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Evolutionary game theory studies frequency dependent selection. The fitness of a strategy is not

constant, but depends on the relative frequencies of strategies in the population. This type of

evolutionary dynamics occurs in many settings of ecology, infectious disease dynamics, animal behavior

and social interactions of humans. Traditionally evolutionary game dynamics are studied in well-mixed

populations, where the interaction between any two individuals is equally likely. There have also been

several approaches to study evolutionary games in structured populations. In this paper we present a

simple result that holds for a large variety of population structures. We consider the game between two

strategies, A and B, described by the payoff matrix ðac
b
dÞ. We study a mutation and selection process. For

weak selection strategy A is favored over B if and only if saþ b4c þ sd. This means the effect of

population structure on strategy selection can be described by a single parameter, s. We present the

values of s for various examples including the well-mixed population, games on graphs, games in

phenotype space and games on sets. We give a proof for the existence of such a s, which holds for all

population structures and update rules that have certain (natural) properties. We assume weak

selection, but allow any mutation rate. We discuss the relationship between s and the critical benefit to

cost ratio for the evolution of cooperation. The single parameter, s, allows us to quantify the ability of a

population structure to promote the evolution of cooperation or to choose efficient equilibria in

coordination games.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Game theory was invented by John von Neumann and
Morgenstern (1944) to study strategic and economic decisions
of humans (Fudenberg and Tirole, 1991; Binmore, 1994; Weibull,
1995; Samuelson, 1997; Binmore, 2007). Evolutionary game
theory was introduced by John Maynard Smith in order to explore
the evolution of animal behavior (Maynard Smith and Price, 1973;
Maynard Smith, 1982, Houston and McNamara, 1999; McNamara
et al., 1999; Bshary et al., 2008). In the meanwhile, evolutionary
game theory has been used in many areas of biology including
ecology (May and Leonard, 1975; Doebeli and Knowlton, 1998),
host–parasite interactions (Turner and Chao, 1999; Nowak and
May, 1994), bacterial population dynamics (Kerr et al., 2002),
immunological dynamics (Nowak et al., 1995), the evolution of
human language (Nowak et al., 2002) and the evolution of social
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behavior of humans (Trivers, 1971; Axelrod and Hamilton, 1981;
Boyd and Richerson, 2005; Nowak and Sigmund, 2005). Evolu-
tionary game theory is the necessary tool of analysis whenever
the success of one strategy depends on the frequency of strategies
in the population. Therefore, evolutionary game theory is a
general approach to evolutionary dynamics with constant selec-
tion being a special case (Nowak and Sigmund, 2004).

In evolutionary game theory there is always a population of
players. The interactions of the game lead to payoffs, which are
interpreted as reproductive success. Individuals who receive a
higher payoff leave more offspring. Thereby, successful strategies
outcompete less successful ones. Reproduction can be genetic
or cultural.

The traditional approach to evolutionary game theory is based
on the replicator equation (Taylor and Jonker, 1978; Hofbauer
et al., 1979; Zeeman, 1980; Hofbauer and Sigmund, 1988;
Hofbauer et al., 1998; Hofbauer and Sigmund, 2003; Cressman,
2003), which examines deterministic dynamics in infinitely large,
well-mixed populations. Many of our intuitions about evolution-
ary dynamics come from this approach (Hofbauer and Sigmund,
1988). For example, a stable equilibrium of the replicator equation
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is a Nash equilibrium of the underlying game. Another approach
to evolutionary game theory is given by adaptive dynamics
(Nowak and Sigmund, 1990; Hofbauer and Sigmund, 1990; Metz
et al., 1996; Dieckmann et al., 2000) which also assumes infinitely
large population size.

However, if we want to understand evolutionary game
dynamics in finite-sized populations, we need a stochastic
approach (Riley, 1979; Schaffer, 1988; Fogel et al., 1998; Ficici
and Pollack, 2000; Alos-Ferrer, 2003). A crucial quantity is the
fixation probability of strategies; this is the probability that a
newly introduced mutant, using a different strategy, takes over
the population (Nowak et al., 2004; Taylor et al., 2004; Imhof and
Nowak, 2006; Nowak, 2006a, Traulsen et al., 2006; Lessard and
Ladret, 2007; Bomze and Pawlowitsch, 2008). In this new
approach, the Nash equilibrium condition no longer implies
evolutionary stability.

There has also been much interest in studying evolutionary
games in spatial settings (Nowak and May, 1992, 1993; Ellison,
1993; Herz, 1994; Lindgren and Nordahl, 1994; Ferriere and
Michod, 1996; Killingback and Doebeli, 1996; Nakamaru et al.,
1997, 1998; Nakamaru and Iwasa, 2005, 2006; van Baalen and
Rand, 1998; Yamamura et al., 2004; Helbing and Yu, 2008). Here
most interactions occur among nearest neighbors. The typical
geometry for spatial games are regular lattices (Nowak et al.,
1994; Hauert and Doebeli, 2004; Szabó and T +oke, 1998; Szabó
et al., 2000), but evolutionary game dynamics have also been
studied in continuous space (Hutson and Vickers, 1992, 2002;
Hofbauer, 1999).

Evolutionary graph theory is an extension of spatial games
to more general population structures and social networks
(Lieberman et al., 2005; Ohtsuki et al., 2006; Ohtsuki and Nowak,
2006; Pacheco et al., 2006; Szabó and Fath, 2007; Taylor et al.,
2007a; Santos et al., 2008; Fu et al., 2008). The members of the
population occupy the vertices of a graph. The edges determine
who interacts with whom. Different update rules can lead to very
different outcomes of the evolutionary process, which emphasizes
the general idea that population structure greatly affects evolu-
tionary dynamics. For example, death–birth updating on graphs
allows the evolution of cooperation, if the benefit-to-cost ratio
exceeds the average degree of the graph b=c4k (Ohtsuki et al.,
2006). Birth–death updating on graphs does not favor evolution of
cooperation. A replicator equation with a transformed payoff
matrix can describe deterministic evolutionary dynamics on
regular graphs (Ohtsuki and Nowak, 2006). There is also a
modified condition for what it means to be a Nash equilibrium
for games on graphs (Ohtsuki and Nowak, 2008).

Spatial models have also a long history of investigation in the
study of ecosystems and ecological interactions (Levin and Paine,
1974; Durrett, 1988; Hassell et al., 1991; Durrett and Levin, 1994).
There is also a literature on the dispersal behavior of animals
(Hamilton and May, 1977; Comins et al., 1980; Gandon and
Rousset, 1999). Boerlijst and Hogeweg (1991) studied spatial
models in prebiotic evolution. Evolution in structured populations
can also be studied with the methods of inclusive fitness theory
(Seger, 1981; Grafen, 1985, 2006; Queller, 1985; Taylor, 1992;
Taylor and Frank, 1996; Frank, 1998; Rousset and Billiard, 2000;
Rousset, 2004; Taylor et al., 2000, 2007b).

In this paper, we explore the interaction between two
strategies, A and B, given by the payoff matrix

A B

A

B

a b

c d

� �
:

(1)

We consider a mutation–selection process in a population of
fixed size N. Whenever an individual reproduces, the offspring
adopts the parent’s strategy with probability 1� u and adopts a
random strategy with probability u. We say that strategy A is
selected over strategy B, if it is more abundant in the stationary
distribution of the mutation–selection process. We call this
concept ‘strategy selection’.

In the limit of low mutation (u! 0), the stationary distribu-
tion is non-zero only for populations that are either all-A or all-B.
The system spends only an infinitesimal small fraction of time in
the mixed states. In this case, the question of strategy selection
reduces to the comparison of the fixation probabilities, rA and rB

(Nowak et al., 2004). Here, rA is the probability that a single A

mutant introduced in a population of N � 1 many B players
generates a lineage of offspring that takes over the entire
population. In contrast, the probability that the A lineage becomes
extinct is 1� rA. Vice versa, rB denotes the probability that a
single B mutant introduced in a population of N � 1 many A

players generates a lineage that takes over the entire population.
The fixation probabilities measure global selection over the entire
range of relative abundances. The condition for A to be favored
over B in the limit of low mutation is

rA4rB. (2)

For positive mutation rate (0ouo1), the stationary distribution
includes both homogeneous and mixed states. In this case, the
condition for strategy A to be favored over strategy B is

hxi41=2. (3)

Here x is the frequency of A individuals in the population. The
angular brackets denote the average taken over all states of the
system, weighted by the probability of finding the system in each
state. In the limit of low mutation, (3) is equivalent to (2).

In this paper we focus on structured populations and the limit
of weak selection. We analyze (3) to deduce that the condition for
strategy A to be favored over strategy B is equivalent to

saþ b4c þ sd. (4)

The parameter s depends on the population structure, the update
rule and the mutation rate, but it does not depend on the payoff
values a; b; c; d. Thus, in the limit of weak selection, strategy
selection in structured populations is determined by a linear
inequality. The effect of population structure can be summarized
by a single parameter, s. Therefore, we call inequality (5) the
‘single-parameter condition’.

Note that s ¼ 1 corresponds to the standard condition for risk-
dominance (Harsanyi and Selten, 1988). If s41 then the diagonal
entries of the payoff matrix, a and d, are more important than the
off-diagonal entries, b and c. In this case, the population structure
can favor the evolution of cooperation in the Prisoner’s Dilemma
game, which is defined by c4a4d4b. If s41 then the population
structure can favor the Pareto-efficient strategy over the risk-
dominant strategy in a coordination game. A coordination game is
defined by a4c and bod. Strategy A is Pareto efficient if a4d.
Strategy B is risk-dominant if aþ boc þ d. If so1 then the
population structure can favor the evolution of spite.

The paper is structured as follows. In Section 2 we present
the model, the main result and the necessary assumptions. In
Section 3 we give the proof of the single-parameter condition,
which holds for weak selection and any mutation rate. In Section 4
we show the relationship between s and the critical benefit-to-
cost ratio for the evolution of cooperation. An interesting
consequence is that for the purpose of calculating s it suffices
to study games that have simplified payoff matrices. Several
specific consequences are then discussed. In Section 5 we present
several examples of evolutionary dynamics in structured popula-
tions that lead to a single-parameter condition. These examples
include games in the well-mixed population, games on regular
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and heterogeneous graphs, games on replacement and interaction
graphs, games in phenotype space and games on sets. Section 6 is
a summary of our findings.
2. Model and results

We consider stochastic evolutionary dynamics (with mutation
and selection) in a structured population of finite size, N.
Individuals adopt either strategy A or B. Individuals obtain a
payoff by interacting with other individuals according to the
underlying population structure. For example, the population
structure could imply that interactions occur only between
neighbors on a graph (Ohtsuki et al., 2006), inhabitants of the
same island or individuals that share certain phenotypic proper-
ties (Antal et al., 2009b). Based on these interactions, an average
(or total) payoff is calculated according to the payoff matrix (1).
We assume that the payoff is linear in a; b; c; d, with no constant
terms. For instance, the total payoff of an A individual is ½a�
ðnumber of A-interactantsÞ þ b� ðnumber of B-interactantsÞ�. The
effective payoff of an individual is given by 1þw � Payoff.
Parameter w denotes the intensity of selection. The limit of weak
selection is given by w! 0.

Reproduction is subject to mutation. With probability u the
offspring adopts a random strategy (which is either A or B). With
probability 1� u the offspring adopts the parent’s strategy. For
u ¼ 0 there is no mutation, only selection. For u ¼ 1 there is no
selection, only mutation. If 0ouo1 then there is mutation and
selection.

A state S of the population assigns to each player a strategy
(A or B) and a ‘location’ (in space, phenotype space, etc.). A state
must include all information that can affect the payoffs of players.
For our proof, we assume a finite state space. We study a Markov
process on this state space. We denote by Pij the transition
probability from state Si to state Sj. These transition probabilities
depend on the update rule and on the effective payoffs of
individuals. Since the effective payoff is of the form 1þw �

Payoff and the payoff is linear in a; b; c;d, it follows that the
transition probabilities are functions Pijðwa;wb;wc;wdÞ.

We show the following theorem

Theorem. Consider a population structure and an update rule such

that
(i)
 the transition probabilities are differentiable at w ¼ 0;

(ii)
 the update rule is symmetric for the two strategies and
(iii)
 in the game given by the matrix ð00
1
0Þ, strategy A is not disfavored.
Then, in the limit of weak selection, the condition that strategy A is

favored over strategy B is a one parameter condition:

saþ b4c þ sd, (5)

where s depends on the model and the dynamics (population

structure, update rule, the mutation rates) but not on the entries of

the payoff matrix, a; b; c; d.

Let us now discuss the three natural assumptions.
(i)
 The transition probabilities are differentiable at w ¼ 0.
We require the transition probabilities Pijðwa;wb;wc;wdÞ to
have first-order Taylor expansions at w ¼ 0. Examples of
update rules that satisfy Assumption (i) include: the death–-
birth (DB) and birth–death (BD) updating on graphs (Ohtsuki
et al., 2006), the synchronous updating based on the
Wright–Fisher process (Ewens, 2004; Antal et al., 2009b;
Tarnita et al., 2009) and the pairwise comparison (PC)
process (Traulsen et al., 2008).
(ii)
 The update rule is symmetric for the two strategies.
The update rule differentiates between A and B only based on
payoff. Relabeling the two strategies and correspondingly
swapping the entries of the payoff matrix must yield
symmetric dynamics. This assumption is entirely natural. It
means that the difference between A and B is fully captured
by the payoff matrix, while the population structure and
update rule do not introduce any additional difference
between A and B.
(iii)
 In the game given by the matrix ð00
1
0Þ, strategy A is not

disfavored.
We will show in the proof that the first two assumptions are
sufficient to obtain a single-parameter condition. We need
the third assumption simply to determine the direction of
the inequality in this condition. Thus, if (iii) is satisfied, then
the condition that A is favored over B has the form (5).
Otherwise, it has the form saþ boc þ sd.
3. Proof

In the first part of the proof we will show that for update rules
that satisfy our Assumption (i) in Section 2, the condition for
strategy A to be favored over strategy B is linear in a; b; c; d with no
constant terms. More precisely, it can be written as

k1aþ k2b4k3c þ k4d. (6)

Here k1; k2; k3; k4 are real numbers, which can depend on the
population structure, the update rule, the mutation rate and the
population size, but not on the payoff values a; b; c; d.

In the second part of the proof we will show that for update
rules that also satisfy our symmetry Assumption (ii) in Section 2,
this linearity leads to the existence of a s. Furthermore, using
Assumption (iii) we show that the condition that A is favored over
B becomes

saþ b4c þ sd. (7)

3.1. Linearity

As we already mentioned, we study a Markov process on the
state space and we are concerned with the stationary probabilities
of this process. A more detailed discussion of these stationary
probabilities can be found in Appendix B.

In a state S, let xS denote the frequency of A individuals in the
population. Then the frequency of B individuals is 1� xS. We are
interested in the average frequency of A individuals, the average
being taken over all possible states weighted by the stationary
probability that the system is in those states. Let us denote this
average frequency by hxi. Thus

hxi ¼
X

S

xSpS, (8)

where pS is the stationary probability that the system is in state S.
The condition for strategy A to be favored over strategy B is that
the average frequency of A is greater than 1=2

hxi41
2. (9)

This is equivalent to saying that, on average, A individuals are
more than 50%.

We analyze this condition in the limit of weak selection w! 0.
The frequency xS of A individuals in state S does not depend on the
game; hence, it does not depend on w. However, the probability pS

that the system is in state S does depend on w. For update rules
satisfying Assumption (i), we show in Appendix B that pS is
differentiable as a function of w. Thus, we can write its first-order
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Taylor expansion at w ¼ 0

pS ¼ pð0ÞS þwpð1ÞS þ Oðw2Þ. (10)

The ð0Þ superscript refers to the neutral state w ¼ 0 and pð1ÞS ¼

dpS=dw evaluated at w ¼ 0. The notation Oðw2Þ denotes terms of
order w2 or higher. They are negligible for w! 0.

Hence, we can write the first-order Taylor expansion of the
average frequency of A

hxi ¼
X

S

xSpð0ÞS þw
X

S

xSpð1ÞS þ Oðw2Þ. (11)

Since pð0ÞS is the probability that the neutral process (i.e. when
w ¼ 0) is in state S, the first sum is simply the average number of A

individuals at neutrality. This is 1=2 for update rules that satisfy
Assumption (ii) because in the neutral process, A and B individuals
are only differentiated by labels.

Thus, in the limit of weak selection, the condition (9) that A is
favored over B becomesX

S

xSpð1ÞS 40. (12)

As we already mentioned, the frequency xS of A individuals in
state S does not depend on the game. However, pð1ÞS does depend
on the game. We will show in Appendix B that pð1ÞS is linear in
a; b; c; d with no constant terms. Hence, from (12) we deduce
that our condition for strategy A to be favored over strategy B is
linear in a; b; c; d and is of the form (6).
3.2. Existence of sigma

We have thus shown that for structures satisfying Assumption
(i), the condition for strategy A to be favored over strategy B has
the form (6): k1aþ k2b4k3c þ k4d. For structures which moreover
satisfy our symmetry condition (Assumption (ii)), we obtain the
symmetric relation by simply relabeling the two strategies. Thus,
strategy B is favored over strategy A if and only if

k1dþ k2c4k3bþ k4a. (13)

Since both strategies cannot be favored at the same time, strategy
A must be favored if and only if

k4aþ k3b4k2c þ k1d. (14)

Since both conditions (6) and (14) are if and only if conditions that
A is favored over B, they must be equivalent. Thus, it must be that
(14) is a scalar multiple of (6), so there must exist some l40 such
that k4 ¼ lk1 ¼ l2k4 and k3 ¼ lk2 ¼ l2k3. Hence, we conclude
that l ¼ 1 and that k1 ¼ k4 ¼ k and k2 ¼ k3 ¼ k0. So the condition
that A is favored over B becomes

kaþ k0b4k0c þ kd. (15)

Note that this condition depends only on the parameter
s ¼ k=k0. Thus, in general, the condition that A is favored over B

can be written as a single-parameter condition. However, one
must exercise caution in dividing by k0 because its sign can change
the direction of the inequality. This is where we need Assumption
(iii). Assumption (iii) holds if and only if k0X0 and then we can
rewrite (15) as

saþ b4c þ sd. (16)

If (iii) does not hold, then k0o0 and hence (15) becomes
saþ boc þ sd.

Note that s could also be infinite (if k0 ¼ 0) and then the
condition that A is favored over B reduces to a4d. If s ¼ 0 then the
condition is simply b4c.
4. Evolution of cooperation

In this section we find a relationship between the critical
benefit-to-cost ratio for the evolution of cooperation (Nowak,
2006b) and the parameter s. In a simplified version of the
Prisoner’s Dilemma game a cooperator, C, pays a cost, c, for
another individual to receive a benefit, b. We have b4c40.
Defectors, D, distribute no benefits and pay no costs. We obtain
the payoff matrix

C D

C

D

b� c �c

b 0

 !
:

(17)

For structures for which condition (5) holds, we can apply it for
payoff matrix (17) to obtain

sðb� cÞ � c4b. (18)

For s41 this condition means that cooperators are more
abundant than defectors whenever the benefit-to-cost ratio b=c

is larger than the critical value

b

c

� ��
¼
sþ 1

s� 1
. (19)

Alternatively, s can be expressed by the critical ðb=cÞ� ratio as

s ¼ ðb=cÞ
�
þ 1

ðb=cÞ� � 1
. (20)

Here we have s41. Note that even without the assumption
b4c40, the same s is obtained from (18), only some care is
required to find the correct signs.

Thus, for any population structure and update rule for which
condition (5) holds, if the critical benefit-to-cost ratio is known,
we can immediately obtain s and vice versa. For example, for DB
updating on regular graphs of degree k we know that ðb=cÞ� ¼ k

(Ohtsuki et al., 2006). Using (20), this implies s ¼ ðkþ 1Þ=ðk� 1Þ
which is in agreement with (27).

This demonstrates the practical advantage of relationship (20).
In order to derive s for the general game (1), it suffices to study
the specific game (17) and to derive the critical benefit-cost ratio,
ðb=cÞ�. Then (20) gives us the answer. Thus we have

Corollary. In the limit of weak selection, for all structures for which

strategy dominance is given by a single-parameter condition (5), for

the purpose of studying strategy dominance, it suffices to analyze

one-parameter games (e.g. the simplified Prisoner’s Dilemma).

The practical advantage comes from the fact that it is some-
times easier to study the specific game (17) than to study the
general game (1). Specifically, using (17) often spares the
calculation of probabilities that three randomly chosen players
share the same strategy (for example, coefficient Z in Antal et al.,
2009b).

Wild and Traulsen (2007) argue that the general payoff matrix
(1) allows the study of synergistic effects between players in the
weak selection limit, as opposed to the simplified matrix (17)
where such effects are not present. Here we demonstrated that
these synergistic effects do not matter if we are only interested in
the question whether A is more abundant than B in the stationary
distribution of the mutation–selection process. Of course, our
observation does not suggest that the analysis of general games,
given by (1), can be completely replaced by the analysis of simpler
games, given by (17). Questions concerning which strategies are
Nash equilibria, which are evolutionarily stable or when we have
coexistence or bi-stability can only be answered by studying the
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general matrix. For such analyses see Ohtsuki and Nowak (2006,
2008) or Taylor and Nowak (2007).

Note also that instead of the simplified Prisoner’s Dilemma
payoff matrix, we can also consider other types of simplified
payoff matrices in order to calculate s. Two examples are

1 b

0 0

� �
or

1 0

c 0

� �
. (21)
5. Examples

Let us consider a game between two strategies A and B that is
given by the payoff matrix (1). We study a variety of different
population structures and always observe that for weak selection
the condition for A to be favored over B can be written in the form
saþ b4c þ sd. For each example we give the value of s. The
derivations of these results have been given in papers which we
cite. For the star we present a new calculation. These observations
have led to the conjecture that for weak selection the effect of
population structure on strategy selection can ‘always’ be
summarized by a single parameter, s.

Moreover, for some of the examples, we use the corollary to
find the parameter s for structures where only the Prisoner’s
Dilemma has been studied. Such structures include: the regular
graph of degree k and the different interaction and replacement
graphs when the population size is not much larger than the
degree, as well as the phenotype space.
Phenotyp

Fig. 1. Various population structures for which s values are known. (a) For the well-m

have s ¼ ð3N � 8Þ=N (DB) and s ¼ ðN � 2Þ=N (BD) for low mutation. (c) For DB on the sta

star we have s ¼ ðN3
� 4N2

þ 8N � 8Þ=ðN3
� 2N2

þ 8Þ, for low mutation. (d) For regular g

and large population size. (e) If there are different interaction and replacement graph

population size. The interaction graph, the replacement graph and the overlap graph b

‘games in phenotype space’ we find s ¼ 1þ
ffiffiffi
3
p

(DB or synchronous) for a one dimension

sets’ s is more complicated and is given by (36). All results hold for weak selection.
5.1. The well-mixed population

As first example we consider the frequency dependent Moran
process in a well-mixed population of size N (Nowak et al., 2004;
Taylor et al., 2004; Nowak, 2006a) (Fig. 1a). In the language of
evolutionary graph theory, a well-mixed population corresponds
to a complete graph with identical weights. Each individual
interacts with all other N � 1 individuals equally likely and
obtains an average (or total) payoff. For both DB and BD
updating we find for weak selection and any mutation rate

s ¼ N � 2

N
. (22)

Hence, for any finite well-mixed population we have so1. In
the limit N!1, we obtain s ¼ 1, which yields the standard
condition of risk-dominance, aþ b4c þ d.

For a wide class of update rules—including pairwise compar-
ison (Traulsen et al., 2008)—it can be shown that (22) holds for
any intensity of selection and for any mutation rate (Antal et al.,
2009a). The s given by (22) can also be found in Kandori et al.
(1993), who study a process that is stochastic in the generation of
mutants, but deterministic in following the gradient of selection.
5.2. Graph structured populations

In such models, the players occupy the vertices of a graph,
which is assumed to be fixed. The edges denote links between
individuals in terms of game dynamical interaction and biological
e Space

ixed population we have s ¼ ðN � 2Þ=N for any mutation rate. (b) For the cycle we

r we have s ¼ 1 for any mutation rate and any population size, NX3. For BD on the

raphs of degree k we have s ¼ ðkþ 1Þ=ðk� 1Þ (DB) and s ¼ 1 (BD) for low mutation

s, we have s ¼ ðghþ lÞ=ðgh� lÞ (DB) and s ¼ 1 (BD) for low mutation and large

etween these two are all regular and have degrees, g, h and l, respectively. (f) For

al phenotype space, low mutation rates and large population size. (g) For ‘games on
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reproduction. Individuals play a game only with their neighbors
and an average (or total) payoff is calculated. In this section we
consider death–birth updating and birth–death updating. In DB
updating, at any one time step, a random individual is chosen to
die, and the neighbors compete for the empty spot, proportional
to their effective payoffs. In BD updating, at any one time step, an
individual is chosen to reproduce proportional to effective payoff;
his offspring replaces randomly one of the neighbors (Ohtsuki
et al., 2006).

5.2.1. Cycle

Let us imagine N individuals that are aligned in a one-
dimensional array. Each individual is connected to its two
neighbors, and the ends are joined up (Fig. 1b). The cycle is a
regular graph of degree k ¼ 2. Games on cycles have been studied
by many authors including Ellison (1993), Nakamaru et al. (1997),
Ohtsuki et al. (2006) and Ohtsuki and Nowak (2006). The
following result can be found in Ohtsuki and Nowak (2006) and
holds for weak selection.
Fig. 2. Numerical simulations for DB updating confirm the linear inequality saþ b4c

0pTp2. The red line is the equilibrium condition T ¼ Sþ s. Below this line A is favor

theoretical result for low mutation is s ¼ 1:4. Thus, s depends on the mutation rate. (b

and N ¼ 6 we find s ¼ 0:937 for u ¼ 0:1. The prediction of (29) for low mutation is s ¼ 1

and average degree k ¼ 2 we find s ¼ 1:636 for u ¼ 0:05. For all simulations we calculat

over 2� 106 runs. (For interpretation of the reference to color in this figure legend, th
For DB updating and low mutation (u! 0) we have

s ¼ 3N � 8

N
. (23)

Note that s is an increasing function of the population size, N,
and converges to s ¼ 3 for large N.

We have also performed simulations for DB on a cycle with
non-vanishing mutation (Fig. 2a). We confirm (23) and also find
that s depends on the mutation rate, u.

For BD updating we have

s ¼ N � 2

N
. (24)

Hence, for BD updating on a cycle we obtain the same s-factor
as for the well-mixed population, which corresponds to a
complete graph. The cycle and the complete graph are on the
extreme ends of the spectrum of population structures. Among all
regular graphs, the cycle has the smallest degree and the complete
graph has the largest degree, for a given population size. We
þ sd. We study the payoff matrix a ¼ 1, b ¼ S, c ¼ T and d ¼ 0 for �1pSp1 and

ed. (a) For a cycle with N ¼ 5 and mutation rate, u ¼ 0:2, we find s ¼ 1:271. The

) For a star with N ¼ 5 we find s ¼ 1 for u ¼ 0:1. (c) For a regular graph with k ¼ 3

. Here again s depends on the mutation rate. (d) For this random graph with N ¼ 10

e total payoffs and use as intensity of selection w ¼ 0:005. Each point is an average

e reader is referred to the web version of this article.)
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conjecture that the s-factor given by (24) holds for weak selection
on any regular graph.

We have also performed simulations for BD on a cycle with
non-vanishing mutation (Fig. 3a). They confirm (24).

5.2.2. Star

The star is another graph structure, which can be calculated
exactly. There are N individuals. One individual occupies the
center of the star and the remaining N � 1 individuals populate
the periphery (Fig. 1c). The center is connected to all other
individuals and, therefore, has degree k ¼ N � 1. Each individual
in the periphery is only connected to the center and, therefore, has
degree k ¼ 1. The average degree of the star is given by
k̄ ¼ 2ðN � 1Þ=N. For large population size, N, the star and the
cycle have the same average degree. Yet the population dynamics
are very different. The calculation for the star for both BD and DB
updating is shown in Appendix A.
Fig. 3. Numerical simulations for BD updating confirm the linear inequality saþ b4c

0pTp2. The red line is the equilibrium condition T ¼ Sþ s. Below this line A is favor

theoretical result for low mutation is s ¼ 0:6. Thus, s depends on the mutation rate. (b

mutation is s ¼ 0:686. This shows that s depends on the mutation rate. (c) For a re

prediction for low mutation is s ¼ 0:666. Here again s depends on the mutation rate. (d)

u ¼ 0:05. For all simulations we calculate total payoffs and use as intensity of selection

reference to color in this figure legend, the reader is referred to the web version of thi
For DB updating on a star we find

s ¼ 1. (25)

This result holds for weak selection and for any population size
NX3 and any mutation rate u. Simulations for the star are in
agreement with this result (Fig. 2b).

For BD updating on a star we find

s ¼ N3
� 4N2

þ 8N � 8

N3
� 2N2

þ 8
. (26)

This result holds in the limit of low mutation, u! 0. Note also
that in the limit of N large we have s ¼ 1. Simulations confirm our
result (Fig. 3b).

5.2.3. Regular graphs of degree k

Let us now consider the case where the individuals of a
population of size N occupy the vertices of a regular graph of
þ sd. We study the payoff matrix a ¼ 1, b ¼ S, c ¼ T and d ¼ 0 for �1pSp1 and

ed. (a) For a cycle with N ¼ 5 and mutation rate, u ¼ 0:2, we find s ¼ 0:447. The

) For a star with N ¼ 5 we find s ¼ 0:405 for u ¼ 0:1. The theoretical result for low

gular graph with k ¼ 3 and N ¼ 6 we find s ¼ 0:601 for u ¼ 0:1. The theoretical

For this random graph with N ¼ 10 and average degree k ¼ 2 we find s ¼ 0:559 for

w ¼ 0:005. Each point is an average over 2� 106 runs. (For interpretation of the

s article.)
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degree kX2. Each individual is connected to exactly k other
individuals (Fig. 1d).

For DB updating on this structure, Ohtsuki et al. (2006) obtain
(see Eq. (24) in their online material)

s ¼ kþ 1

k� 1
. (27)

This result holds for weak selection, low mutation and large
population size, Nbk. The parameter s depends on the degree of
the graph and is always larger than one. For large values of k, s
converges to one. The limit of large k agrees with the result for the
complete graph, which corresponds to a well-mixed population.

For BD updating on a regular graph of degree k5N, in the limit
of weak selection and low mutation, Ohtsuki et al. (2006) find

s ¼ 1. (28)

Hence, for any degree k, we have the simple condition of
risk-dominance. Population structure does not seem to affect
strategy selection under BD updating for weak selection and large
population size.

Our proof of the linear inequality is not restricted to
homogeneous graphs. Random graphs (Bollobás, 1995) also satisfy
our assumptions, and therefore we expect the single-parameter
condition to hold. We have performed computer simulations for a
random graph with N ¼ 10 and average degree k ¼ 2. We find a
linear condition with s ¼ 1:636 for DB updating and s ¼ 0:559 for
BD updating (see Figs. 2d, 3d).

For a regular graph of degree k, the calculation of Ohtsuki et al.
(2006) is only applicable if the population size is much larger than
the degree of the graph, Nbk. For general population size N,
however, we can obtain the s parameter using our corollary and
the results of Taylor et al. (2007a) and Lehmann et al. (2007). They
obtained a critical benefit-to-cost ratio of ðb=cÞ� ¼ ðN � 2Þ=
ðN=k� 2Þ. Using relationship (20), we obtain

s ¼ ðkþ 1ÞN � 4k

ðk� 1ÞN
. (29)

As a consistency check, taking N!1 in (29) leads to (27).
Moreover, setting k ¼ 2 in (29) leads to (23), and setting k ¼ N � 1
in (29) agrees with (22), as expected.

Computer simulations for a regular graph with k ¼ 3 and
N ¼ 6, for mutation rate u ¼ 0:1 suggest that s ¼ 0:937. The
corresponding prediction of (29) for low mutation is s ¼ 1. Thus
we conclude that s depends on the mutation rate u (Fig. 2c).

For the BD updating on a regular graph with general
population size N, we can similarly obtain the relevant s from
the result of Taylor et al. (2007a). For the Prisoner’s Dilemma they
find a critical benefit-to-cost ratio of ðb=cÞ� ¼ �1=ðN � 1Þ. Hence,
using relationship (20) we obtain

s ¼ N � 2

N
. (30)

Note that the results in Taylor et al. (2007a) hold for any
homogeneous graph that satisfies certain symmetry conditions
(‘bi-transitivity’). Hence, for BD updating on a wide class of
graphs, the condition for strategy dominance is the same as the
risk-dominance condition in a well-mixed population.

Computer simulations for a regular graph with k ¼ 3 and
N ¼ 6, for mutation rate u ¼ 0:1 suggest that s ¼ 0:601. The
corresponding prediction of (29) for low mutation is s ¼ 0:666.
Thus we conclude that s depends on the mutation rate u (Fig. 3c).

5.2.4. Different interaction and replacement graphs

Individuals could have different neighborhoods for the game
dynamical interaction and for the evolutionary updating. In this
case, we place the individuals of the population on the edges of
two different graphs (Ohtsuki et al., 2007). The interaction graph
determines who meets whom for playing the game. The
replacement graph determines who learns from whom (or who
competes with whom) for updating of strategies. The vertices of
the two graphs are identical; the edges can be different (Fig. 1e).

Suppose both graphs are regular. The interaction graph has
degree h. The replacement graph has degree g. The two graphs
define an overlap graph, which contains all those edges that the
interaction and replacement graph have in common. Let us
assume that this overlap graph is regular and has degree l. We
always have lpminfh; gg. The following results hold for weak
selection and large population size (Ohtsuki and Nowak, 2007):

For DB updating we find

s ¼ ghþ l

gh� l
. (31)

For BD updating we find

s ¼ 1. (32)

Again BD updating does not lead to an outcome that differs
from well-mixed populations.

For different replacement and interaction graphs with general
population size, N, we can obtain s via the critical benefit-to-cost
ratio in the Prisoner’s Dilemma game (17). Using the result of
Taylor et al. (2007b), we obtain ðb=cÞ� ¼ ðN � 2Þ=ðNl=gh� 2Þ:
Hence, we have

s ¼ ðghþ lÞN � 4gh

ðgh� lÞN
. (33)

As a consistency check, g ¼ h ¼ l ¼ k reproduces (29).

5.3. Games in phenotype space

Antal et al. (2009b) proposed a model for the evolution of
cooperation based on phenotypic similarity. In addition to the
usual strategies A and B, each player also has a phenotype. The
phenotype is given by an integer or, in other words, each player
is positioned in a one-dimensional discrete phenotype space
(Fig. 1f). Individuals interact only with those who share the same
phenotype. The population size is constant and given by N.
Evolutionary dynamics can be calculated for DB updating or
synchronous updating (in a Wright–Fisher type process). There is
an independent mutation probability for the strategy of players, u,
and for the phenotype of players, v. When an individual
reproduces, its offspring has the same phenotype with probability
1� 2v and mutates to either one of the two neighboring
phenotypes with equal probability v. During the dynamics, the
whole population stays in a finite cluster, and wanders together in
the infinite phenotype space (Moran, 1975; Kingman, 1976).

The resulting expression for s is derived using the corollary. It is
complicated and depends on all parameters, including the two
mutation rates, u and v. The expression simplifies for large population
sizes, where the main parameters are the scaled mutation rates
m ¼ Nu, n ¼ Nv for BD updating (or m ¼ 2Nu, n ¼ 2Nv for synchro-
nous updating). It turns out that s is a monotone decreasing function
of m, and a monotone increasing function of n. Hence cooperation is
favored (larger s) for smaller strategy mutation rate and larger
phenotypic mutation rate. In the optimal case for cooperation, m! 0,
sigma becomes only a function of the phenotypic mutation rate

s ¼ 1þ 4n
2þ 4n 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 12n
3þ 4n

r !
. (34)

The largest possible value of sigma is obtained for very large
phenotypic mutation rate n!1, where

s ¼ 1þ
ffiffiffi
3
p

. (35)
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This is the largest possible sigma for games in a one-dimensional
phenotype space.

Note that this example has seemingly an infinite state space,
which is not something we address in our proof, but a subtle trick
turns the state space into a finite one. A detailed description can
be found in Antal et al. (2009b).

5.4. Games on sets

Tarnita et al. (2009) propose a model based on set member-
ships (Fig. 1g). They consider a population of N individuals
distributed over M sets. To obtain analytical results, we also
assume that each individual belongs to exactly K sets, where
KpM. If two individuals belong to the same set, they interact; if
they have more than one set in common, they interact several
times. An interaction is an evolutionary game given by (1).

The system evolves according to synchronous updating
(Wright–Fisher process). There are discrete, non-overlapping
generations. All individuals update at the same time. The
population size is constant. Individuals reproduce proportional
to their effective payoffs. An offspring inherits the sets of the
parent with probability 1� v or adopts a random configuration
(including that of the parent) with probability v. Any particular
configuration of set memberships is chosen with probability v=ðMK Þ.
Similarly, the offspring inherits the strategy of the parent
with probability 1� u; with probability u, he picks a random
strategy. Thus, we have a strategy mutation rate, u, and a set
mutation rate, v.

The resulting expression for s is complicated and depends on
all parameters, including the two mutation rates. The expression
simplifies for large population size, where the main parameters
are the two effective mutation rates m ¼ 2Nu and n ¼ 2Nv as well
as M and K . We find

s ¼ 1þ nþ m
3þ nþ m �

Kðn2 þ 2nþ nmÞ þMð3þ 2nþ mÞ
Kðn2 þ 2nþ nmÞ þMð1þ mÞ

. (36)

Note that sigma is a one humped function of the set mutation
rate n. There is an optimum value of n, which maximizes sigma.

For low effective strategy mutation rate (m! 0) and effective
set mutation rate nb1 we obtain the simplified expression of s as

s ¼ 1þ
2

n
M

K
. (37)

Note that for large values of n, sigma decreases with n and
increases with M=K.

For low effective strategy mutation rate and low effective set
mutation rate n! 0, we obtained the following simplified
expression for s

s ¼ 1þ n4

3
1�

K

M

� �
. (38)

Note that, on the other hand, for low values of n, s increases
with n. Hence, there will be an optimum set mutation rate.
6. Conclusion

We have studied evolutionary game dynamics in structured
populations. We have investigated the interaction between two
strategies, A and B, given by the payoff matrix

A B

A

B

a b

c d

� �
:

(39)

We have shown that the condition for A to be more abundant than
B in the stationary state of the mutation–selection process can be
written as a simple linear inequality

saþ b4c þ sd. (40)

This condition holds for all population structures that fulfill
three natural assumptions, for any mutation rate, but for weak
selection. The parameter s captures the effect of population
structure on ‘strategy selection’. We say that ‘strategy A is selected
over strategy B’ if it is more abundant in the stationary
distribution of the mutation–selection process. It is important to
note that s does not capture all aspects of evolutionary dynamics
in structured populations, but only those that determine strategy
selection.

The single parameter, s, quantifies the degree to which
individuals using the same strategy are more likely (s41) or
less likely (so1) to interact than individuals using different
strategies. Therefore, s describes the degree of positive or
negative assortment among players who use the same strategy
(for the purpose of analyzing strategy selection). Note that
our theory does not imply that s must be positive; negative
values of s are possible in principle, although for all of the
examples presented in this paper we have s40. The value of s can
depend on the population structure, the update rule, the
population size, the mutation rate, but it does not depend on
the entries of the payoff matrix. For each particular problem
the specific value of s must be calculated. Here we have
shown that there always exists a simple linear inequality with a
single parameter, s, given that some very natural assumptions
hold.
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Appendix A. Calculations for the star

A.1. DB updating

We consider a star structured population of size N. A hub is the
node lying in the center that is connected to the other N � 1
nodes, each of which is called a leaf. Each leaf is connected only to
the hub.

We consider the two strategies, A and B. A state of the
population is fully described by the number of A-players in the
hub and the number of A-players in the leaves. Thus, for the star
with N nodes we have 2N states which we will denote by ð0; iÞ and
ð1; iÞ, where i ¼ 0; . . . ;N � 1 is the number of A players on the
leaves. ð0; iÞ means that there is a B in the hub; ð1; iÞ means that
there is an A in the hub.

DB updating on a star satisfies our Assumptions (i) and (ii). It
can be shown (as we do in general in Appendix B) that for the star,
pð1ÞS is linear in a; b; c; d. Thus, we know that a single-parameter
condition must be satisfied for the star. However, it is hard
to calculate directly what pð1ÞS is for all states S. We use the
symmetry of the star to deduce the s for any mutation and weak
selection.
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Then, for DB updating we can write the following transition
probabilities:

Pðð0; iÞ ! ð0; i� 1ÞÞ ¼
i

N
;

Pðð0; iÞ ! ð0; iþ 1ÞÞ ¼ u
N � i� 1

N
;

Pðð0; iÞ ! ð1; iÞÞ ¼
u

N
þ ð1� uÞ

i

NðN � 1Þ
1þw

N � i� 1

N � 1
ðb� dÞ

� �
;

Pðð0; iÞ ! ð0; iÞÞ ¼ ð1� uÞ
N � i� 1

N
1þ

1

N � 1
1þw

i

N � 1
ðd� bÞ

� �� �

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(41)

and

Pðð1; iÞ ! ð1; i� 1ÞÞ ¼ u
i

N
;

Pðð1; iÞ ! ð1; iþ 1ÞÞ ¼
N � i� 1

N
;

Pðð1; iÞ ! ð0; iÞÞ ¼
u

N
þ ð1� uÞ

N � i� 1

NðN � 1Þ
1þw

i

N � 1
ðc � aÞ

� �
;

Pðð1; iÞ ! ð1; iÞÞ ¼ ð1� uÞ
i

N
1þ

1

N � 1
1þw

N � i� 1

N � 1
ða� cÞ

� �� �
;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(42)

So all these transition probabilities do not depend on a; b; c; d

independently, but in fact on b� d and a� c. Thus, pS, the
probabilities of finding the system in each state, also depend only
on a� c and b� d, and not on a; b; c; d independently.

Hence, we conclude that our expression (12) which gives the
sigma condition depends on a� c and b� d linearly. Thus, it must
be of the form:

ða� cÞgðN;uÞ þ ðb� dÞhðN;uÞ40, (43)

where g and h are functions of the parameters N and u.
However, this has to be precisely the sigma relation for the star

(since it is derived from (12)), and hence must be identical to
saþ b4c þ sd (and here we know that s40). This implies that
the coefficients of a and �d must be equal (and, respectively, those
of b and �c). Hence we conclude that gðN;uÞ ¼ hðN;uÞ and hence
s ¼ 1, for any population size N and any mutation rate u.

A.2. BD updating

Let xi;j be the probability that A fixates in the population given
initial state is ði; jÞ. Also, let p0j; q

0
j; r
0
j and s0j be the transition

probabilities as in the diagram below.

We normalize these probabilities as follows:

pj �
p0j

p0j þ q0j
; qj �

q0j
p0j þ q0j

; rj �
r0j

r0j þ s0j
; sj �

s0j
r0j þ s0j

. (44)
Now we have the following diagram. We have pj þ qj ¼ 1 and
rj þ sj ¼ 1 there

Direct calculation shows

x0;1 ¼ q1

XN�2

j¼1

qj

Yj�1

i¼1

pi

ri

 !
þ

YN�2

i¼1

pi

ri

 !2
4

3
5,

,

x1;0 ¼ r0

XN�2

j¼1

qj

Yj�1

i¼1

pi

ri

 !
þ

YN�2

i¼1

pi

ri

 !2
4

3
5,

. (45)

For BD updating, we obtain

x0;1 ¼
N � 1

N2
� 2N þ 2

þ OðwÞ,

x1;0 ¼
1

N2
� 2N þ 2

þ OðwÞ,

rA �
ðN � 1Þx0;1 þ x1;0

N
¼

1

N
þwZðl1aþ l2b� l3c � l4dÞ þ Oðw2Þ,

(46)

where

Z ¼
ðN � 1Þ2

6N2
ðN2
� 2N þ 2Þ

,

l1 ¼ N3
� 3N2

þ 5N � 6; l2 ¼ 2N3
� 6N2

þ 7N þ 6,

l3 ¼ N3
� 7N þ 18; l4 ¼ 2N3

� 9N2
þ 19N � 18. (47)

The result suggests that a leaf is ðN � 1Þ times more advanta-
geous than the hub.

As before we obtain the s-factor as

s ¼ l1 þ l4

l2 þ l3
¼

N3
� 4N2

þ 8N � 8

N3
� 2N2

þ 8
. (48)

Appendix B. Continuity and linearity for pS

In this appendix we will show that the probability pS that the
system is in state S is continuous at w ¼ 0, differentiable and
moreover that pð1ÞS is linear in a; b; c; d. We show this for processes
satisfying our assumptions. This part of the proof works not only
for constant death or constant birth updates, but for any update
rules that do not introduce any functions that do not have first-
order Taylor expansions at w ¼ 0.

Note that given the effective payoff function 1þw � payoff, we
introduce w together with a;b; c and d. Thus, our transition
probabilities from state Si to state Sj will be functions
Pijðwa;wb;wc;wdÞ. So, unless we differentiate with respect to w

or evaluate at w ¼ const, whenever we have a degree k term in w,
it must be accompanied by a degree k term in a; b; c or d and vice
versa. Moreover, w cannot be accompanied by a constant term, i.e.
a term that does not contain a;b; c or d.

The probability pS that the system is in state S also depends on
w. For our structures and update rules we will now show that pS is
continuous and differentiable at w ¼ 0. In order to find pS,
we need the transition probabilities Pij to go from state Sj to state
Si. Then the vector of probabilities pðSÞ is an eigenvector
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corresponding to eigenvalue 1 of the stochastic matrix P. The
matrix P is primitive, i.e. there exists some integer k such that
Pk40. This is because we study a selection–mutation process and
hence our system has no absorbing subset of states.

Since the matrix P is stochastic and primitive, the Perron–
Frobenius theorem ensures that 1 is its largest eigenvalue, that it
is a simple eigenvalue and that to it, there corresponds an
eigenvector with positive entries summing up to 1. This is
precisely our vector of probabilities.

To find this eigenvector we perform Gaussian elimination (aka
row echelon reduction) on the system Pv ¼ v. Since 1 is a simple
eigenvalue for P, the system we need to solve has only one degree
of freedom; thus we can express the eigenvector in terms of the
one free variable, which without loss of generality can be vn:

v1 ¼ �vnh1; . . . vi ¼ �vnhi; . . . vn�1 ¼ �vnhn�1. (49)

The eigenvector that we are interested in is the vector with non-
zero entries which sum up to 1. For this vector we have

1 ¼ vnð�h1 � � � � � hn�1 þ 1Þ. (50)

For our structures and update rules, the transition probabilities
have Taylor expansions around w ¼ 0 and thus can be written as
polynomials in w. As before, since any w is accompanied by a
linear term in a; b; c; d, the coefficients of these polynomials have
the same degree in a;b; c; d as the accompanying w. Because of the
elementary nature of the row operations performed, the elements
of the reduced matrix will be fractions of polynomials (i.e. rational
functions of w). Thus, hi above are all rational functions of w.
Therefore, from (50) we conclude that vn must also be a rational
function of w. This implies that in our vector of probabilities, all
the entries are rational functions. Thus pS is a fraction of
polynomials in w which we write in irreducible form. The only
way that this is not continuous at w ¼ 0 is if the denominator is
zero at w ¼ 0. But in that case, limw!0pS ¼ 1 which is impossible
since pS is a probability. Therefore, pS is continuous at w ¼ 0.

Moreover, we can write

pS ¼
b0S þ b1SwþOðw2Þ

c0S þ c1Swþ Oðw2Þ
. (51)

We have obtained this form for pS by performing the following
operations: Taylor expansions of the transition probabilities and
elementary row operations on these Taylor expansions. Hence,
any w that was introduced from the beginning was accompanied
by linear terms in a; b; c; d and no constants, and due to the
elementary nature of the above operations, nothing changed. So
b0S and c0S contain no a; b; c; d terms whereas b1S and c1S contain
only linear a; b; c; d and no degree zero terms. Differentiating pS

once we obtain

pð1ÞS ðwÞ ¼
b1Sc0S � b0Sc1S þ OðwÞ

c2
0S þ OðwÞ

. (52)

We want to show the linearity of pð1ÞS which is pð1ÞS ð0Þ. Thus, we
have

pð1ÞS ¼
b1Sc0S � b0Sc1S

c2
0S

. (53)

Since b0S; c0S contain no a; b; c; d and b1S; c1S are linear in a;b; c; d

for all S and have no free constant terms, we conclude that pð1ÞS is
linear in a; b; c; d and has no free constant term.
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