Mon Jan 19 15:54:36 2015 for ncigt-fil by Doxygen

	The NC-IGT Fast Imaging Library
	Quick Start Guide
	Prerequisites
	Setup
	MEX file demos
	Build the MEX files

	Important Details
	Indexing
	Data Ordering
	Anatomy of a MEX file

	C test files
	DICOM editing demo
	.nd to .png Demo
	Demo for simple display, using ImLib

	Matlab Scripts
	Data I/O scripts
	read_dump
	readnd
	savend

	Data visualization scripts
	im
	pltcmplx

	Module Index
	Modules

	Module Documentation
	Artifact Suppression via UNFOLD
	Detailed Description
	Function Documentation

	CINE processing functions
	Function Documentation

	Fourier Transform Functions
	Detailed Description
	Function Documentation

	DICOM File Utilities
	Detailed Description
	Function Documentation

	GradWarp Functions
	Function Documentation

	Image Manipulation Functions
	Detailed Description
	Function Documentation

	Vendor Specific Functions: GE
	Detailed Description
	Function Documentation

	Vendor Specific Functions: Siemens
	Detailed Description
	Function Documentation

	Linear System Solvers
	Detailed Description
	Function Documentation

	Parallel Imaging Algorithms
	Detailed Description
	Function Documentation

	Filtering Functions
	Detailed Description
	Function Documentation

	Matrix-Vector Utility Functions
	Detailed Description
	Function Documentation

	File I/O
	Detailed Description
	Function Documentation

	EPI specific functions
	Detailed Description
	Function Documentation

	Utility Functions
	Detailed Description
	Function Documentation

	EPI Ghost Ellimination via Spatial and Temporal Encoding (GESTE)
	Detailed Description
	Function Documentation

	Image Phase Alignment Functions
	Detailed Description
	Function Documentation

