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General Article

Replication studies provide new data. These can be used 
to answer at least three different questions:

Question 1: When we combine data from the original 
and replication studies, what is our best guess as to 
the magnitude of the effect of interest?

Question 2: Is the effect of interest in the replication 
study detectably different in magnitude from what the 
original study found?

Question 3: Does the replication study suggest that the 
effect of interest is undetectably different from zero?

This article focuses on Question 3 for two main reasons: 
First, we already have widely accepted meta-analytic 
tools to answer Questions 1 and 2, and second, it is 
Question 3 that quite often motivates replication attempts 
in the first place.

Assessing replicability, rather than increasing preci-
sion, is what places replications at the core of the scien-
tific method (Fisher, 1926; Popper, 1935/2005).1 Assessing 
the “overall rate of reproducibility [in psychology]” is 
among the key motivators of the large-scale Reproducibility 
Project (Open Science Collaboration, 2012), and the 
desire to identify “findings that are robust, replicable, and 
generalizable” (Association for Psychological Science, 

2014) is one of the principles behind the recent Registered 
Replication Results initiative in the journal Perspectives on 
Psychological Science.

Only once we are past asking whether a phenomenon 
exists at all and we come to accept it as qualitatively cor-
rect may we become concerned with estimating its mag-
nitude more precisely. Before lines of inquiry arrive at the 
privileged position of having identified a phenomenon 
that is generally accepted as qualitatively correct, 
researchers require tools to help them distinguish 
between those that are and are not likely to get there.

If an original study found that, under prescribed con-
ditions, people can levitate 9 in. on average, but an 
attempted replication found 0 in. of levitation, few 
researchers would be interested in the approximately  
4.5-in. meta-analytic average, or in whether the new esti-
mate is significantly different from 9 in.; most would want 
to know, instead, if the replication convincingly contra-
dicts the qualitative conclusions of the original study that 
levitation is a detectable phenomenon. Concluding that 
levitation does not happen requires accepting the 
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hypothesis of no effect. This is not something we can do 
when we engage in traditional significance testing using 
zero as the null hypothesis; failing to reject zero is not the 
same as accepting zero.

An old solution to this problem consists of testing the 
null hypothesis that the effect is “small,” rather than zero, 
and concluding that it is (basically) zero if we obtain a 
result that is statistically significantly smaller than that 
small effect (see, e.g., Cohen, 1988, pp. 16–17; Greenwald, 
1975, pp. 16–19; Hodges & Lehmann, 1954; Kraemer, 
1983; Rindskopf, 1997; Serlin & Lapsley, 1985, 1993). 
There are at least two problems with this old solution. 
First, it requires determining an effect size that is small 
enough for it to no longer support the theory. 
Psychological theories are almost exclusively qualitative 
rather than quantitative—predicting the sign rather than 
the magnitude of effects—and hence are not well 
equipped to help us identify when an effect is too small 
to be of theoretical interest. One way to think of this 
problem is that because every confidence interval, no 
matter how tight, includes nonzero values, confidence 
intervals obtained in all studies end up including values 
consistent with theoretically interesting effects, whether 
the studies examine real or nonreal effects.2

The second problem with testing the null hypothesis 
of a small effect is that for such a test to be properly pow-
ered, it requires a sample size typically not feasible for 
psychology experiments. For example, to have 80% 
power to conclude that |d| is less than 0.1 when the true 
d is 0 requires about 3,000 observations. These two prob-
lems may explain why this 60-year-old idea of testing 
small effects has not been implemented.

This article introduces a new approach to “accepting 
zero” that bypasses both problems: It does not require 
determining an effect size that is too small to be theoreti-
cally interesting, nor does it require collecting implausi-
bly large samples of data. In particular, instead of asking 
if the effect obtained in the replication study is close 
enough to zero for it to lack theoretical value, we ask if 
it is close enough to zero that the original study would 
have been unable to meaningfully study an effect that 
small.

Imagine an astronomer claiming to have found a new 
planet with a telescope. Another astronomer tries to rep-
licate the discovery using a larger telescope and finds 
nothing. Although this does not prove that the planet 
does not exist, it does nevertheless contradict the original 
findings, because planets that are observable with the 
smaller telescope should also be observable with the 
larger one.

It is generally very difficult to prove that something 
does not exist; it is considerably easier to show that a 
tool is inadequate for studying that something. With a 
small-telescopes approach, instead of arriving at the 

conclusion that a theoretically interesting effect does not 
seem to exist, we arrive at the conclusion that the original 
evidence suggesting a theoretically interesting effect 
exists does not seem to be adequate.

An attractive feature of the small-telescopes approach 
is that it combines traditional null-hypothesis significance 
testing with considerations of effect size, alleviating 
important limitations of the former (see, e.g., Cohen, 
1994; Cumming, 2014). For instance, when we take into 
account detectability, not all nonsignificant replication 
findings are created equal. Some arise from effect-size 
estimates that are small enough and precise enough to be 
at odds with the claim that an effect is detectable, whereas 
some do not.

In what follows, I first use results from replications of 
well-known studies to demonstrate the problems with 
the two standard approaches for interpreting replication 
results—that is, with asking whether the effect obtained 
in the replication study is (a) significantly different from 
zero or (b) significantly different from the original effect-
size estimate. I then introduce the new detectability stan-
dard and show how our interpretation of these replication 
results changes when we use this standard.

Problems With Asking Only Whether 
the Effect Obtained in the Replication 
Is Statistically Significant

Despite the notable shortcomings of this approach (see, 
e.g., Asendorpf et  al., 2013; Cumming, 2008; Valentine 
et  al., 2011), effects obtained in replication studies are 
currently evaluated almost exclusively on the basis of 
whether or not they are significantly different from zero. 
As of early 2013, for example, this approach was used by 
9 of the 10 “most-seen” replication studies in the 
PsychFileDrawer Web site, and by all 10 of the most cited 
psychology articles with “Failure to Replicate” in their 
title.3

Nonsignificant results are indeed expected (with 95% 
chance) when the effect of interest does not exist, but 
they are also expected when the effect does exist and its 
estimate is imprecise. For this reason, we seldom inter-
pret p > .05 in an original study as suggesting that an 
effect does not exist.

Evaluating replications by asking whether the effect 
obtained is statistically significant can easily lead to infer-
ences opposite to what the evidence warrants. First, 
underpowered replication attempts of (possibly) true 
findings predictably reduce our confidence in those find-
ings. For example, in Study 1 by Zhong and Liljenquist 
(2006), subjects who were asked to recall an unethical 
deed generated more cleanliness-related words (e.g., 
completing “S–P” as “SOAP”) than those who were asked 
to recall an ethical deed. This original study, with 
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60  subjects, obtained a difference across conditions of 
d̂   = 0.53 (i.e., the means differed by 0.53 SD); if that 
were the true effect size, a replication would need about 
110 total subjects to have 80% power. Gámez, Díaz, and 
Marrero (2011) attempted to replicate this finding with 47 
subjects; for the original effect size, this experiment had 
only 44% power. Even if Zhong and Liljenquist (2006) 
were exactly right not only about the existence of the 
effect but also about its size, our confidence in their find-
ing would typically drop if we evaluated such an under-
powered replication by asking only if the obtained effect 
was significantly different from zero.

Second, if a replication obtains an estimated effect size 
with a magnitude similar to that of the original study’s, 
but the effect is sufficiently imprecisely estimated to be 
nonsignificant, the replication would—despite being 
entirely consistent with the original—reduce our confi-
dence in the effect. Consider, for example, the tendency 
of people to ask for more money to sell something than 
they are willing to pay for it (Knetsch & Sinden, 1984). 
The most cited demonstration of this endowment effect 
for valuations indicated that median selling prices are 
about 2.5 times higher than median buying prices 
(Kahneman, Knetsch, & Thaler, 1990). The most cited 
“failure” to obtain the endowment effect, the study by 
Coursey, Hovis, and Schulze (1987), in turn, indicated 
that median selling prices are about 2.6 times higher than 
median buying prices.4

Third, when a large-sample study “successfully repli-
cates” a small-sample one (i.e., it also obtains an effect 
at p < .05), effect-size differences may be colossal 
enough that treating the effects in the original and rep-
lication studies as consistent with one another can be 
untenable. For example, in Schwarz and Clore’s (1983) 
classic study (Study 2), a research assistant called col-
lege students in Urbana-Champaign, Illinois, to ask 
about their life satisfaction, which was found to be 
higher on sunny than on rainy days. In a replication 
study, Feddersen, Metcalfe, and Wooden (2012) ana-
lyzed archival data from an Australian survey that 
included life-satisfaction questions (N = 96,472) to 
assess the impact of the weather on the day people 
were called. They wrote, “despite the difference in mag-
nitude, we do confirm Schwarz and Clore’s (1983) find-
ing that cloudiness matters” (p. 6). However, the 
difference in magnitude that they refer to is quite sub-
stantial. Schwarz and Clore’s study, with 14 respondents 
per cell, obtained an effect more than 100 times larger 
than the effect Feddersen et  al. obtained (for calcula-
tions, see Supplement 2 in the Supplemental Material 
available online). For a study with a sample as small as 
Schwarz and Clore’s, an effect as small as that docu-
mented by Feddersen et al. is indistinguishable from 0.

Problems With Comparing Effect Sizes

A natural alternative to asking if the effect in a replication 
study is significantly different from zero is to ask if it is 
significantly different from the original estimate. This 
approach has several problems. First, it answers whether 
the effect of interest is smaller than previously docu-
mented (Question 2 in the introduction) rather than 
whether a detectable effect exists (Question 3). Imagine 
again that study documenting 9 in. of levitation. It is 
interesting and possibly important to assess whether a 
replication in which only 7 in. of levitation was observed 
obtained an estimate that is significantly different from 
9 in., but this is distinct from assessing if levitation is a 
detectable phenomenon.

A second problem with comparing point estimates is 
more pragmatic: This standard is simply not very good at 
identifying false-positive findings. False-positive results 
tend to be barely significant (e.g., p > .025 rather than p < 
.025) and hence have confidence intervals that nearly 
touch zero (Simonsohn, Nelson, & Simmons, 2014b). The 
wider the confidence interval around an estimate is, the 
less likely another estimate is to be statistically signifi-
cantly different from it. Indeed, if the original finding is a 
false positive, a replication with the same sample size has 
less than a 34% chance of obtaining a statistically signifi-
cantly different estimate (see Supplement 3). The intu-
ition behind this low probability of identifying false 
positives is that the replication needs to obtain a precise 
and opposite-sign point estimate to differ significantly 
from the false-positive original, but this does not happen 
very often if the true effect is zero. It follows that most 
replications of most false-positive findings will obtain 
results that are not significantly closer to zero.

One could fix this problem by treating the original 
estimate as a point null (ignoring its confidence interval). 
However, this approach further removes us from the 
question of interest. We act as if the original estimate, 
which usually contains considerable noise, is a magni-
tude of intrinsic interest. In addition, because of publica-
tion bias, most true effects are overestimated in the 
published literature (Hedges, 1984; Ioannidis, 2008; Lane 
& Dunlap, 1978), so most sufficiently powered replica-
tion studies of true effects will obtain statistically signifi-
cantly smaller estimates than the originals.

Detectability: A New Approach to 
Accepting Zero

The most widely used metric for detectability is statistical 
power: the probability that a study will obtain a statisti-
cally significant effect given a particular combination of 
effect size and sample size. In Simonsohn et al. (2014b), 
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we considered studies powered below 33%, those in 
which the odds are at least 2:1 against obtaining a statisti-
cally significant effect, as being severely underpowered. 
For expository purposes, I use that same reference point 
here and define a small effect as one that would give 33% 
power to the original study; I refer to this effect size as 
d33%. A replication that obtains an effect size that is statis-
tically significantly smaller than d33% is inconsistent with 
the notion that the studied effect is large enough to have 
been detectable with the original sample size.5

The approach works as follows. Consider an original 
study with a two-cell between-subjects design and 20 
observations per cell. We first ask: What effect size would 
give this study 33% power? The answer is, an effect size 
of 0.5, so d33% = 0.5. We then use the estimate from the 
replication, d̂ , to test the null hypothesis that d = 0.5 
against the one-sided alternative that d < 0.5. If we reject 
the null hypothesis, we conclude that the original tele-
scope was too small.

Although d = 0.5 is generally considered a moderate, 
rather than small, effect size (Cohen, 1988) and may be 
large from a theoretical perspective for most domains, an 
effect of this size is not easily detectable with samples of 
20 per cell, and an effect of d < 0.5 is even less 

detectable. So we may very well care about an effect with 
d = 0.5, but the point here is that the original study could 
not have meaningfully examined such an effect.

We can apply the detectability approach without rely-
ing on d33% in particular or hypothesis testing more gen-
erally. Instead of testing whether the effect size obtained 
in the replication is significantly smaller than d33%, we can 
express the confidence interval for that effect size in 
terms of the statistical power it confers to the original 
study. For instance, imagine an original study with 20 
observations per cell. If a replication study obtains a 
point estimate d̂ = 0.1 with confidence interval [−0.1, 0.3], 
the point estimate implies that the original study was 
powered to a meager 6.1%, and the confidence interval 
for its power goes up only to 15%.

How Things Change When We 
Consider Detectability

It seems likely that many replications that have been con-
sidered failures in the past, because they did not reject 
the null hypothesis of a zero effect, involved uninforma-
tively imprecise confidence intervals for the underlying 
effect sizes. For example, Figure 1 shows that the 
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Fig. 1. Results from Zhong and Liljenquist’s (2006) Study 1 and two replication studies (Gámez, Díaz, & Marrero, 2011; 
Siev, 2012). The markers indicate effect-size estimates, and the vertical bars their confidence intervals. The dashed line 
indicates the effect size (d33% = 0.401) that would give the original study, with a sample size of 30 per cell, 33% power. 
See Supplement 1 in the Supplemental Material for the calculations behind this figure.
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confidence interval in the replication of Zhong and 
Liljenquist’s (2006) Study 1 by Gámez et  al. (2011) 
included not only 0 but also d33%. The one-sided test for 
the effect being smaller than d33% is not rejected, p = .14. 
The 90% confidence interval for d in this replication had 
0.562 as its upper end; an effect this big confers the origi-
nal study 57% power. (See Supplement 1 for calcula-
tions.) The “failed” replication, in other words, is 
consistent with an effect size that would have been 
detectably different from zero with the original sample.

Figure 1 contrasts this uninformatively imprecise repli-
cation result with the small and precisely estimated effect 
size obtained by Siev (2012). Its confidence interval 
included 0 but not d33% (rejecting the null hypothesis that 
the true effect is d33% with p < .0001). The biggest effect 
size within the 90% confidence interval, 0.204, confers 
the original study just 9.9% power. (See Supplement 1 for 
calculations.)

An interesting case is when a replication d̂  is signifi-
cantly different from 0 in the same direction as in the 
original study, but also significantly smaller than d33%. The 
sign of the effect has been replicated, but the notion that 
the original study meaningfully informs our understand-
ing of the phenomenon of interest is inconsistent with the 
new data.

For example, Figure 2 shows that although Feddersen 
et  al. (2012) obtained a statistically significant effect of 
sunshine on reported life satisfaction (though only after 
controlling for, among other things, respondent fixed 
effects), the effect was so small that the hypothesis that 
an effect was remotely detectable in the original study 
(Schwarz & Clore, 1983), with 14 respondents per cell, is 
firmly rejected. The planet Feddersen et al. reported see-
ing is not a planet Schwarz and Clore could have seen. 
Figure 2 also shows that Lucas and Lawless (2013) 
obtained an informative failure to replicate the effect of 
sunshine on life satisfaction in a professional survey of 
Americans with a sample size about 50,000 times the 
original. (See Supplement 2 for calculations.) Table 1 
summarizes the contrasts among the different approaches 
for evaluating replication results.

How Many Observations for a 
Replication?

The status quo

Currently, replication studies are often powered on the 
basis of the effect size obtained in the original study. For 
example, researchers may set the sample size for a 
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Fig. 2. Results from Schwarz and Clore’s (1983) Study 2 and two replications of it (Feddersen, Metcalfe, & Wooden, 
2012; Lucas & Lawless, 2013). The markers indicate effect-size estimates, and the vertical bars their confidence inter-
vals. The dashed line indicates the effect size that would give the original study, with a sample size of 14 per cell, 33% 
power. See Supplement 2 in the Supplemental Material for the calculations behind this figure.

 at UNIV OF PENNSYLVANIA on March 24, 2015pss.sagepub.comDownloaded from 

http://pss.sagepub.com/


6 Simonsohn

replication to have 80% power to detect an effect as big 
as that originally documented. There are at least two seri-
ous problems with this approach.

First, as mentioned earlier, because of publication 
bias, published effect-size estimates are greatly inflated 
(see, e.g., Fig. 2 in Simonsohn, Nelson, & Simmons, 
2014a). This means that even when original findings are 

true, powering replications on the basis of published 
effect sizes leads to much lower power than intended.

Figure 3 reports some basic calibrations of the statisti-
cal power that replications actually obtain when sample 
sizes are set on the basis of observed effect sizes, assum-
ing that original research is published only if the pre-
dicted effect reaches p < .05. The lower the power of the 
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Fig. 3. Actual versus claimed power in replications when sample size is based on the effect size 
observed in the original study. The figure reports statistical power in replications with sample 
sizes that, given the effect size observed in the original study, would obtain 80%, 90%, and 95% 
power, when original results are observable only if p < .05 and hence overestimated on average. 
See Supplement 5 in the Supplemental Material for the calculations behind this figure.

Table 1. Comparison of Approaches for Evaluating Replication Results

Question that the existing 
approach focuses on What happens when the approach is used

What happens when the detectability (small-
telescopes) approach is used

Is the estimated effect in 
the replication statistically 
significant, p < .05?

1. Underpowered replications fail to 
replicate original results and reduce 
confidence in true findings.

2. A replication obtaining the same effect 
size as the original study can be deemed 
a replication failure.

3. A replication obtaining an effect size 
colossally smaller than the original effect 
size is deemed a successful replication.

1. Underpowered replications are deemed 
uninformative and do not influence confidence 
in true findings.

2. A replication obtaining the same effect size 
as the original study is never deemed a 
replication failure.

3. If a replication obtains an effect size colossally 
smaller than the original effect size, the 
original study is deemed inadequate.

Is the estimated effect 
in the replication 
significantly smaller than 
the original finding?

1. The replication does not inform the 
question of interest (i.e., whether a 
detectable effect exists).

2. Most false-positive findings survive most 
replication attempts.

1. The replication does inform the question of 
interest.

2. Replications of studies with false-positive 
findings have an 80% chance of being 
informative replication failures.

Is the estimated effect 
in the replication 
significantly smaller than 
the original finding if we 
ignore its sampling error?

1. The replication does not inform the 
question of interest (i.e., whether a 
detectable effect exists).

2. Large-sample replications fail to replicate 
most true findings.

1. The replication does inform the question of 
interest.

2. Large-sample replications successfully replicate 
most true findings.
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original research, the more this subset of results overesti-
mates effect size, and hence the more the claimed power 
of replications is inflated. If the original study is powered 
to 50%, an optimistic scenario (Button et al., 2013; Cohen, 
1962; Rossi, 1990; Sedlmeier & Gigerenzer, 1989), the 
resulting upward bias in effect size would be severe 
enough that replications with samples sizes set to obtain 
80% power, given the reported effects, would on average 
have achieved only 51% power.

Second, if a replication is powered on the basis of the 
observed effect size, only the power of the “is the replica-
tion significant?” test has been considered, and as I have 
shown, this test leads to untenable inferences. If we 
power replications this way, too many will obtain confi-
dence intervals that are too wide, including both zero 
and detectable effect sizes. A power calculation based on 
a reported effect size, then, lacks face validity and is too 
likely to lead to uninformative results.

Replication sample size = 2.5 × 
original sample size

The sample size for original research is supposed to be 
set so that it leads to a reasonable level of statistical 
power, typically proposed to be around 80%. To deter-
mine the power associated with a given sample size for a 
study, we need to determine what question it is that we 
want to answer with the study—what statistical test we 
plan on conducting. For example, a 2 × 2 study needs at 
least twice as many subjects per cell if we want to test an 
attenuated interaction as opposed to a simple effect 
(Simonsohn, 2014).

When setting the sample size for a replication, we 
could focus on the statistical power for at least two differ-
ent tests. We could set the sample size to have enough 
power to reject the traditional null hypothesis of zero 
effect, assuming that the true effect is larger than zero. 
Alternatively, we could set the sample size to have 
enough power to reject the null hypothesis of a 
detectable effect (e.g., d33%), assuming that the true effect 
is zero.

The former objective, detecting an effect, is analogous 
to the objective of original research; hence, whatever 
approach researchers take to set sample size for original 
research would apply to replications with this objective. 
For the latter objective, accepting the null hypothesis, we 
ask the following question: “If the true effect size is 0, 
how many observations do we need to have an 80% 
chance of concluding that the effect is undetectably 
small?”

The answer to this question turns out to be very sim-
ple and does not require consulting power tables or soft-
ware like gPower. Whether the statistical test is based on 
the normal, Student, F, or χ2 distribution; whether it is 

conducted with a between- or within-subjects design; 
and whether the data are from an experiment or an 
observational study, if the true effect is zero, a replication 
needs 2.5 times as many observations as the original 
study to have about 80% power to reject d33%. For exam-
ple, if the true effect is zero, and an original study had 20 
observations per cell, a replication with 50 observations 
per cell would have about 80% power to reject the 
hypothesis that the effect is d33% (see Fig. 4).

What about very large samples?

Sometimes studies have very large sample sizes, for 
example, a few hundred thousand Implicit Association 
Test takers (Nosek, Banaji, & Greenwald, 2002), a few 
million Danes (Dahl, Dezső, & Ross, 2012), or several 
million Facebook users (Bond et al., 2012). Would one 
really need 2.5 times those sample sizes to properly 
power  replication attempts?

First, it is important to establish that large-sample 
experiments are rather rare in psychology. The median 
sample size for studies published in Psychological Science 
between 2003 and 2010 was about 20 per cell, and about 
90% of these studies had a per-cell sample size smaller 
than 150.6

Second, whether we need 2.5 times the original sam-
ple size or not depends on the question we wish to 
answer. If we are interested in testing whether the effect 
size is smaller than d33%, then, yes, we need about 2.5 
times the original sample size no matter how big that 
original sample was. When samples are very large, how-
ever, that may not be the question of interest. If the origi-
nal study had 100,000 subjects per cell, 33% power is 
obtained with an exceedingly small effect size—d33% = 
0.007. Under these circumstances, we may be able to 
accept the null hypothesis in the “old-fashioned” way—
by showing that the effect is small enough to be lacking 
in theoretical interest.

For example, if the researcher running the replication 
deems effects with |d| < 0.1 as negligible, to have 80% 
power to reject d = 0.1 when d = 0, the researcher needs 
about 3,000 observations total. No matter how big the 
original study was, if as replicators we are content accept-
ing the null when we conclude that d < .1, we need 
“only” an n of 1,500 per cell. To be clear, in those cases, 
the replication could have fewer observations than the 
original study.

To further examine the impact of sample size on the 
interpretation of replications, consider Figure 5, which 
depicts results of hypothetical original studies, all obtain-
ing effect-size estimates of d̂  = 0.6, with different sample 
sizes. The figure also depicts two hypothetical replication 
results.7 Let us begin with the first replication, which 
obtained a somewhat imprecisely estimated zero effect. 
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This replication rejects the null hypothesis of d33% for the 
original studies with ns of 20, 50, and 100, deeming such 
samples small telescopes. The same replication, however, 
does not reject d33% for the original studies with larger 
samples. This highlights that (a) the detectability approach 

evaluates the original study’s design rather than its 
result—the telescope rather than the planet—and (b) 
when samples are large enough, it is informative to 
accompany the small-telescopes test with a simple test 
comparing the effect sizes obtained in the original and 
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replication studies. The second replication depicted in 
the figure, which obtained a precisely estimated d̂  = 0.5, 
reminds us why this simple comparison of effect sizes 
alone, without considerations of detectability, can be mis-
leading. The replication’s d̂  = 0.5 with n of 3,000 is sig-
nificantly smaller than the original d̂  = 0.6 with n of 
3,000, but for almost any psychological theory, these 
results are entirely consistent with one another.

What About Bayesian Analyses?

Bayesian statistics offer two paths to accepting the null 
hypothesis. One involves accepting it when the (Bayesian) 
confidence interval excludes small effects. When applied 
to simple designs (e.g., comparing means across condi-
tions), using flat priors, Bayesian confidence intervals are 
numerically equivalent to traditional ones, so this 
approach is equivalent to the old frequentist approach 
for accepting the null. Although the interpretation of the 
results is different, the results themselves are not (Lindley, 
1965, pp. 76–79; Rouanet, 1996, pp. 150–151).

The other path is Bayesian hypothesis testing ( Jeffreys, 
1961), which assesses whether the observed data are 
more consistent with an effect of zero or with some alter-
native hypothesis. The default Bayesian t test (Rouder, 
Speckman, Sun, Morey, & Iverson, 2009) sets as the alter-
native hypothesis that the effect has the standard normal 
distribution. When a default Bayesian test favors the null 
hypothesis, the correct interpretation of the result is that 
the data favor the null hypothesis more than that one 
specific alternative hypothesis. The Bayesian test could 
conclude against the same null hypothesis, using the 
same data, if a different alternative hypothesis were used, 
say, that the effect is distributed normal but with variance 
of 0.5 instead of 1, or that the distribution is skewed or 
has some other mean value.

Verhagen and Wagenmakers (2014) proposed using 
the posterior from the original study (starting from uni-
form priors) as the alternative hypothesis for replications. 
This is conceptually and mathematically similar to testing 
whether the effect size obtained in the replication is 
closer to the effect size in the original study than it is to 
zero.

What About Meta-Analyses?

The detectability approach proposed here for assessing 
replications complements rather than replaces meta-anal-
ysis. First, it answers a different question (Question 3 
instead of Question 1). When conducting meta-analyses, 
we take all results at face value and combine them. When 
conducting a replication, in contrast, we are typically ask-
ing whether we should take the original study at face 
value.

Second, meta-analysis necessitates the accumulation 
of individual studies, and there will often be an interest 
in assessing each of them as they are completed. Each 
replication has a replicator who wonders, upon analyz-
ing the data, if it would be warranted to accept the null 
hypothesis of zero effect.

Third, meta-analytic results can be interpreted by 
focusing on detectability. For example, Alogna et  al. 
(2014) meta-analyzed 31 simultaneous replication 
attempts of Study 4 by Schooler and Engstler-Schooler 
(1990), obtaining an overall effect-size estimate of −4%, 
with a confidence interval of [−7%, −1%]. The original 
Study 4 had 75 subjects, and therefore too small a tele-
scope to meaningfully inform conclusions regarding an 
effect as small as the replications suggest exists. Even the 
end of the confidence interval, a 7% difference, indicates 
that the original sample had less than 10% power.8 As a 
whole, the replications were consistent, then, with the 
theoretical development of the original report, but not 
with its original design having been adequate. The theory 
was right, but the evidence was almost pure noise.

Interpreting Failures to Replicate 
Original Effects

When a replication indicates that for the original sample 
size, an effect is undetectably different from zero, the 
original finding has not been annulled, nor shown to be 
a false positive, p-hacked, or fraudulently obtained. What 
has been determined is that sampling error alone is an 
unlikely explanation for why the replication resulted in 
such a categorically smaller effect size. An effect detect-
able by the original study should have resulted in a larger 
estimate in the replication.

A replication failure may arise because the true effect 
studied in the replication is different from the true effect 
studied in the original study. Just as it is not possible to 
step twice into the same river, it is not possible to run the 
same study twice. Differences in materials, populations, 
and measures may lead to differences in the true effect 
under study.

Statistical techniques help us identify situations in 
which something other than chance has occurred. Human 
judgment, ingenuity, and expertise are needed to know 
what has occurred instead.
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Notes

1. Popper (1935/2005) wrote, “The scientifically significant 
physical effect may be defined as that which can be regularly 
reproduced by anyone who carries out the appropriate experi-
ment in the way prescribed” (pp. 23–24). Fisher (1926) wrote, 
“A scientific fact should be regarded as experimentally estab-
lished only if a properly designed experiment rarely fails to give 
this level of significance [referring to p < .05]” (p. 504).
2. This reasoning assumes that the true effect is zero or of the 
predicted sign. When effects predicted by a theory and true 
effects have opposite signs, we do reliably obtain confidence 
intervals that reject theoretically interesting values.
3. I searched for the term “Failure to Replicate” in the titles of arti-
cles indexed on the Web-of-Science (https://webofknowledge 
.com), sorted these articles by number of citations, and then 
examined the first 10 articles listed to see how the conclusions 
that the effect was not replicated were substantiated.
4. This ratio of median valuations was not reported in the pub-
lished article on this study, but Kahneman, Knetsch, and Thaler 
(1990, p. 1336, footnote 5) indicated that an unpublished ver-
sion of the article did report this result.
5. Geoff Cumming, when providing feedback on an earlier ver-
sion of this article, intuited that for the normal distribution, d33% 
corresponds to 61% of the length of one arm of the 95% confi-
dence interval. I verified that this is indeed the case and that for 
sample sizes with 10 or more observations per cell, this is a very 
close approximation for the Student distribution also. This rule 

of thumb can prove useful for evaluating replications for which 
confidence intervals, but not d33%s, are reported.
6. These numbers are based on degrees of freedom reported 
for t tests (N = 4,275; see Supplement 6 in the Supplemental 
Material for details).
7. Figure 5 is based on a suggestion by E.-J. Wagenmakers.
8. In the original Study 4, on average across the control and 
verbal conditions, 59.85% of subjects shown a lineup correctly 
identified the suspect they had seen in a video. To compute 
the statistical power implied by a 7% difference between condi-
tions, I split this difference evenly between the two cells. The 
resulting accuracies of 56.35% versus 63.35% give a two-sample 
proportions test (with n1 = 38 and n2 = 37) 9.4% power.
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