Getting Started with the RCE

Len Wisniewski
First thing to do

• Sign up for an RCE account
 • Send e-mail to support@help.hmdc.harvard.edu requesting an RCE account
 • IQSS system administrator will send you a questionnaire asking about your needs and sponsorship
 • For Harvard researchers, these resources are free
 • If you don’t have an IQSS faculty sponsor, contact me
 – lwisniewski@iq.harvard.edu
Research Computing Environment

- RCE = Research Computing Environment, remote infrastructure and scalable computing power for research analysis
- Used to run common statistical applications
 - R, GAUSS, Mathematica, MATLAB, Octave, SAS, Stata
- RCE has three types of nodes
 - Login nodes
 - User logs in via NX (similar to VNC) and gets a desktop session
 - User can launch an application directly from the desktop
 - Compute-on-demand (COD) nodes
 - 49 compute cores on 15 nodes
 - User has special “RCE Powered Applications” menu to launch applications on machines with large memory resources (up to 256GB)
 - Batch nodes
 - 300 compute cores on 18 nodes
 - Used typically for non-interactive, long-running, scalable jobs
 - Most jobs use R, memory size is smaller (typically 4GB)
RCE architecture and configuration

Key Applications
- R
- GAUSS
- Mathematica
- MATLAB
- Octave
- SAS (COD only)
- Stata (SE and MP)

Getting Started with the RCE
RCE metrics

- 471 active user accounts
 - 105 HKS, 70 IQSS, 43 HSPH, 30 Gov, 26 GSE
- 3TB of data over 263 active “project spaces”
- 1.6 million hours of compute time on batch cluster
 - 10-20 active batch users per month
 - Average 50% utilization of batch pool
 - Pool includes 300 processor cores
- 100+ thousand hours of compute time on interactive cluster
 - 60-70 active interactive users per month
 - Average 80% utilization of interactive pool
 - Extended periods of overflow into batch
 - Pool has grown from 12 to 49 processor cores
The rest of this session

- Installing NX
- Logging onto an RCE login node
- Applications and tools on the RCE login nodes
- Running a job on a Compute-on-Demand (COD) node
 - COD = larger memory machines
- Running a job on a Batch node
 - Batch cluster = scalable set of compute resources
Installing NX

- NX is a computer program that provides secure remote windowing environment connections
 - Security encrypts communication over an SSH session
Step 1: Download NX client (Screen 1)

- Screen 1: Select the appropriate client for your OS
 - Windows, Linux, Mac OS X, Solaris
Step 1: Download NX client (Screen 2)

- Screen 2: Select which package
 - Windows: Download fonts later if you want them
Step 1: Download NX client (Screen 3)

- Screen 3: Download the NX client package
Step 1: Download NX client (Screen 4)

• Screen 4: Download the NX client package
Step 2: Install NX client (Screen 1)

- Screen 1: Double-click the downloaded client
Step 2: Install NX client (Screen 2)

- Screen 2: Welcome screen
Step 2: Install NX client (Screen 3)

- Screen 3: Choose the location for the executable
- On Windows, there will be several extra screens

Mac OS

Windows
Step 2: Install NX client (Screen 4)

- Screen 4: Install NX

Mac OS

Windows
Step 2: Install NX client (Screen 6)

• Screen 1: Installation complete
Step 3: Configuring NX client

- Click on the NX Connection Wizard icon (on Mac) or NX Client for Windows icon (on Windows)
Step 3: Configuring NX client (Screen 1)

- After an initial welcome screen
- Screen 1: Enter a Session name (your choice), Host Internet address (rce.hmdc.harvard.edu), Port number (22, for SSL), and Internet connection type (ADSL)
Step 3: Configuring NX client (Screen 2)

• Screen 2: Enter an OS type (Unix, because RCE runs on Linux), a desktop type (GNOME, the type supported by RCE’s NX server), and a size (Custom for Mac, Available area for Windows)
Step 3: Configuring NX client (Screen 3)

• Screen 3: Completion screen (Check Advanced Configuration on Mac)
Logging onto an RCE login node

- Click on the desktop icon created when configuring NX
- Use your login username and password obtained when signing up for an RCE account
Applications and tools on the RCE login nodes

• Statistical applications
Applications and tools on the RCE login nodes

- Office productivity applications
As your data set grows...

- Your data set will require more memory
 - Run on machines with larger memory (e.g., COD)
- Your data set may take much longer to compute
 - Run on more lightly-loaded resources
 - Use more efficient algorithms
 - Parallelize your code
Running a job on a Compute-on-Demand (COD) node

- Running a job on a larger memory Compute-on-Demand (COD) node
- Step 1: Launch an RCE Powered Application
Running a job on a Compute-on-Demand (COD) node

- **Step 2:** Enter the memory requirement for the job
Running a job on a Compute-on-Demand (COD) node

- Step 3: The interactive job is running, a message appears about your time limit for completing your job
Running a job on a Batch node

• Batch environment
 • Batch system – jobs are submitted to a queue to be executed when resources matching the job’s resource requirements are available
 • Batch cluster = scalable set of compute resources
 • Jobs are scheduled on the queue in a fair manner
 • Condor is the resource manager that manages the resources (and queues for those resources)
 – Open-source solution developed by University of Wisconsin
 – http://www.cs.wisc.edu/condor/
• Jobs submitted to a batch queue should not be interactive
Running a job on a Batch node

- **Step 1:** Create a directory with all necessary files to submit a job
 - e.g. input files, output files, log files, error files
- **Step 2:** Create a program or script that does not require user interaction
- **Step 3:** Create a condor_submit file, containing paths of input files, output files, executable file, and any other information needed to match your job to a resource and execute it successfully
 - Manually
 - Using the condor_submit_util script
- **Step 4:** Submit a job with the condor_submit command (or condor_submit_util)
 - When you submit a job, you are assigned a tag
 - `<cluster number>.<process number>`
 - Each submission by a user generates a cluster number
 - If you submit multiple runs of the same executable, then each of those runs is differentiated by a process number
 - Use this tag to track the progress of your job (see upcoming condor_q description)
Example of a condor_submit file

Submits 10 instances of an R job running <program>.R

- cat example.submit

 Universe = vanilla
 Executable = /usr/bin/R
 Arguments = --no-save -vanilla

 input = <program>.R
 output = out.$(Process)
 error = error.$(Process)
 Log = log.$(Process)

 Queue 10
Other useful Condor commands

- Found in `/usr/local/condor/bin` and `/usr/local/condor/sbin`
 - `condor_q`
 - `condor_status`
 - `condor_rm`
 - `condor_history`

- If things don’t run as planned, check out the error and log files in the submission directory for information about what happened.
Uploading / downloading files via Filezilla

- Go to http://filezilla-project.org/
- Click “Download FileZilla Client”
- Click download file for appropriate platform (Mac OS X, Linux, Windows)
- Install FileZilla
- Run FileZilla
- Enter the following:
 - Host: rce.hmdc.harvard.edu
 - Username: <Your RCE username>
 - Password: <Your RCE password>
 - Port: 22
- Drag and drop files / directories from local folders to RCE home directory
 - On left: Local folders and files
 - On right: RCE directories and files
• http://support.hmdc.harvard.edu/kb-14/research_computing_environment
 • Accessing the RCE
 – Connecting to the RCE (via NX)
 – Working in the RCE (productivity tools)
 • Developing Software (CVS and R packaging tools)
 • Using Statistical Programs
 – Working with {R, GAUSS, Mathematica, MATLAB, Octave, SAS, S-PLUS, Stata, RCE Powered}
 • Recent Updates
 • RCE FAQ

• http://support.hmdc.harvard.edu/kb-13/cluster_computing
 • Working with Batch Servers
 • Working with Interactive Servers
 • Cluster Computing FAQ
Recent and future directions

• Became more adaptive to resource needs
 • Single flexible pool of resources for interactive / batch jobs
• Made account renewals and job extensions easier

Future
• Upgrading Linux version (RHEL 6)
 • Enables wider range of applications to be supported
• Increasing security for storing confidential data Levels 3 and 4
• Use cloud resources for elastically launching large R jobs
• Working with vendor of NX software to improve ease-of-use
 • Single application support
 • Mobile and browser support
Questions?

Any questions, e-mail support@help.hmdc.harvard.edu

Web sites:
 RT (Request Tracker): help.hmdc.harvard.edu
 IQSS IT support: support.hmdc.harvard.edu
 iq.harvard.edu