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Chapter 1: Probability and counting

Counting

8. s© (a) How many ways are there to split a dozen people into 3 teams, where one team
has 2 people, and the other two teams have 5 people each?

(b) How many ways are there to split a dozen people into 3 teams, where each team has
4 people?

Solution:

(a) Pick any 2 of the 12 people to make the 2 person team, and then any 5 of the
remaining 10 for the first team of 5, and then the remaining 5 are on the other team of
5; this overcounts by a factor of 2 though, since there is no designated “first” team of
5. So the number of possibilities is

(
12
2

)(
10
5

)
/2 = 8316. Alternatively, politely ask the 12

people to line up, and then let the first 2 be the team of 2, the next 5 be a team of 5,
and then last 5 be a team of 5. There are 12! ways for them to line up, but it does not
matter which order they line up in within each group, nor does the order of the 2 teams
of 5 matter, so the number of possibilities is 12!

2!5!5!·2 = 8316.

(b) By either of the approaches above, there are 12!
4!4!4!

ways to divide the people into a
Team A, a Team B, and a Team C, if we care about which team is which (this is called
a multinomial coefficient). Since here it doesn’t matter which team is which, this over
counts by a factor of 3!, so the number of possibilities is 12!

4!4!4!3!
= 5775.

9. s© (a) How many paths are there from the point (0, 0) to the point (110, 111) in the
plane such that each step either consists of going one unit up or one unit to the right?

(b) How many paths are there from (0, 0) to (210, 211), where each step consists of going
one unit up or one unit to the right, and the path has to go through (110, 111)?

Solution:

(a) Encode a path as a sequence of U ’s and R’s, like URURURUUUR . . . UR, where
U and R stand for “up” and “right” respectively. The sequence must consist of 110 R’s
and 111 U ’s, and to determine the sequence we just need to specify where the R’s are
located. So there are

(
221
110

)
possible paths.

(b) There are
(
221
110

)
paths to (110, 111), as above. From there, we need 100 R’s and 100

U ’s to get to (210, 211), so by the multiplication rule the number of possible paths is(
221
110

)
·
(
200
100

)
.

Story proofs

15. s© Give a story proof that
∑n
k=0

(
n
k

)
= 2n.

Solution: Consider picking a subset of n people. There are
(
n
k

)
choices with size k, on

the one hand, and on the other hand there are 2n subsets by the multiplication rule.
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16. s© Show that for all positive integers n and k with n ≥ k,(
n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
,

doing this in two ways: (a) algebraically and (b) with a story, giving an interpretation
for why both sides count the same thing.

Hint for the story proof: Imagine n + 1 people, with one of them pre-designated as
“president”.

Solution:

(a) For the algebraic proof, start with the definition of the binomial coefficients in the
left-hand side, and do some algebraic manipulation as follows:(

n

k

)
+

(
n

k − 1

)
=

n!

k!(n− k)!
+

n!

(k − 1)!(n− k + 1)!

=
(n− k + 1)n! + (k)n!

k!(n− k + 1)!

=
n!(n+ 1)

k!(n− k + 1)!

=

(
n+ 1

k

)
.

(b) For the story proof, consider n + 1 people, with one of them pre-designated as
“president”. The right-hand side is the number of ways to choose k out of these n + 1
people, with order not mattering. The left-hand side counts the same thing in a different
way, by considering two cases: the president is or isn’t in the chosen group.

The number of groups of size k which include the president is
(
n
k−1

)
, since once we fix

the president as a member of the group, we only need to choose another k− 1 members
out of the remaining n people. Similarly, there are

(
n
k

)
groups of size k that don’t include

the president. Thus, the two sides of the equation are equal.

18. s© (a) Show using a story proof that(
k

k

)
+

(
k + 1

k

)
+

(
k + 2

k

)
+ · · ·+

(
n

k

)
=

(
n+ 1

k + 1

)
,

where n and k are positive integers with n ≥ k. This is called the hockey stick identity.

Hint: Imagine arranging a group of people by age, and then think about the oldest
person in a chosen subgroup.

(b) Suppose that a large pack of Haribo gummi bears can have anywhere between 30
and 50 gummi bears. There are 5 delicious flavors: pineapple (clear), raspberry (red),
orange (orange), strawberry (green, mysteriously), and lemon (yellow). There are 0 non-
delicious flavors. How many possibilities are there for the composition of such a pack of
gummi bears? You can leave your answer in terms of a couple binomial coefficients, but
not a sum of lots of binomial coefficients.

Solution:

(a) Consider choosing k+1 people out of a group of n+1 people. Call the oldest person
in the subgroup “Aemon.” If Aemon is also the oldest person in the full group, then
there are

(
n
k

)
choices for the rest of the subgroup. If Aemon is the second oldest in the

full group, then there are
(
n−1
k

)
choices since the oldest person in the full group can’t be
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chosen. In general, if there are j people in the full group who are younger than Aemon,
then there are

(
j
k

)
possible choices for the rest of the subgroup. Thus,

n∑
j=k

(
j

k

)
=

(
n+ 1

k + 1

)
.

(b) For a pack of i gummi bears, there are
(
5+i−1
i

)
=
(
i+4
i

)
=
(
i+4
4

)
possibilities since

the situation is equivalent to getting a sample of size i from the n = 5 flavors (with
replacement, and with order not mattering). So the total number of possibilities is

50∑
i=30

(
i+ 4

4

)
=

54∑
j=34

(
j

4

)
.

Applying the previous part, we can simplify this by writing

54∑
j=34

(
j

4

)
=

54∑
j=4

(
j

4

)
−

33∑
j=4

(
j

4

)
=

(
55

5

)
−

(
34

5

)
.

(This works out to 3200505 possibilities!)

Naive definition of probability

22. s© A certain family has 6 children, consisting of 3 boys and 3 girls. Assuming that all
birth orders are equally likely, what is the probability that the 3 eldest children are the
3 girls?

Solution: Label the girls as 1, 2, 3 and the boys as 4, 5, 6. Think of the birth order is a
permutation of 1, 2, 3, 4, 5, 6, e.g., we can interpret 314265 as meaning that child 3 was
born first, then child 1, etc. The number of possible permutations of the birth orders
is 6!. Now we need to count how many of these have all of 1, 2, 3 appear before all of
4, 5, 6. This means that the sequence must be a permutation of 1, 2, 3 followed by a
permutation of 4, 5, 6. So with all birth orders equally likely, we have

P (the 3 girls are the 3 eldest children) =
(3!)2

6!
= 0.05.

Alternatively, we can use the fact that there are
(
6
3

)
ways to choose where the girls

appear in the birth order (without taking into account the ordering of the girls amongst
themselves). These are all equally likely. Of these possibilities, there is only 1 where the
3 girls are the 3 eldest children. So again the probability is 1

(63)
= 0.05.

23. s© A city with 6 districts has 6 robberies in a particular week. Assume the robberies are
located randomly, with all possibilities for which robbery occurred where equally likely.
What is the probability that some district had more than 1 robbery?

Solution: There are 66 possible configurations for which robbery occurred where. There
are 6! configurations where each district had exactly 1 of the 6, so the probability of
the complement of the desired event is 6!/66. So the probability of some district having
more than 1 robbery is

1− 6!/66 ≈ 0.9846.

Note that this also says that if a fair die is rolled 6 times, there’s over a 98% chance
that some value is repeated!
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26. s© A college has 10 (non-overlapping) time slots for its courses, and blithely assigns
courses to time slots randomly and independently. A student randomly chooses 3 of the
courses to enroll in. What is the probability that there is a conflict in the student’s
schedule?

Solution: The probability of no conflict is 10·9·8
103

= 0.72. So the probability of there being
at least one scheduling conflict is 0.28.

27. s© For each part, decide whether the blank should be filled in with =, <, or >, and give
a clear explanation.

(a) (probability that the total after rolling 4 fair dice is 21) (probability that the
total after rolling 4 fair dice is 22)

(b) (probability that a random 2-letter word is a palindrome1) (probability that a
random 3-letter word is a palindrome)

Solution:

(a) > . All ordered outcomes are equally likely here. So for example with two dice,
obtaining a total of 9 is more likely than obtaining a total of 10 since there are two ways
to get a 5 and a 4, and only one way to get two 5’s. To get a 21, the outcome must
be a permutation of (6, 6, 6, 3) (4 possibilities), (6, 5, 5, 5) (4 possibilities), or (6, 6, 5, 4)
(4!/2 = 12 possibilities). To get a 22, the outcome must be a permutation of (6, 6, 6, 4)
(4 possibilities), or (6, 6, 5, 5) (4!/22 = 6 possibilities). So getting a 21 is more likely; in
fact, it is exactly twice as likely as getting a 22.

(b) = . The probabilities are equal, since for both 2-letter and 3-letter words, being a
palindrome means that the first and last letter are the same.

29. s© Elk dwell in a certain forest. There are N elk, of which a simple random sample of
size n are captured and tagged (“simple random sample” means that all

(
N
n

)
sets of n

elk are equally likely). The captured elk are returned to the population, and then a new
sample is drawn, this time with size m. This is an important method that is widely used
in ecology, known as capture-recapture. What is the probability that exactly k of the m
elk in the new sample were previously tagged? (Assume that an elk that was captured
before doesn’t become more or less likely to be captured again.)

Solution: We can use the naive definition here since we’re assuming all samples of size m
are equally likely. To have exactly k be tagged elk, we need to choose k of the n tagged
elk, and then m− k from the N − n untagged elk. So the probability is(

n
k

)
·
(
N−n
m−k

)(
N
m

) ,

for k such that 0 ≤ k ≤ n and 0 ≤ m − k ≤ N − n, and the probability is 0 for all
other values of k (for example, if k > n the probability is 0 since then there aren’t even
k tagged elk in the entire population!). This is known as a Hypergeometric probability;
we will encounter it again in Chapter 3.

31. s© A jar contains r red balls and g green balls, where r and g are fixed positive integers.
A ball is drawn from the jar randomly (with all possibilities equally likely), and then a
second ball is drawn randomly.

1A palindrome is an expression such as “A man, a plan, a canal: Panama” that reads the same
backwards as forwards (ignoring spaces, capitalization, and punctuation). Assume for this problem
that all words of the specified length are equally likely, that there are no spaces or punctuation,
and that the alphabet consists of the lowercase letters a,b,. . . ,z.
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(a) Explain intuitively why the probability of the second ball being green is the same
as the probability of the first ball being green.

(b) Define notation for the sample space of the problem, and use this to compute the
probabilities from (a) and show that they are the same.

(c) Suppose that there are 16 balls in total, and that the probability that the two balls
are the same color is the same as the probability that they are different colors. What
are r and g (list all possibilities)?

Solution:

(a) This is true by symmetry. The first ball is equally likely to be any of the g+ r balls,
so the probability of it being green is g/(g+ r). But the second ball is also equally likely
to be any of the g + r balls (there aren’t certain balls that enjoy being chosen second
and others that have an aversion to being chosen second); once we know whether the
first ball is green we have information that affects our uncertainty about the second
ball, but before we have this information, the second ball is equally likely to be any of
the balls.

Alternatively, intuitively it shouldn’t matter if we pick one ball at a time, or take one
ball with the left hand and one with the right hand at the same time. By symmetry,
the probabilities for the ball drawn with the left hand should be the same as those for
the ball drawn with the right hand.

(b) Label the balls as 1, 2, . . . , g + r, such that 1, 2, . . . , g are green and g + 1, . . . , g + r
are red. The sample space can be taken to be the set of all pairs (a, b) with a, b ∈
{1, . . . , g+r} and a 6= b (there are other possible ways to define the sample space, but it
is important to specify all possible outcomes using clear notation, and it make sense to
be as richly detailed as possible in the specification of possible outcomes, to avoid losing
information). Each of these pairs is equally likely, so we can use the naive definition of
probability. Let Gi be the event that the ith ball drawn is green.

The denominator is (g+r)(g+r−1) by the multiplication rule. For G1, the numerator is
g(g+ r−1), again by the multiplication rule. For G2, the numerator is also g(g+ r−1),
since in counting favorable cases, there are g possibilities for the second ball, and for
each of those there are g + r − 1 favorable possibilities for the first ball (note that the
multiplication rule doesn’t require the experiments to be listed in chronological order!);
alternatively, there are g(g− 1) + rg = g(g+ r− 1) favorable possibilities for the second
ball being green, as seen by considering 2 cases (first ball green and first ball red). Thus,

P (Gi) =
g(g + r − 1)

(g + r)(g + r − 1)
=

g

g + r
,

for i ∈ {1, 2}, which concurs with (a).

(c) Let A be the event of getting one ball of each color. In set notation, we can write
A = (G1 ∩Gc2) ∪ (Gc1 ∩G2) . We are given that P (A) = P (Ac), so P (A) = 1/2. Then

P (A) =
2gr

(g + r)(g + r − 1)
=

1

2
,

giving the quadratic equation

g2 + r2 − 2gr − g − r = 0,

i.e.,

(g − r)2 = g + r.

But g + r = 16, so g − r is 4 or −4. Thus, either g = 10, r = 6, or g = 6, r = 10.
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32. s© A random 5-card poker hand is dealt from a standard deck of cards. Find the prob-
ability of each of the following possibilities (in terms of binomial coefficients).

(a) A flush (all 5 cards being of the same suit; do not count a royal flush, which is a
flush with an ace, king, queen, jack, and 10).

(b) Two pair (e.g., two 3’s, two 7’s, and an ace).

Solution:

(a) A flush can occur in any of the 4 suits (imagine the tree, and for concreteness suppose
the suit is Hearts); there are

(
13
5

)
ways to choose the cards in that suit, except for one

way to have a royal flush in that suit. So the probability is

4
((

13
5

)
− 1
)(

52
5

) .

(b) Choose the two ranks of the pairs, which specific cards to have for those 4 cards,
and then choose the extraneous card (which can be any of the 52 − 8 cards not of the
two chosen ranks). This gives that the probability of getting two pairs is(

13
2

)
·
(
4
2

)2 · 44(
52
5

) .

40. s© A norepeatword is a sequence of at least one (and possibly all) of the usual 26 letters
a,b,c,. . . ,z, with repetitions not allowed. For example, “course” is a norepeatword, but
“statistics” is not. Order matters, e.g., “course” is not the same as “source”.

A norepeatword is chosen randomly, with all norepeatwords equally likely. Show that
the probability that it uses all 26 letters is very close to 1/e.

Solution: The number of norepeatwords having all 26 letters is the number of ordered
arrangements of 26 letters: 26!. To construct a norepeatword with k ≤ 26 letters, we
first select k letters from the alphabet (

(
26
k

)
selections) and then arrange them into a

word (k! arrangements). Hence there are
(
26
k

)
k! norepeatwords with k letters, with k

ranging from 1 to 26. With all norepeatwords equally likely, we have

P (norepeatword having all 26 letters) =
# norepeatwords having all 26 letters

# norepeatwords

=
26!∑26

k=1

(
26
k

)
k!

=
26!∑26

k=1
26!

k!(26−k)!k!

=
1

1
25!

+ 1
24!

+ . . .+ 1
1!

+ 1
.

The denominator is the first 26 terms in the Taylor series ex = 1 + x + x2/2! + . . .,
evaluated at x = 1. Thus the probability is approximately 1/e (this is an extremely
good approximation since the series for e converges very quickly; the approximation for
e differs from the truth by less than 10−26).

Axioms of probability

46. s© Arby has a belief system assigning a number PArby(A) between 0 and 1 to every event
A (for some sample space). This represents Arby’s degree of belief about how likely A
is to occur. For any event A, Arby is willing to pay a price of 1000 · PArby(A) dollars to
buy a certificate such as the one shown below:
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Certificate

The owner of this certificate can redeem it for $1000 if A occurs. No
value if A does not occur, except as required by federal, state, or local
law. No expiration date.

Likewise, Arby is willing to sell such a certificate at the same price. Indeed, Arby is
willing to buy or sell any number of certificates at this price, as Arby considers it the
“fair” price.

Arby stubbornly refuses to accept the axioms of probability. In particular, suppose that
there are two disjoint events A and B with

PArby(A ∪B) 6= PArby(A) + PArby(B).

Show how to make Arby go bankrupt, by giving a list of transactions Arby is willing
to make that will guarantee that Arby will lose money (you can assume it will be
known whether A occurred and whether B occurred the day after any certificates are
bought/sold).

Solution: Suppose first that

PArby(A ∪B) < PArby(A) + PArby(B).

Call a certificate like the one show above, with any event C in place of A, a C-certificate.
Measuring money in units of thousands of dollars, Arby is willing to pay PArby(A) +
PArby(B) to buy an A-certificate and a B-certificate, and is willing to sell an (A ∪ B)-
certificate for PArby(A ∪ B). In those transactions, Arby loses PArby(A) + PArby(B) −
PArby(A ∪ B) and will not recoup any of that loss because if A or B occurs, Arby will
have to pay out an amount equal to the amount Arby receives (since it’s impossible for
both A and B to occur).

Now suppose instead that

PArby(A ∪B) > PArby(A) + PArby(B).

Measuring money in units of thousands of dollars, Arby is willing to sell an A-certificate
for PArby(A), sell a B-certificate for PArby(B), and buy a (A∪B)-certificate for PArby(A∪
B). In so doing, Arby loses PArby(A∪B)−(PArby(A)+PArby(B)), and Arby won’t recoup
any of this loss, similarly to the above. (In fact, in this case, even if A and B are not
disjoint, Arby will not recoup any of the loss, and will lose more money if both A and
B occur.)

By buying/selling a sufficiently large number of certificates from/to Arby as described
above, you can guarantee that you’ll get all of Arby’s money; this is called an arbitrage
opportunity. This problem illustrates the fact that the axioms of probability are not
arbitrary, but rather are essential for coherent thought (at least the first axiom, and
the second with finite unions rather than countably infinite unions).

Arbitrary axioms allow arbitrage attacks; principled properties and perspectives on prob-
ability potentially prevent perdition.

Inclusion-exclusion

48. s© A card player is dealt a 13-card hand from a well-shuffled, standard deck of cards.
What is the probability that the hand is void in at least one suit (“void in a suit” means
having no cards of that suit)?



8 Chapter 1: Probability and counting

Solution: Let S,H,D,C be the events of being void in Spades, Hearts, Diamonds, Clubs,
respectively. We want to find P (S ∪D ∪H ∪C). By inclusion-exclusion and symmetry,

P (S ∪D ∪H ∪ C) = 4P (S)− 6P (S ∩H) + 4P (S ∩H ∩D)− P (S ∩H ∩D ∩ C).

The probability of being void in a specific suit is
(3913)
(5213)

. The probability of being void in

2 specific suits is
(2613)
(5213)

. The probability of being void in 3 specific suits is 1

(5213)
. And the

last term is 0 since it’s impossible to be void in everything. So the probability is

4

(
39
13

)(
52
13

) − 6

(
26
13

)(
52
13

) +
4(
52
13

) ≈ 0.051.

52. s© Alice attends a small college in which each class meets only once a week. She is
deciding between 30 non-overlapping classes. There are 6 classes to choose from for each
day of the week, Monday through Friday. Trusting in the benevolence of randomness,
Alice decides to register for 7 randomly selected classes out of the 30, with all choices
equally likely. What is the probability that she will have classes every day, Monday
through Friday? (This problem can be done either directly using the naive definition of
probability, or using inclusion-exclusion.)

Solution: We will solve this both by direct counting and using inclusion-exclusion.

Direct Counting Method : There are two general ways that Alice can have class every
day: either she has 2 days with 2 classes and 3 days with 1 class, or she has 1 day with 3
classes, and has 1 class on each of the other 4 days. The number of possibilities for the

former is
(
5
2

)(
6
2

)2
63 (choose the 2 days when she has 2 classes, and then select 2 classes

on those days and 1 class for the other days). The number of possibilities for the latter
is
(
5
1

)(
6
3

)
64. So the probability is(

5
2

)(
6
2

)2
63 +

(
5
1

)(
6
3

)
64(

30
7

) =
114

377
≈ 0.302.

Inclusion-Exclusion Method : we will use inclusion-exclusion to find the probability of
the complement, which is the event that she has at least one day with no classes. Let
Bi = Aci . Then

P (B1 ∪B2 · · · ∪B5) =
∑
i

P (Bi)−
∑
i<j

P (Bi ∩Bj) +
∑
i<j<k

P (Bi ∩Bj ∩Bk)

(terms with the intersection of 4 or more Bi’s are not needed since Alice must have
classes on at least 2 days). We have

P (B1) =

(
24
7

)(
30
7

) , P (B1 ∩B2) =

(
18
7

)(
30
7

) , P (B1 ∩B2 ∩B3) =

(
12
7

)(
30
7

)
and similarly for the other intersections. So

P (B1 ∪ · · · ∪B5) = 5

(
24
7

)(
30
7

) −(5

2

)(
18
7

)(
30
7

) +

(
5

3

)(
12
7

)(
30
7

) =
263

377
.

Therefore,

P (A1 ∩A2 ∩A3 ∩A4 ∩A5) =
114

377
≈ 0.302.
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Mixed practice

59. s© There are 100 passengers lined up to board an airplane with 100 seats (with each
seat assigned to one of the passengers). The first passenger in line crazily decides to
sit in a randomly chosen seat (with all seats equally likely). Each subsequent passenger
takes his or her assigned seat if available, and otherwise sits in a random available seat.
What is the probability that the last passenger in line gets to sit in his or her assigned
seat? (This is a common interview problem, and a beautiful example of the power of
symmetry.)

Hint: Call the seat assigned to the jth passenger in line “seat j” (regardless of whether
the airline calls it seat 23A or whatever). What are the possibilities for which seats
are available to the last passenger in line, and what is the probability of each of these
possibilities?

Solution: The seat for the last passenger is either seat 1 or seat 100; for example, seat
42 can’t be available to the last passenger since the 42nd passenger in line would have
sat there if possible. Seat 1 and seat 100 are equally likely to be available to the last
passenger, since the previous 99 passengers view these two seats symmetrically. So the
probability that the last passenger gets seat 100 is 1/2.





Chapter 2: Conditional probability

Conditioning on evidence

1. s© A spam filter is designed by looking at commonly occurring phrases in spam. Suppose
that 80% of email is spam. In 10% of the spam emails, the phrase “free money” is used,
whereas this phrase is only used in 1% of non-spam emails. A new email has just arrived,
which does mention “free money”. What is the probability that it is spam?

Solution: Let S be the event that an email is spam and F be the event that an email
has the “free money” phrase. By Bayes’ rule,

P (S|F ) =
P (F |S)P (S)

P (F )
=

0.1 · 0.8
0.1 · 0.8 + 0.01 · 0.2 =

80/1000

82/1000
=

80

82
≈ 0.9756.

2. s© A woman is pregnant with twin boys. Twins may be either identical or fraternal (non-
identical). In general, 1/3 of twins born are identical. Obviously, identical twins must
be of the same sex; fraternal twins may or may not be. Assume that identical twins are
equally likely to be both boys or both girls, while for fraternal twins all possibilities are
equally likely. Given the above information, what is the probability that the woman’s
twins are identical?

Solution: By Bayes’ rule,

P (identical|BB) =
P (BB|identical)P (identical)

P (BB)
=

1
2
· 1
3

1
2
· 1
3

+ 1
4
· 2
3

= 1/2.

22. s© A bag contains one marble which is either green or blue, with equal probabilities. A
green marble is put in the bag (so there are 2 marbles now), and then a random marble
is taken out. The marble taken out is green. What is the probability that the remaining
marble is also green?

Solution: Let A be the event that the initial marble is green, B be the event that the
removed marble is green, and C be the event that the remaining marble is green. We
need to find P (C|B). There are several ways to find this; one natural way is to condition
on whether the initial marble is green:

P (C|B) = P (C|B,A)P (A|B) + P (C|B,Ac)P (Ac|B) = 1P (A|B) + 0P (Ac|B).

To find P (A|B), use Bayes’ Rule:

P (A|B) =
P (B|A)P (A)

P (B)
=

1/2

P (B|A)P (A) + P (B|Ac)P (Ac)
=

1/2

1/2 + 1/4
=

2

3
.

So P (C|B) = 2/3.

Historical note: This problem was first posed by Lewis Carroll in 1893.

23. s© Let G be the event that a certain individual is guilty of a certain robbery. In gathering
evidence, it is learned that an event E1 occurred, and a little later it is also learned that
another event E2 also occurred. Is it possible that individually, these pieces of evidence

11
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increase the chance of guilt (so P (G|E1) > P (G) and P (G|E2) > P (G)), but together
they decrease the chance of guilt (so P (G|E1, E2) < P (G))?

Solution: Yes, this is possible. In fact, it is possible to have two events which separately
provide evidence in favor of G, yet which together preclude G! For example, suppose
that the crime was committed between 1 pm and 3 pm on a certain day. Let E1 be
the event that the suspect was at a specific nearby coffeeshop from 1 pm to 2 pm that
day, and let E2 be the event that the suspect was at the nearby coffeeshop from 2 pm
to 3 pm that day. Then P (G|E1) > P (G), P (G|E2) > P (G) (assuming that being in
the vicinity helps show that the suspect had the opportunity to commit the crime), yet
P (G|E1 ∩E2) < P (G) (as being in the coffeehouse from 1 pm to 3 pm gives the suspect
an alibi for the full time).

25. s© A crime is committed by one of two suspects, A and B. Initially, there is equal
evidence against both of them. In further investigation at the crime scene, it is found
that the guilty party had a blood type found in 10% of the population. Suspect A does
match this blood type, whereas the blood type of Suspect B is unknown.

(a) Given this new information, what is the probability that A is the guilty party?

(b) Given this new information, what is the probability that B’s blood type matches
that found at the crime scene?

Solution:

(a) Let M be the event that A’s blood type matches the guilty party’s and for brevity,
write A for “A is guilty” and B for “B is guilty”. By Bayes’ Rule,

P (A|M) =
P (M |A)P (A)

P (M |A)P (A) + P (M |B)P (B)
=

1/2

1/2 + (1/10)(1/2)
=

10

11
.

(We have P (M |B) = 1/10 since, given that B is guilty, the probability that A’s blood
type matches the guilty party’s is the same probability as for the general population.)

(b) Let C be the event that B’s blood type matches, and condition on whether B is
guilty. This gives

P (C|M) = P (C|M,A)P (A|M) + P (C|M,B)P (B|M) =
1

10
· 10

11
+

1

11
=

2

11
.

26. s© To battle against spam, Bob installs two anti-spam programs. An email arrives,
which is either legitimate (event L) or spam (event Lc), and which program j marks as
legitimate (event Mj) or marks as spam (event Mc

j ) for j ∈ {1, 2}. Assume that 10%
of Bob’s email is legitimate and that the two programs are each “90% accurate” in the
sense that P (Mj |L) = P (Mc

j |Lc) = 9/10. Also assume that given whether an email is
spam, the two programs’ outputs are conditionally independent.

(a) Find the probability that the email is legitimate, given that the 1st program marks
it as legitimate (simplify).

(b) Find the probability that the email is legitimate, given that both programs mark it
as legitimate (simplify).

(c) Bob runs the 1st program and M1 occurs. He updates his probabilities and then
runs the 2nd program. Let P̃ (A) = P (A|M1) be the updated probability function after
running the 1st program. Explain briefly in words whether or not P̃ (L|M2) = P (L|M1∩
M2): is conditioning on M1∩M2 in one step equivalent to first conditioning on M1, then
updating probabilities, and then conditioning on M2?

Solution:
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(a) By Bayes’ rule,

P (L|M1) =
P (M1|L)P (L)

P (M1)
=

9
10
· 1
10

9
10
· 1
10

+ 1
10
· 9
10

=
1

2
.

(b) By Bayes’ rule,

P (L|M1,M2) =
P (M1,M2|L)P (L)

P (M1,M2)
=

( 9
10

)2 · 1
10

( 9
10

)2 · 1
10

+ ( 1
10

)2 · 9
10

=
9

10
.

(c) Yes, they are the same, since Bayes’ rule is coherent. The probability of an event
given various pieces of evidence does not depend on the order in which the pieces of
evidence are incorporated into the updated probabilities.

Independence and conditional independence

30. s© A family has 3 children, creatively named A,B, and C.

(a) Discuss intuitively (but clearly) whether the event “A is older than B” is independent
of the event “A is older than C”.

(b) Find the probability that A is older than B, given that A is older than C.

Solution:

(a) They are not independent: knowing that A is older than B makes it more likely that
A is older than C, as the if A is older than B, then the only way that A can be younger
than C is if the birth order is CAB, whereas the birth orders ABC and ACB are both
compatible with A being older than B. To make this more intuitive, think of an extreme
case where there are 100 children instead of 3, call them A1, . . . , A100. Given that A1

is older than all of A2, A3, . . . , A99, it’s clear that A1 is very old (relatively), whereas
there isn’t evidence about where A100 fits into the birth order.

(b) Writing x > y to mean that x is older than y,

P (A > B|A > C) =
P (A > B,A > C)

P (A > C)
=

1/3

1/2
=

2

3

since P (A > B,A > C) = P (A is the eldest child) = 1/3 (unconditionally, any of the 3
children is equally likely to be the eldest).

31. s© Is it possible that an event is independent of itself? If so, when is this the case?

Solution: LetA be an event. IfA is independent of itself, then P (A) = P (A∩A) = P (A)2,
so P (A) is 0 or 1. So this is only possible in the extreme cases that the event has
probability 0 or 1.

32. s© Consider four nonstandard dice (the Efron dice), whose sides are labeled as follows
(the 6 sides on each die are equally likely).

A: 4, 4, 4, 4, 0, 0

B: 3, 3, 3, 3, 3, 3

C: 6, 6, 2, 2, 2, 2

D: 5, 5, 5, 1, 1, 1

These four dice are each rolled once. Let A be the result for die A, B be the result for
die B, etc.



14 Chapter 2: Conditional probability

(a) Find P (A > B), P (B > C), P (C > D), and P (D > A).

(b) Is the event A > B independent of the event B > C? Is the event B > C independent
of the event C > D? Explain.

Solution:

(a)
P (A > B) = P (A = 4) = 2/3

P (B > C) = P (C = 2) = 2/3

P (C > D) = P (C = 6) + P (C = 2, D = 1) = 2/3

P (D > A) = P (D = 5) + P (D = 1, A = 0) = 2/3

(b) The event A > B is independent of the event B > C since A > B is the same
thing as A = 4, knowledge of which gives no information about B > C (which is the
same thing as C = 2). On the other hand, B > C is not independent of C > D since
P (C > D|C = 2) = 1/2 6= 1 = P (C > D|C 6= 2).

35. s© You are going to play 2 games of chess with an opponent whom you have never
played against before (for the sake of this problem). Your opponent is equally likely to
be a beginner, intermediate, or a master. Depending on which, your chances of winning
an individual game are 90%, 50%, or 30%, respectively.

(a) What is your probability of winning the first game?

(b) Congratulations: you won the first game! Given this information, what is the prob-
ability that you will also win the second game (assume that, given the skill level of your
opponent, the outcomes of the games are independent)?

(c) Explain the distinction between assuming that the outcomes of the games are in-
dependent and assuming that they are conditionally independent given the opponent’s
skill level. Which of these assumptions seems more reasonable, and why?

Solution:

(a) Let Wi be the event of winning the ith game. By the law of total probability,

P (W1) = (0.9 + 0.5 + 0.3)/3 = 17/30.

(b) We have P (W2|W1) = P (W2,W1)/P (W1). The denominator is known from (a),
while the numerator can be found by conditioning on the skill level of the opponent:

P (W1,W2) =
1

3
P (W1,W2|beginner)+

1

3
P (W1,W2|intermediate)+

1

3
P (W1,W2|expert).

Since W1 and W2 are conditionally independent given the skill level of the opponent,
this becomes

P (W1,W2) = (0.92 + 0.52 + 0.32)/3 = 23/60.

So

P (W2|W1) =
23/60

17/30
= 23/34.

(c) Independence here means that knowing one game’s outcome gives no information
about the other game’s outcome, while conditional independence is the same statement
where all probabilities are conditional on the opponent’s skill level. Conditional inde-
pendence given the opponent’s skill level is a more reasonable assumption here. This is
because winning the first game gives information about the opponent’s skill level, which
in turn gives information about the result of the second game.

That is, if the opponent’s skill level is treated as fixed and known, then it may be
reasonable to assume independence of games given this information; with the opponent’s
skill level random, earlier games can be used to help infer the opponent’s skill level, which
affects the probabilities for future games.
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Monty Hall

38. s© (a) Consider the following 7-door version of the Monty Hall problem. There are 7
doors, behind one of which there is a car (which you want), and behind the rest of which
there are goats (which you don’t want). Initially, all possibilities are equally likely for
where the car is. You choose a door. Monty Hall then opens 3 goat doors, and offers
you the option of switching to any of the remaining 3 doors.

Assume that Monty Hall knows which door has the car, will always open 3 goat doors
and offer the option of switching, and that Monty chooses with equal probabilities from
all his choices of which goat doors to open. Should you switch? What is your probability
of success if you switch to one of the remaining 3 doors?

(b) Generalize the above to a Monty Hall problem where there are n ≥ 3 doors, of which
Monty opens m goat doors, with 1 ≤ m ≤ n− 2.

Solution:

(a) Assume the doors are labeled such that you choose door 1 (to simplify notation),
and suppose first that you follow the “stick to your original choice” strategy. Let S be
the event of success in getting the car, and let Cj be the event that the car is behind
door j. Conditioning on which door has the car, we have

P (S) = P (S|C1)P (C1) + · · ·+ P (S|C7)P (C7) = P (C1) =
1

7
.

Let Mijk be the event that Monty opens doors i, j, k. Then

P (S) =
∑
i,j,k

P (S|Mijk)P (Mijk)

(summed over all i, j, k with 2 ≤ i < j < k ≤ 7.) By symmetry, this gives

P (S|Mijk) = P (S) =
1

7

for all i, j, k with 2 ≤ i < j < k ≤ 7. Thus, the conditional probability that the car is
behind 1 of the remaining 3 doors is 6/7, which gives 2/7 for each. So you should switch,
thus making your probability of success 2/7 rather than 1/7.

(b) By the same reasoning, the probability of success for “stick to your original choice”
is 1

n
, both unconditionally and conditionally. Each of the n − m − 1 remaining doors

has conditional probability n−1
(n−m−1)n

of having the car. This value is greater than 1
n

, so

you should switch, thus obtaining probability n−1
(n−m−1)n

of success (both conditionally

and unconditionally).

39. s© Consider the Monty Hall problem, except that Monty enjoys opening door 2 more
than he enjoys opening door 3, and if he has a choice between opening these two doors,
he opens door 2 with probability p, where 1

2
≤ p ≤ 1.

To recap: there are three doors, behind one of which there is a car (which you want),
and behind the other two of which there are goats (which you don’t want). Initially,
all possibilities are equally likely for where the car is. You choose a door, which for
concreteness we assume is door 1. Monty Hall then opens a door to reveal a goat, and
offers you the option of switching. Assume that Monty Hall knows which door has the
car, will always open a goat door and offer the option of switching, and as above assume
that if Monty Hall has a choice between opening door 2 and door 3, he chooses door 2
with probability p (with 1

2
≤ p ≤ 1).

(a) Find the unconditional probability that the strategy of always switching succeeds
(unconditional in the sense that we do not condition on which of doors 2 or 3 Monty
opens).
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(b) Find the probability that the strategy of always switching succeeds, given that Monty
opens door 2.

(c) Find the probability that the strategy of always switching succeeds, given that Monty
opens door 3.

Solution:

(a) Let Cj be the event that the car is hidden behind door j and let W be the event
that we win using the switching strategy. Using the law of total probability, we can find
the unconditional probability of winning in the same way as in class:

P (W ) = P (W |C1)P (C1) + P (W |C2)P (C2) + P (W |C3)P (C3)

= 0 · 1/3 + 1 · 1/3 + 1 · 1/3 = 2/3.

(b) A tree method works well here (delete the paths which are no longer relevant after
the conditioning, and reweight the remaining values by dividing by their sum), or we
can use Bayes’ rule and the law of total probability (as below).

Let Di be the event that Monty opens Door i. Note that we are looking for P (W |D2),
which is the same as P (C3|D2) as we first choose Door 1 and then switch to Door 3. By
Bayes’ rule and the law of total probability,

P (C3|D2) =
P (D2|C3)P (C3)

P (D2)

=
P (D2|C3)P (C3)

P (D2|C1)P (C1) + P (D2|C2)P (C2) + P (D2|C3)P (C3)

=
1 · 1/3

p · 1/3 + 0 · 1/3 + 1 · 1/3

=
1

1 + p
.

(c) The structure of the problem is the same as part (b) (except for the condition that
p ≥ 1/2, which was no needed above). Imagine repainting doors 2 and 3, reversing which
is called which. By part (b) with 1− p in place of p, P (C2|D3) = 1

1+(1−p) = 1
2−p .

First-step analysis and gambler’s ruin

42. s© A fair die is rolled repeatedly, and a running total is kept (which is, at each time,
the total of all the rolls up until that time). Let pn be the probability that the running
total is ever exactly n (assume the die will always be rolled enough times so that the
running total will eventually exceed n, but it may or may not ever equal n).

(a) Write down a recursive equation for pn (relating pn to earlier terms pk in a simple
way). Your equation should be true for all positive integers n, so give a definition of p0
and pk for k < 0 so that the recursive equation is true for small values of n.

(b) Find p7.

(c) Give an intuitive explanation for the fact that pn → 1/3.5 = 2/7 as n→∞.

Solution:

(a) We will find something to condition on to reduce the case of interest to earlier,
simpler cases. This is achieved by the useful strategy of first step anaysis. Let pn be the
probability that the running total is ever exactly n. Note that if, for example, the first
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throw is a 3, then the probability of reaching n exactly is pn−3 since starting from that
point, we need to get a total of n− 3 exactly. So

pn =
1

6
(pn−1 + pn−2 + pn−3 + pn−4 + pn−5 + pn−6),

where we define p0 = 1 (which makes sense anyway since the running total is 0 before
the first toss) and pk = 0 for k < 0.

(b) Using the recursive equation in (a), we have

p1 =
1

6
, p2 =

1

6
(1 +

1

6
), p3 =

1

6
(1 +

1

6
)2,

p4 =
1

6
(1 +

1

6
)3, p5 =

1

6
(1 +

1

6
)4, p6 =

1

6
(1 +

1

6
)5.

Hence,

p7 =
1

6
(p1 + p2 + p3 + p4 + p5 + p6) =

1

6

(
(1 +

1

6
)6 − 1

)
≈ 0.2536.

(c) An intuitive explanation is as follows. The average number thrown by the die is
(total of dots)/6, which is 21/6 = 7/2, so that every throw adds on an average of 7/2.
We can therefore expect to land on 2 out of every 7 numbers, and the probability of
landing on any particular number is 2/7. A mathematical derivation (which was not
requested in the problem) can be given as follows:

pn+1 + 2pn+2 + 3pn+3 + 4pn+4 + 5pn+5 + 6pn+6

=pn+1 + 2pn+2 + 3pn+3 + 4pn+4 + 5pn+5

+ pn + pn+1 + pn+2 + pn+3 + pn+4 + pn+5

=pn + 2pn+1 + 3pn+2 + 4pn+3 + 5pn+4 + 6pn+5

= · · ·
=p−5 + 2p−4 + 3p−3 + 4p−2 + 5p−1 + 6p0 = 6.

Taking the limit of the lefthand side as n goes to ∞, we have

(1 + 2 + 3 + 4 + 5 + 6) lim
n→∞

pn = 6,

so limn→∞ pn = 2/7.

44. s© Calvin and Hobbes play a match consisting of a series of games, where Calvin has
probability p of winning each game (independently). They play with a “win by two””
rule: the first player to win two games more than his opponent wins the match. Find
the probability that Calvin wins the match (in terms of p), in two different ways:

(a) by conditioning, using the law of total probability.

(b) by interpreting the problem as a gambler’s ruin problem.

Solution:

(a) Let C be the event that Calvin wins the match, X ∼ Bin(2, p) be how many of the
first 2 games he wins, and q = 1− p. Then

P (C) = P (C|X = 0)q2 + P (C|X = 1)(2pq) + P (C|X = 2)p2 = 2pqP (C) + p2,

so P (C) = p2

1−2pq
. This can also be written as p2

p2+q2
, since p+ q = 1.

Sanity check : Note that this should (and does) reduce to 1 for p = 1, 0 for p = 0, and
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1
2

for p = 1
2
. Also, it makes sense that the probability of Hobbes winning, which is

1− P (C) = q2

p2+q2
, can also be obtained by swapping p and q.

(b) The problem can be thought of as a gambler’s ruin where each player starts out
with $2. So the probability that Calvin wins the match is

1− (q/p)2

1− (q/p)4
=

(p2 − q2)/p2

(p4 − q4)/p4
=

(p2 − q2)/p2

(p2 − q2)(p2 + q2)/p4
=

p2

p2 + q2
,

which agrees with the above.

Simpson’s paradox

49. s© (a) Is it possible to have events A,B,C such that P (A|C) < P (B|C) and P (A|Cc) <
P (B|Cc), yet P (A) > P (B)? That is, A is less likely than B given that C is true,
and also less likely than B given that C is false, yet A is more likely than B if we’re
given no information about C. Show this is impossible (with a short proof) or find a
counterexample (with a story interpreting A,B,C).

(b) If the scenario in (a) is possible, is it a special case of Simpson’s paradox, equivalent to
Simpson’s paradox, or neither? If it is impossible, explain intuitively why it is impossible
even though Simpson’s paradox is possible.

Solution:

(a) It is not possible, as seen using the law of total probability:

P (A) = P (A|C)P (C) + P (A|Cc)P (Cc) < P (B|C)P (C) + P (B|Cc)P (Cc) = P (B).

(b) In Simpson’s paradox, using the notation from the chapter, we can expand out
P (A|B) and P (A|Bc) using LOTP to condition on C, but the inequality can flip because
of the weights such as P (C|B) on the terms (e.g., Dr. Nick performs a lot more Band-
Aid removals than Dr. Hibbert). In this problem, the weights P (C) and P (Cc) are the
same in both expansions, so the inequality is preserved.

50. s© Consider the following conversation from an episode of The Simpsons:

Lisa: Dad, I think he’s an ivory dealer! His boots are ivory, his hat is
ivory, and I’m pretty sure that check is ivory.

Homer: Lisa, a guy who has lots of ivory is less likely to hurt Stampy
than a guy whose ivory supplies are low.

Here Homer and Lisa are debating the question of whether or not the man (named
Blackheart) is likely to hurt Stampy the Elephant if they sell Stampy to him. They
clearly disagree about how to use their observations about Blackheart to learn about
the probability (conditional on the evidence) that Blackheart will hurt Stampy.

(a) Define clear notation for the various events of interest here.

(b) Express Lisa’s and Homer’s arguments (Lisa’s is partly implicit) as conditional
probability statements in terms of your notation from (a).

(c) Assume it is true that someone who has a lot of a commodity will have less desire
to acquire more of the commodity. Explain what is wrong with Homer’s reasoning that
the evidence about Blackheart makes it less likely that he will harm Stampy.

Solution:

(a) Let H be the event that the man will hurt Stampy, let L be the event that a man
has lots of ivory, and let D be the event that the man is an ivory dealer.
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(b) Lisa observes that L is true. She suggests (reasonably) that this evidence makes D
more likely, i.e., P (D|L) > P (D). Implicitly, she suggests that this makes it likely that
the man will hurt Stampy, i.e.,

P (H|L) > P (H|Lc).

Homer argues that
P (H|L) < P (H|Lc).

(c) Homer does not realize that observing that Blackheart has so much ivory makes
it much more likely that Blackheart is an ivory dealer, which in turn makes it more
likely that the man will hurt Stampy. This is an example of Simpson’s paradox. It may
be true that, controlling for whether or not Blackheart is a dealer, having high ivory
supplies makes it less likely that he will harm Stampy: P (H|L,D) < P (H|Lc, D) and
P (H|L,Dc) < P (H|Lc, Dc). However, this does not imply that P (H|L) < P (H|Lc).

53. s© The book Red State, Blue State, Rich State, Poor State by Andrew Gelman [?]
discusses the following election phenomenon: within any U.S. state, a wealthy voter is
more likely to vote for a Republican than a poor voter, yet the wealthier states tend
to favor Democratic candidates! In short: rich individuals (in any state) tend to vote
for Republicans, while states with a higher percentage of rich people tend to favor
Democrats.

(a) Assume for simplicity that there are only 2 states (called Red and Blue), each
of which has 100 people, and that each person is either rich or poor, and either a
Democrat or a Republican. Make up numbers consistent with the above, showing how
this phenomenon is possible, by giving a 2 × 2 table for each state (listing how many
people in each state are rich Democrats, etc.).

(b) In the setup of (a) (not necessarily with the numbers you made up there), let
D be the event that a randomly chosen person is a Democrat (with all 200 people
equally likely), and B be the event that the person lives in the Blue State. Suppose
that 10 people move from the Blue State to the Red State. Write Pold and Pnew for
probabilities before and after they move. Assume that people do not change parties,
so we have Pnew(D) = Pold(D). Is it possible that both Pnew(D|B) > Pold(D|B) and
Pnew(D|Bc) > Pold(D|Bc) are true? If so, explain how it is possible and why it does not
contradict the law of total probability P (D) = P (D|B)P (B) + P (D|Bc)P (Bc); if not,
show that it is impossible.

Solution:

(a) Here are two tables that are as desired:

Red Dem Rep Total

Rich 5 25 30

Poor 20 50 70

Total 25 75 100

Blue Dem Rep Total

Rich 45 15 60

Poor 35 5 40

Total 80 20 100

In these tables, within each state a rich person is more likely to be a Republican than a
poor person; but the richer state has a higher percentage of Democrats than the poorer
state. Of course, there are many possible tables that work.

The above example is a form of Simpson’s paradox: aggregating the two tables seems
to give different conclusions than conditioning on which state a person is in. Letting
D,W,B be the events that a randomly chosen person is a Democrat, wealthy, and from
the Blue State (respectively), for the above numbers we have P (D|W,B) < P (D|W c, B)
and P (D|W,Bc) < P (D|W c, Bc) (controlling for whether the person is in the Red State
or the Blue State, a poor person is more likely to be a Democrat than a rich person),



20 Chapter 2: Conditional probability

but P (D|W ) > P (D|W c) (stemming from the fact that the Blue State is richer and
more Democratic).

(b) Yes, it is possible. Suppose with the numbers from (a) that 10 people move from the
Blue State to the Red State, of whom 5 are Democrats and 5 are Republicans. Then
Pnew(D|B) = 75/90 > 80/100 = Pold(D|B) and Pnew(D|Bc) = 30/110 > 25/100 =
Pold(D|Bc). Intuitively, this makes sense since the Blue State has a higher percentage
of Democrats initially than the Red State, and the people who move have a percentage
of Democrats which is between these two values.

This result does not contradict the law of total probability since the weights P (B), P (Bc)
also change: Pnew(B) = 90/200, while Pold(B) = 1/2. The phenomenon could not occur
if an equal number of people also move from the Red State to the Blue State (so that
P (B) is kept constant).



Chapter 3: Random variables and their
distributions

PMFs and CDFs

6. s© Benford’s law states that in a very large variety of real-life data sets, the first digit
approximately follows a particular distribution with about a 30% chance of a 1, an 18%
chance of a 2, and in general

P (D = j) = log10

(
j + 1

j

)
, for j ∈ {1, 2, 3, . . . , 9},

where D is the first digit of a randomly chosen element. Check that this is a valid PMF
(using properties of logs, not with a calculator).

Solution: The function P (D = j) is nonnegative and the sum over all values is

9∑
j=1

log10

j + 1

j
=

9∑
j=1

(log10(j + 1)− log10(j)).

All terms cancel except log10 10 − log10 1 = 1 (this is a telescoping series). Since the
values add to 1 and are nonnegative, P (D = j) is a PMF.

11. s© Let X be an r.v. whose possible values are 0, 1, 2, . . . , with CDF F . In some countries,
rather than using a CDF, the convention is to use the function G defined by G(x) =
P (X < x) to specify a distribution. Find a way to convert from F to G, i.e., if F is a
known function, show how to obtain G(x) for all real x.

Solution: Write

G(x) = P (X ≤ x)− P (X = x) = F (x)− P (X = x).

If x is not a nonnegative integer, then P (X = x) = 0 so G(x) = F (x). For x a nonneg-
ative integer,

P (X = x) = F (x)− F (x− 1/2)

since the PMF corresponds to the lengths of the jumps in the CDF. (The 1/2 was chosen
for concreteness; we also have F (x− 1/2) = F (x− a) for any a ∈ (0, 1].) Thus,

G(x) =

{
F (x) if x /∈ {0, 1, 2, . . . }
F (x− 1/2) if x ∈ {0, 1, 2, . . . }.

More compactly, we can also write G(x) = limt→x− F (t), where the − denotes taking
a limit from the left (recall that F is right continuous), and G(x) = F (dxe − 1), where
dxe is the ceiling of x (the smallest integer greater than or equal to x).

Named distributions

18. s© (a) In the World Series of baseball, two teams (call them A and B) play a sequence
of games against each other, and the first team to win four games wins the series. Let

21
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p be the probability that A wins an individual game, and assume that the games are
independent. What is the probability that team A wins the series?

(b) Give a clear intuitive explanation of whether the answer to (a) depends on whether
the teams always play 7 games (and whoever wins the majority wins the series), or the
teams stop playing more games as soon as one team has won 4 games (as is actually
the case in practice: once the match is decided, the two teams do not keep playing more
games).

Solution:

(a) Let q = 1− p. First let us do a direct calculation:

P (A wins) = P (A wins in 4 games) + P (A wins in 5 games)

+P (A wins in 6 games) + P (A wins in 7 games)

= p4 +

(
4

3

)
p4q +

(
5

3

)
p4q2 +

(
6

3

)
p4q3.

To understand how these probabilities are calculated, note for example that

P (A wins in 5) = P (A wins 3 out of first 4) · P (A wins 5th game|A wins 3 out of first 4)

=

(
4

3

)
p3qp.

(Each of the 4 terms in the expression for P (A wins) can also be found using the PMF
of a distribution known as the Negative Binomial, which is introduced in Chapter 4.)

An neater solution is to use the fact (explained in the solution to Part (b)) that we can
assume that the teams play all 7 games no matter what. Let X be the number of wins
for team A, so that X ∼ Bin(7, p). Then

P (X ≥ 4) = P (X = 4) + P (X = 5) + P (X = 6) + P (X = 7)

=

(
7

4

)
p4q3 +

(
7

5

)
p5q2 +

(
7

6

)
p6q + p7,

which looks different from the above but is actually identical as a function of p (as can
be verified by simplifying both expressions as polynomials in p).

(b) The answer to (a) does not depend on whether the teams play all seven games no
matter what. Imagine telling the players to continue playing the games even after the
match has been decided, just for fun: the outcome of the match won’t be affected by
this, and this also means that the probability that A wins the match won’t be affected
by assuming that the teams always play 7 games!

21. s© Let X ∼ Bin(n, p) and Y ∼ Bin(m, p), independent of X. Show that X − Y is not
Binomial.

Solution: A Binomial can’t be negative, but X−Y is negative with positive probability.

25. s© Alice flips a fair coin n times and Bob flips another fair coin n + 1 times, resulting
in independent X ∼ Bin(n, 1

2
) and Y ∼ Bin(n+ 1, 1

2
).

(a) Show that P (X < Y ) = P (n−X < n+ 1− Y ).

(b) Compute P (X < Y ).

Hint: Use (a) and the fact that X and Y are integer-valued.

Solution:
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(a) Note that n−X ∼ Bin(n, 1/2) and n+1−Y ∼ Bin(n+1, 1/2) (we can interpret this
by thinking of counting Tails rather than counting Heads), with n −X and n + 1 − Y
independent. So P (X < Y ) = P (n−X < n+ 1− Y ), since both sides have exactly the
same structure.

(b) We have

P (X < Y ) = P (n−X < n+ 1− Y ) = P (Y < X + 1) = P (Y ≤ X)

since X and Y are integer-valued (e.g., Y < 5 is equivalent to Y ≤ 4). But Y ≤ X is
the complement of X < Y , so P (X < Y ) = 1− P (X < Y ). Thus, P (X < Y ) = 1/2.

28. s© There are n eggs, each of which hatches a chick with probability p (independently).
Each of these chicks survives with probability r, independently. What is the distribution
of the number of chicks that hatch? What is the distribution of the number of chicks that
survive? (Give the PMFs; also give the names of the distributions and their parameters,
if applicable.)

Solution:�� ��©
�� ��x

�� ���� ���� ��©
�� ��©

�� ��x
�� ��©

�� ���� ��©

Let H be the number of eggs that hatch and X be the number of hatchlings that survive.
Think of each egg as a Bernoulli trial, where for H we define “success” to mean hatching,
while for X we define “success” to mean surviving. For example, in the picture above,

where
�� ��© denotes an egg that hatches with the chick surviving,

�� ��x denotes an egg
that hatched but whose chick died, and

�� ��denotes an egg that didn’t hatch, the events
H = 7, X = 5 occurred. By the story of the Binomial, H ∼ Bin(n, p), with PMF

P (H = k) =

(
n

k

)
pk(1− p)n−k

for k = 0, 1, . . . , n.

The eggs independently have probability pr each of hatching a chick that survives. By
the story of the Binomial, we have X ∼ Bin(n, pr), with PMF

P (X = k) =

(
n

k

)
(pr)k(1− pr)n−k

for k = 0, 1, . . . , n.

29. s© A sequence of n independent experiments is performed. Each experiment is a success
with probability p and a failure with probability q = 1 − p. Show that conditional on
the number of successes, all valid possibilities for the list of outcomes of the experiment
are equally likely.

Solution:

Let Xj be 1 if the jth experiment is a success and 0 otherwise, and let X = X1+· · ·+Xn
be the total number of successes. Then for any k and any a1, . . . , an ∈ {0, 1} with
a1 + · · ·+ an = k,

P (X1 = a1, . . . , Xn = an|X = k) =
P (X1 = a1, . . . , Xn = an, X = k)

P (X = k)

=
P (X1 = a1, . . . , Xn = an)

P (X = k)

=
pkqn−k(
n
k

)
pkqn−k

=
1(
n
k

) .
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This does not depend on a1, . . . , an. Thus, for n independent Bernoulli trials, given that
there are exactly k successes, the

(
n
k

)
possible sequences consisting of k successes and

n−k failures are equally likely. Interestingly, the conditional probability above also does
not depend on p (this is closely related to the notion of a sufficient statistic, which is
an important concept in statistical inference).

35. s© Players A and B take turns in answering trivia questions, starting with player A
answering the first question. Each time A answers a question, she has probability p1 of
getting it right. Each time B plays, he has probability p2 of getting it right.

(a) If A answers m questions, what is the PMF of the number of questions she gets
right?

(b) If A answers m times and B answers n times, what is the PMF of the total number
of questions they get right (you can leave your answer as a sum)? Describe exactly
when/whether this is a Binomial distribution.

(c) Suppose that the first player to answer correctly wins the game (with no predeter-
mined maximum number of questions that can be asked). Find the probability that A
wins the game.

Solution:

(a) The r.v. is Bin(m, p1), so the PMF is
(
m
k

)
pk1(1− p1)m−k for k ∈ {0, 1, . . . ,m}.

(b) Let T be the total number of questions they get right. To get a total of k questions
right, it must be that A got 0 and B got k, or A got 1 and B got k − 1, etc. These are
disjoint events so the PMF is

P (T = k) =

k∑
j=0

(
m

j

)
pj1(1− p1)m−j

(
n

k − j

)
pk−j2 (1− p2)n−(k−j)

for k ∈ {0, 1, . . . ,m+ n}, with the usual convention that
(
n
k

)
is 0 for k > n.

This is the Bin(m+ n, p) distribution if p1 = p2 = p, as shown in class (using the story
for the Binomial, or using Vandermonde’s identity). For p1 6= p2, it’s not a Binomial
distribution, since the trials have different probabilities of success; having some trials
with one probability of success and other trials with another probability of success isn’t
equivalent to having trials with some “effective” probability of success.

(c) Let r = P (A wins). Conditioning on the results of the first question for each player,
we have

r = p1 + (1− p1)p2 · 0 + (1− p1)(1− p2)r,

which gives r = p1
1−(1−p1)(1−p2)

= p1
p1+p2−p1p2

.

37. s© A message is sent over a noisy channel. The message is a sequence x1, x2, . . . , xn of
n bits (xi ∈ {0, 1}). Since the channel is noisy, there is a chance that any bit might be
corrupted, resulting in an error (a 0 becomes a 1 or vice versa). Assume that the error
events are independent. Let p be the probability that an individual bit has an error
(0 < p < 1/2). Let y1, y2, . . . , yn be the received message (so yi = xi if there is no error
in that bit, but yi = 1− xi if there is an error there).

To help detect errors, the nth bit is reserved for a parity check: xn is defined to be 0 if
x1 + x2 + · · ·+ xn−1 is even, and 1 if x1 + x2 + · · ·+ xn−1 is odd. When the message is
received, the recipient checks whether yn has the same parity as y1 + y2 + · · ·+ yn−1. If
the parity is wrong, the recipient knows that at least one error occurred; otherwise, the
recipient assumes that there were no errors.
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(a) For n = 5, p = 0.1, what is the probability that the received message has errors
which go undetected?

(b) For general n and p, write down an expression (as a sum) for the probability that
the received message has errors which go undetected.

(c) Give a simplified expression, not involving a sum of a large number of terms, for the
probability that the received message has errors which go undetected.

Hint for (c): Letting

a =
∑

k even, k≥0

(
n

k

)
pk(1− p)n−k and b =

∑
k odd, k≥1

(
n

k

)
pk(1− p)n−k,

the binomial theorem makes it possible to find simple expressions for a + b and a − b,
which then makes it possible to obtain a and b.

Solution:

(a) Note that
∑n
i=1 xi is even. If the number of errors is even (and nonzero), the errors

will go undetected; otherwise,
∑n
i=1 yi will be odd, so the errors will be detected.

The number of errors is Bin(n, p), so the probability of undetected errors when n =
5, p = 0.1 is (

5

2

)
p2(1− p)3 +

(
5

4

)
p4(1− p) ≈ 0.073.

(b) By the same reasoning as in (a), the probability of undetected errors is

∑
k even, k≥2

(
n

k

)
pk(1− p)n−k.

(c) Let a, b be as in the hint. Then

a+ b =
∑
k≥0

(
n

k

)
pk(1− p)n−k = 1,

a− b =
∑
k≥0

(
n

k

)
(−p)k(1− p)n−k = (1− 2p)n.

Solving for a and b gives

a =
1 + (1− 2p)n

2
and b =

1− (1− 2p)n

2
.

∑
k even, k≥0

(
n

k

)
pk(1− p)n−k =

1 + (1− 2p)n

2
.

Subtracting off the possibility of no errors, we have

∑
k even, k≥2

(
n

k

)
pk(1− p)n−k =

1 + (1− 2p)n

2
− (1− p)n.

Sanity check : Note that letting n = 5, p = 0.1 here gives 0.073, which agrees with (a);
letting p = 0 gives 0, as it should; and letting p = 1 gives 0 for n odd and 1 for n even,
which again makes sense.
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Independence of r.v.s

42. s© Let X be a random day of the week, coded so that Monday is 1, Tuesday is 2, etc. (so
X takes values 1, 2, . . . , 7, with equal probabilities). Let Y be the next day after X (again
represented as an integer between 1 and 7). Do X and Y have the same distribution?
What is P (X < Y )?

Solution: Yes, X and Y have the same distribution, since Y is also equally likely to
represent any day of the week. However, X is likely to be less than Y . Specifically,

P (X < Y ) = P (X 6= 7) =
6

7
.

In general, if Z and W are independent r.v.s with the same distribution, then P (Z <
W ) = P (W < Z) by symmetry. Here though, X and Y are dependent, and we have
P (X < Y ) = 6/7, P (X = Y ) = 0, P (Y < X) = 1/7.

Mixed practice

45. s© A new treatment for a disease is being tested, to see whether it is better than the
standard treatment. The existing treatment is effective on 50% of patients. It is believed
initially that there is a 2/3 chance that the new treatment is effective on 60% of patients,
and a 1/3 chance that the new treatment is effective on 50% of patients. In a pilot study,
the new treatment is given to 20 random patients, and is effective for 15 of them.

(a) Given this information, what is the probability that the new treatment is better
than the standard treatment?

(b) A second study is done later, giving the new treatment to 20 new random patients.
Given the results of the first study, what is the PMF for how many of the new patients
the new treatment is effective on? (Letting p be the answer to (a), your answer can be
left in terms of p.)

Solution:

(a) Let B be the event that the new treatment is better than the standard treatment
and let X be the number of people in the study for whom the new treatment is effective.
By Bayes’ rule and LOTP,

P (B|X = 15) =
P (X = 15|B)P (B)

P (X = 15|B)P (B) + P (X = 15|Bc)P (Bc)

=

(
20
15

)
(0.6)15(0.4)5( 2

3
)(

20
15

)
(0.6)15(0.4)5( 2

3
) +

(
20
15

)
(0.5)20( 1

3
)
.

(b) Let Y be how many of the new patients the new treatment is effective for and
p = P (B|X = 15) be the answer from (a). Then for k ∈ {0, 1, . . . , 20},

P (Y = k|X = 15) = P (Y = k|X = 15, B)P (B|X = 15) + P (Y = k|X = 15, Bc)P (Bc|X = 15)

= P (Y = k|B)P (B|X = 15) + P (Y = k|Bc)P (Bc|X = 15)

=

(
20

k

)
(0.6)k(0.4)20−kp+

(
20

k

)
(0.5)20(1− p).

(This distribution is not Binomial. As in the coin with a random bias problem, the
individual outcomes are conditionally independent but not independent. Given the true
probability of effectiveness of the new treatment, the pilot study is irrelevant and the
distribution is Binomial, but without knowing that, we have a mixture of two different
Binomial distributions.)
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Expectations and variances

13. s© Are there discrete random variables X and Y such that E(X) > 100E(Y ) but Y is
greater than X with probability at least 0.99?

Solution: Yes. Consider what happens if we make X usually 0 but on rare occasions,
X is extremely large (like the outcome of a lottery); Y , on the other hand, can be
more moderate. For a simple example, let X be 106 with probability 1/100 and 0 with
probability 99/100, and let Y be the constant 1 (which is a degenerate r.v.).

Named distributions

17. s© A couple decides to keep having children until they have at least one boy and at least
one girl, and then stop. Assume they never have twins, that the “trials” are independent
with probability 1/2 of a boy, and that they are fertile enough to keep producing children
indefinitely. What is the expected number of children?

Solution: Let X be the number of children needed, starting with the 2nd child, to obtain
one whose gender is not the same as that of the firstborn. Then X − 1 is Geom(1/2), so
E(X) = 2. This does not include the firstborn, so the expected total number of children
is E(X + 1) = E(X) + 1 = 3.

Sanity check: An answer of 2 or lower would be a miracle since the couple always needs
to have at least 2 children, and sometimes they need more. An answer of 4 or higher
would be a miracle since 4 is the expected number of children needed such that there is
a boy and a girl with the boy older than the girl.

18. s© A coin is tossed repeatedly until it lands Heads for the first time. Let X be the
number of tosses that are required (including the toss that landed Heads), and let p
be the probability of Heads, so that X ∼ FS(p). Find the CDF of X, and for p = 1/2
sketch its graph.

Solution: By the story of the Geometric, we have X − 1 ∼ Geometric(p). Using this or
directly, the PMF is P (X = k) = p(1− p)k−1 for k ∈ {1, 2, 3, . . . } (and 0 otherwise).
The CDF can be obtained by adding up the PMF (from k = 1 to k = bxc, where bxc is
the greatest integer less than or equal to x). We can also see directly that

P (X ≤ x) = 1− P (X > x) = 1− (1− p)bxc

for x ≥ 1, since X > x says that the first bxc flips land tails. The CDF is 0 for x < 1.
For a fair coin, the CDF is F (x) = 1 − 1

2bxc
for x ≥ 1, and F (x) = 0 for x < 1, as

illustrated below.

27
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20. s© Let X ∼ Bin(n, 1
2
) and Y ∼ Bin(n + 1, 1

2
), independently. (This problem has been

revised from that in the first printing of the book, to avoid overlap with Exercise 3.25.)

(a) Let V = min(X,Y ) be the smaller of X and Y , and let W = max(X,Y ) be the larger
of X and Y . (If X = Y occurs, then V = W = X = Y occurs.) Find E(V ) + E(W ).

(b) Show that E|X − Y | = E(W )− E(V ), with notation as in (a).

(c) Compute Var(n−X) in two different ways.

Solution:

(a) Note that V +W = X + Y (since adding the smaller and the larger of two numbers
is the same as adding both numbers). So by linearity,

E(V ) + E(W ) = E(V +W ) = E(X + Y ) = E(X) + E(Y ) = (2n+ 1)/2 = n+
1

2
.

(b) Note that |X − Y | = W − V (since the absolute difference between two numbers is
the larger number minus the smaller number). So

E|X − Y | = E(W − V ) = E(W )− E(V ).

(c) We have n−X ∼ Bin(n, 1/2), so Var(n−X) = n/4. Alternatively, by properties of
variance we have Var(n−X) = Var(n) + Var(−X) = Var(X) = n/4.

21. s© Raindrops are falling at an average rate of 20 drops per square inch per minute. What
would be a reasonable distribution to use for the number of raindrops hitting a particular
region measuring 5 inches2 in t minutes? Why? Using your chosen distribution, compute
the probability that the region has no rain drops in a given 3-second time interval.

Solution: A reasonable choice of distribution is Pois(λt), where λ = 20 · 5 = 100 (the
average number of raindrops per minute hitting the region). Assuming this distribution,

P (no raindrops in 1/20 of a minute) = e−100/20(100/20)0/0! = e−5 ≈ 0.0067.

22. s© Alice and Bob have just met, and wonder whether they have a mutual friend. Each
has 50 friends, out of 1000 other people who live in their town. They think that it’s
unlikely that they have a friend in common, saying “each of us is only friends with 5%
of the people here, so it would be very unlikely that our two 5%’s overlap.”
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Assume that Alice’s 50 friends are a random sample of the 1000 people (equally likely
to be any 50 of the 1000), and similarly for Bob. Also assume that knowing who Alice’s
friends are gives no information about who Bob’s friends are.

(a) Compute the expected number of mutual friends Alice and Bob have.

(b) Let X be the number of mutual friends they have. Find the PMF of X.

(c) Is the distribution of X one of the important distributions we have looked at? If so,
which?

Solution:

(a) Let Ij be the indicator r.v. for the jth person being a mutual friend. Then

E

(
1000∑
j=1

Ij

)
= 1000E(I1) = 1000P (I1 = 1) = 1000 ·

(
5

100

)2

= 2.5.

(b) Condition on who Alice’s friends are, and then count the number of ways that Bob
can be friends with exactly k of them. This gives

P (X = k) =

(
50
k

)(
950

50−k

)(
1000
50

)
for 0 ≤ k ≤ 50 (and 0 otherwise).

(c) Yes, it is the Hypergeometric distribution, as shown by the PMF from (b) or by
thinking of “tagging” Alice’s friends (like the elk) and then seeing how many tagged
people there are among Bob’s friends.

24. s© Calvin and Hobbes play a match consisting of a series of games, where Calvin has
probability p of winning each game (independently). They play with a “win by two”
rule: the first player to win two games more than his opponent wins the match. Find
the expected number of games played.

Hint: Consider the first two games as a pair, then the next two as a pair, etc.

Solution: Think of the first 2 games, the 3rd and 4th, the 5th and 6th, etc. as “mini-
matches.” The match ends right after the first mini-match which isn’t a tie. The proba-
bility of a mini-match not being a tie is p2 + q2, so the number of mini-matches needed
is 1 plus a Geom(p2 + q2) r.v. Thus, the expected number of games is 2

p2+q2
.

Sanity check : For p = 0 or p = 1, this reduces to 2. The expected number of games is
maximized when p = 1

2
, which makes sense intuitively. Also, it makes sense that the

result is symmetric in p and q.

26. s© Let X and Y be Pois(λ) r.v.s, and T = X + Y . Suppose that X and Y are not
independent, and in fact X = Y . Prove or disprove the claim that T ∼ Pois(2λ) in this
scenario.

Solution: The r.v. T = 2X is not Poisson: it can only take even values 0, 2, 4, 6, . . . ,
whereas any Poisson r.v. has positive probability of being any of 0, 1, 2, 3, . . . .

Alternatively, we can compute the PMF of 2X, or note that Var(2X) = 4λ 6= 2λ =
E(2X), whereas for any Poisson r.v. the variance equals the mean.

29. s© A discrete distribution has the memoryless property if for X a random variable with
that distribution, P (X ≥ j + k|X ≥ j) = P (X ≥ k) for all nonnegative integers j, k.

(a) If X has a memoryless distribution with CDF F and PMF pi = P (X = i), find an
expression for P (X ≥ j + k) in terms of F (j), F (k), pj , pk.
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(b) Name a discrete distribution which has the memoryless property. Justify your answer
with a clear interpretation in words or with a computation.

Solution:

(a) By the memoryless property,

P (X ≥ k) = P (X ≥ j + k|X ≥ j) =
P (X ≥ j + k,X ≥ j)

P (X ≥ j) =
P (X ≥ j + k)

P (X ≥ j) ,

so
P (X ≥ j + k) = P (X ≥ j)P (X ≥ k) = (1− F (j) + pj)(1− F (k) + pk).

(b) The Geometric distribution is memoryless (in fact, it turns out to be essentially the
only discrete memoryless distribution!). This follows from the story of the Geometric:
consider Bernoulli trials, waiting for the first success (and defining waiting time to be
the number of failures before the first success). Say we have already had j failures
without a success. Then the additional waiting time from that point forward has the
same distribution as the original waiting time (the Bernoulli trials neither are conspiring
against the experimenter nor act as if he or she is due for a success: the trials are
independent). A calculation agrees: for X ∼ Geom(p),

P (X ≥ j + k|X ≥ j) =
P (X ≥ j + k)

P (X ≥ j) =
qj+k

qj
= qk = P (X ≥ k).

Indicator r.v.s

30. s© Randomly, k distinguishable balls are placed into n distinguishable boxes, with all
possibilities equally likely. Find the expected number of empty boxes.

Solution:

ooo︸ ︷︷ ︸
I1=0

︸ ︷︷ ︸
I2=1

o︸ ︷︷ ︸
I3=0

oo︸ ︷︷ ︸
I4=0

ooo︸ ︷︷ ︸
I5=0

︸ ︷︷ ︸
I6=1

︸ ︷︷ ︸
I7=1

o︸ ︷︷ ︸
I8=0

ooo︸ ︷︷ ︸
I9=0

Let Ij be the indicator random variable for the jth box being empty, so I1 + · · · + In
is the number of empty boxes (the above picture illustrates a possible outcome with 3
empty boxes, for n = 9, k = 13). Then E(Ij) = P (Ij = 1) = (1− 1/n)k. By linearity,

E

(
n∑
j=1

Ij

)
=

n∑
j=1

E(Ij) = n(1− 1/n)k.

31. s© A group of 50 people are comparing their birthdays (as usual, assume their birthdays
are independent, are not February 29, etc.). Find the expected number of pairs of people
with the same birthday, and the expected number of days in the year on which at least
two of these people were born.

Solution: Creating an indicator r.v. for each pair of people, we have that the expected
number of pairs of people with the same birthday is

(
50
2

)
1

365
by linearity. Now create an

indicator r.v. for each day of the year, taking the value 1 if at least two of the people
were born that day (and 0 otherwise). Then the expected number of days on which at
least two people were born is 365

(
1− ( 364

365
)50 − 50 · 1

365
· ( 364

365
)49
)
.

32. s© A group of n ≥ 4 people are comparing their birthdays (as usual, assume their
birthdays are independent, are not February 29, etc.). Let Iij be the indicator r.v. of i
and j having the same birthday (for i < j). Is I12 independent of I34? Is I12 independent
of I13? Are the Iij independent?
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Solution: The indicator I12 is independent of the indicator I34 since knowing the birth-
days of persons 1 and 2 gives us no information about the birthdays of persons 3 and
4. Also, I12 is independent of I13 since even though both of these indicators involve
person 1, knowing that persons 1 and 2 have the same birthday gives us no information
about whether persons 1 and 3 have the same birthday (this relies on the assumption
that the 365 days are equally likely). In general, the indicator r.v.s here are pairwise
independent. But they are not independent since, for example, if person 1 has the same
birthday as person 2 and person 1 has the same birthday as person 3, then persons 2
and 3 must have the same birthday.

33. s© A total of 20 bags of Haribo gummi bears are randomly distributed to 20 students.
Each bag is obtained by a random student, and the outcomes of who gets which bag
are independent. Find the average number of bags of gummi bears that the first three
students get in total, and find the average number of students who get at least one bag.

Solution: Let Xj be the number of bags of gummi bears that the jth student gets,
and let Ij be the indicator of Xj ≥ 1. Then Xj ∼ Bin(20, 1

20
), so E(Xj) = 1. So

E(X1 +X2 +X3) = 3 by linearity.

The average number of students who get at least one bag is

E(I1 + · · ·+ I20) = 20E(I1) = 20P (I1 = 1) = 20

(
1−

(
19

20

)20
)
.

40. s© There are 100 shoelaces in a box. At each stage, you pick two random ends and
tie them together. Either this results in a longer shoelace (if the two ends came from
different pieces), or it results in a loop (if the two ends came from the same piece).
What are the expected number of steps until everything is in loops, and the expected
number of loops after everything is in loops? (This is a famous interview problem; leave
the latter answer as a sum.)

Hint: For each step, create an indicator r.v. for whether a loop was created then, and
note that the number of free ends goes down by 2 after each step.

Solution: Initially there are 200 free ends. The number of free ends decreases by 2 each
time since either two separate pieces are tied together, or a new loop is formed. So
exactly 100 steps are always needed. Let Ij be the indicator r.v. for whether a new loop
is formed at the jth step. At the time when there are n unlooped pieces (so 2n ends),
the probability of forming a new loop is n

(2n2 )
= 1

2n−1
since any 2 ends are equally likely

to be chosen, and there are n ways to pick both ends of 1 of the n pieces. By linearity,
the expected number of loops is

100∑
n=1

1

2n− 1
.

47. s© A hash table is being used to store the phone numbers of k people, storing each
person’s phone number in a uniformly random location, represented by an integer be-
tween 1 and n (see Exercise 25 from Chapter 1 for a description of hash tables). Find
the expected number of locations with no phone numbers stored, the expected number
with exactly one phone number, and the expected number with more than one phone
number (should these quantities add up to n?).

Solution: Let Ij be an indicator random variable equal to 1 if the jth location is empty,
and 0 otherwise, for 1 ≤ j ≤ n. Then P (Ij = 1) = (1− 1/n)k, since the phone numbers
are stored in independent random locations. Then I1 + · · ·+ In is the number of empty
locations. By linearity of expectation, we have

E

(
n∑
j=1

Ij

)
=

n∑
j=1

E(Ij) = n(1− 1/n)k.
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Similarly, the probability of a specific location having exactly 1 phone number stored is
k
n

(1 − 1
n

)k−1, so the expected number of such locations is k(1 − 1/n)k−1. By linearity,
the sum of the three expected values is n, so the expected number of locations with
more than one phone number is n− n(1− 1/n)k − k(1− 1/n)k−1.

50. s© Consider the following algorithm, known as bubble sort, for sorting a list of n distinct
numbers into increasing order. Initially they are in a random order, with all orders
equally likely. The algorithm compares the numbers in positions 1 and 2, and swaps
them if needed, then it compares the new numbers in positions 2 and 3, and swaps
them if needed, etc., until it has gone through the whole list. Call this one “sweep”
through the list. After the first sweep, the largest number is at the end, so the second
sweep (if needed) only needs to work with the first n− 1 positions. Similarly, the third
sweep (if needed) only needs to work with the first n − 2 positions, etc. Sweeps are
performed until n− 1 sweeps have been completed or there is a swapless sweep.

For example, if the initial list is 53241 (omitting commas), then the following 4 sweeps
are performed to sort the list, with a total of 10 comparisons:

53241→ 35241→ 32541→ 32451→ 32415.

32415→ 23415→ 23415→ 23145.

23145→ 23145→ 21345.

21345→ 12345.

(a) An inversion is a pair of numbers that are out of order (e.g., 12345 has no inversions,
while 53241 has 8 inversions). Find the expected number of inversions in the original
list.

(b) Show that the expected number of comparisons is between 1
2

(
n
2

)
and

(
n
2

)
.

Hint: For one bound, think about how many comparisons are made if n− 1 sweeps are
done; for the other bound, use Part (a).

Solution:

(a) There are
(
n
2

)
pairs of numbers, each of which is equally likely to be in either order.

So by symmetry, linearity, and indicator r.v.s, the expected number of inversions is 1
2

(
n
2

)
.

(b) Let X be the number of comparisons and V be the number of inversions. On the
one hand, X ≥ V since every inversion must be repaired. So E(X) ≥ E(V ) = 1

2

(
n
2

)
.

On the other hand, there are n− 1 comparisons needed in the first sweep, n− 2 in the
second sweep (if needed), . . . , and 1 in the (n− 1)st sweep (if needed). So

X ≤ (n− 1) + (n− 2) + · · ·+ 2 + 1 =
n(n− 1)

2
=

(
n

2

)
.

Hence, 1
2

(
n
2

)
≤ E(X) ≤

(
n
2

)
.

52. s© An urn contains red, green, and blue balls. Balls are chosen randomly with replace-
ment (each time, the color is noted and then the ball is put back). Let r, g, b be the
probabilities of drawing a red, green, blue ball, respectively (r + g + b = 1).

(a) Find the expected number of balls chosen before obtaining the first red ball, not
including the red ball itself.

(b) Find the expected number of different colors of balls obtained before getting the
first red ball.

(c) Find the probability that at least 2 of n balls drawn are red, given that at least 1 is
red.
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Solution:

(a) The distribution is Geom(r), so the expected value is 1−r
r
.

(b) Use indicator random variables: let I1 be 1 if green is obtained before red, and 0
otherwise, and define I2 similarly for blue. Then

E(I1) = P (green before red) =
g

g + r

since “green before red” means that the first nonblue ball is green. Similarly, E(I2) =
b/(b+ r), so the expected number of colors obtained before getting red is

E(I1 + I2) =
g

g + r
+

b

b+ r
.

(c) By definition of conditional probability,

P (at least 2 red| at least 1 red) =
P (at least 2 red)

P (at least 1 red)
=

1− (1− r)n − nr(1− r)n−1

1− (1− r)n .

53. s© Job candidates C1, C2, . . . are interviewed one by one, and the interviewer compares
them and keeps an updated list of rankings (if n candidates have been interviewed so
far, this is a list of the n candidates, from best to worst). Assume that there is no limit
on the number of candidates available, that for any n the candidates C1, C2, . . . , Cn are
equally likely to arrive in any order, and that there are no ties in the rankings given by
the interview.

Let X be the index of the first candidate to come along who ranks as better than the
very first candidate C1 (so CX is better than C1, but the candidates after 1 but prior
to X (if any) are worse than C1. For example, if C2 and C3 are worse than C1 but C4

is better than C1, then X = 4. All 4! orderings of the first 4 candidates are equally
likely, so it could have happened that the first candidate was the best out of the first 4
candidates, in which case X > 4.

What is E(X) (which is a measure of how long, on average, the interviewer needs to
wait to find someone better than the very first candidate)?

Hint: Find P (X > n) by interpreting what X > n says about how C1 compares with
other candidates, and then apply the result of Theorem 4.4.8.

Solution: For n ≥ 2, P (X > n) is the probability that none of C2, C3, . . . , Cn are better
candidates than C1, i.e., the probability that the first candidate is the highest ranked
out of the first n. Since any ordering of the first n candidates is equally likely, each of the
first n is equally likely to be the highest ranked of the first n, so P (X > n) = 1/n. For
n = 0 or n = 1, P (X > n) = 1 (note that it does not make sense to say the probability
is 1/n when n = 0). By Theorem 4.4.8,

E(X) =

∞∑
n=0

P (X > n) = P (X > 0) +

∞∑
n=1

P (X > n) = 1 +

∞∑
n=1

1

n
=∞

since the series is the harmonic series, which diverges.

How can the average waiting time to find someone better than the first candidate be
infinite? In the real world, there are always only finitely many candidates so the expected
waiting time is finite, just as in the St. Petersburg paradox there must in reality be an
upper bound on the number of rounds. The harmonic series diverges very slowly, so
even with millions of job candidates the average waiting time would not be very large.
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LOTUS

56. s© For X ∼ Pois(λ), find E(X!) (the average factorial of X), if it is finite.

Solution: By LOTUS,

E(X!) = e−λ
∞∑
k=0

k!
λk

k!
=

e−λ

1− λ ,

for 0 < λ < 1 since this is a geometric series (and E(X!) is infinite if λ ≥ 1).

59. s© Let X ∼ Geom(p) and let t be a constant. Find E(etX), as a function of t (this is
known as the moment generating function; we will see in Chapter 6 how this function
is useful).

Solution: Letting q = 1− p, we have

E(etX) = p

∞∑
k=0

etkqk = p

∞∑
k=0

(qet)k =
p

1− qet ,

for qet < 1 (while for qet ≥ 1, the series diverges).

60. s© The number of fish in a certain lake is a Pois(λ) random variable. Worried that there
might be no fish at all, a statistician adds one fish to the lake. Let Y be the resulting
number of fish (so Y is 1 plus a Pois(λ) random variable).

(a) Find E(Y 2).

(b) Find E(1/Y ).

Solution:

(a) We have Y = X + 1 with X ∼ Pois(λ), so Y 2 = X2 + 2X + 1. So

E(Y 2) = E(X2 + 2X + 1) = E(X2) + 2E(X) + 1 = (λ+ λ2) + 2λ+ 1 = λ2 + 3λ+ 1,

since E(X2) = Var(X) + (EX)2 = λ+ λ2.

(b) By LOTUS,

E

(
1

Y

)
= E

(
1

X + 1

)
=

∞∑
k=0

1

k + 1
e−λ

λk

k!
.

Using the identity k!(k + 1) = (k + 1)! and the Taylor series for eλ, this becomes

e−λ
∞∑
k=0

λk

(k + 1)!
=
e−λ

λ

∞∑
k=0

λk+1

(k + 1)!
=
e−λ

λ
(eλ − 1) =

1

λ
(1− e−λ).

61. s© Let X be a Pois(λ) random variable, where λ is fixed but unknown. Let θ = e−3λ,
and suppose that we are interested in estimating θ based on the data. Since X is what
we observe, our estimator is a function of X, call it g(X). The bias of the estimator g(X)
is defined to be E(g(X))− θ, i.e., how far off the estimate is on average; the estimator
is unbiased if its bias is 0.

(a) For estimating λ, the r.v. X itself is an unbiased estimator. Compute the bias of the
estimator T = e−3X . Is it unbiased for estimating θ?

(b) Show that g(X) = (−2)X is an unbiased estimator for θ. (In fact, it turns out to be
the only unbiased estimator for θ.)

(c) Explain intuitively why g(X) is a silly choice for estimating θ, despite (b), and show
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how to improve it by finding an estimator h(X) for θ that is always at least as good as
g(X) and sometimes strictly better than g(X). That is,

|h(X)− θ| ≤ |g(X)− θ|,

with the inequality sometimes strict.

Solution:

(a) The estimator is biased, with bias given by

E(e−3X)− θ =

∞∑
k=0

e−3k λ
k

k!
e−λ − e−3λ

= e−λ
∞∑
k=0

(e−3λ)k

k!
− e−3λ

= e−λee
−3λ − e−3λ

= e−3λ(e(2+e
−3)λ − 1) 6= 0.

(b) The estimator g(X) = (−2)X is unbiased since

E(−2)X − θ =

∞∑
k=0

(−2)k
λk

k!
e−λ − e−3λ

= e−λe−2λ − e−3λ = 0.

(c) The estimator g(X) is silly in the sense that it is sometimes negative, whereas e−3λ

is positive. One simple way to get a better estimator is to modify g(X) to make it
nonnegative, by letting h(X) = 0 if g(X) < 0 and h(X) = g(X) otherwise.

Better yet, note that e−3λ is between 0 and 1 since λ > 0, so letting h(X) = 0 if
g(X) < 0 and h(X) = 1 if g(X) > 0 is clearly more sensible than using g(X).

Poisson approximation

62. s© Law school courses often have assigned seating to facilitate the Socratic method.
Suppose that there are 100 first-year law students, and each takes the same two courses:
Torts and Contracts. Both are held in the same lecture hall (which has 100 seats), and
the seating is uniformly random and independent for the two courses.

(a) Find the probability that no one has the same seat for both courses (exactly; you
should leave your answer as a sum).

(b) Find a simple but accurate approximation to the probability that no one has the
same seat for both courses.

(c) Find a simple but accurate approximation to the probability that at least two stu-
dents have the same seat for both courses.

Solution:

(a) Let N be the number of students in the same seat for both classes. The problem has
essentially the same structure as the matching problem. Let Ej be the event that the
jth student sits in the same seat in both classes. Then

P (N = 0) = 1− P

(
100⋃
j=1

Ej

)
.
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By symmetry, inclusion-exclusion gives

P

(
100⋃
j=1

Ej

)
=

100∑
j=1

(−1)j−1

(
100

j

)
P

(
j⋂

k=1

Ek

)
.

The j-fold intersection represents j particular students sitting pat throughout the two
lectures, which occurs with probability (100− j)!/100!. So

P

(
100⋃
j=1

Ej

)
=

100∑
j=1

(−1)j−1

(
100

j

)
(100− j)!

100!
=

100∑
j=1

(−1)j−1/i!

P (N = 0) = 1−
100∑
j=1

(−1)j−1

j!
=

100∑
j=0

(−1)j

j!
.

(b) Define Ii to be the indicator for student i having the same seat in both courses, so
that N =

∑100
i=1 Ii. Then P (Ii = 1) = 1/100, and the Ii are weakly dependent because

P ((Ii = 1) ∩ (Ij = 1)) =

(
1

100

)(
1

99

)
≈

(
1

100

)2

= P (Ii = 1)P (Ij = 1).

So N is close to Pois(λ) in distribution, where λ = E(N) = 100E(I1) = 1. Thus,

P (N = 0) ≈ e−110/0! = e−1 ≈ 0.37.

This agrees with the result of (a), which we recognize as the Taylor series for ex, evalu-
ated at x = −1.

(c) Using a Poisson approximation, we have

P (N ≥ 2) = 1− P (N = 0)− P (N = 1) ≈ 1− e−1 − e−1 = 1− 2e−1 ≈ 0.26.

63. s© A group of n people play “Secret Santa” as follows: each puts his or her name on a
slip of paper in a hat, picks a name randomly from the hat (without replacement), and
then buys a gift for that person. Unfortunately, they overlook the possibility of drawing
one’s own name, so some may have to buy gifts for themselves (on the bright side, some
may like self-selected gifts better). Assume n ≥ 2.

(a) Find the expected number of people who pick their own names.

(b) Find the expected number of pairs of people, A and B, such that A picks B’s name
and B picks A’s name (where A 6= B and order doesn’t matter).

(c) What is the approximate distribution of X if n is large (specify the parameter value
or values)? What does P (X = 0) converge to as n→∞?

Solution:

(a) Let Ij be the indicator r.v. for the jth person picking his or her own name. Then
E(Ij) = P (Ij = 1) = 1

n
. By linearity, the expected number is n · E(Ij) = 1.

(b) Let Iij the the indicator r.v. for the ith and jth persons having such a swap (for
i < j). Then E(Iij) = P (i picks j)P (j picks i|i picks j) = 1

n(n−1)
.

Alternatively, we can get this by counting: there are n! permutations for who picks
whom, of which (n − 2)! have i pick j and j pick i, giving (n−2)!

n!
= 1

n(n−1)
. So by

linearity, the expected number is
(
n
2

)
· 1
n(n−1)

= 1
2
.

(c) By the Poisson paradigm, X is approximately Pois(1) for large n. As n → ∞,
P (X = 0)→ 1/e, which is the probability of a Pois(1) r.v. being 0.
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65. s© Ten million people enter a certain lottery. For each person, the chance of winning is
one in ten million, independently.

(a) Find a simple, good approximation for the PMF of the number of people who win
the lottery.

(b) Congratulations! You won the lottery. However, there may be other winners. Assume
now that the number of winners other than you is W ∼ Pois(1), and that if there is
more than one winner, then the prize is awarded to one randomly chosen winner. Given
this information, find the probability that you win the prize (simplify).

Solution:

(a) Let X be the number of people who win. Then

E(X) =
107

107
= 1.

A Poisson approximation is very good here since X is the number of “successes” for a
very large number of independent trials where the probability of success on each trial is
very low. So X is approximately Pois(1), and for k a nonnegative integer,

P (X = k) ≈ 1

e · k!
.

(b) Let A be the event that you win the prize, and condition on W :

P (A) =

∞∑
k=0

P (A|W = k)P (W = k) =
1

e

∞∑
k=0

1

k + 1

1

k!
=

1

e

∞∑
k=0

1

(k + 1)!
=
e− 1

e
= 1− 1

e
.

*Existence

68. s© Each of 111 people names his or her 5 favorite movies out of a list of 11 movies.

(a) Alice and Bob are 2 of the 111 people. Assume for this part only that Alice’s 5
favorite movies out of the 11 are random, with all sets of 5 equally likely, and likewise
for Bob, independently. Find the expected number of movies in common to Alice’s and
Bob’s lists of favorite movies.

(b) Show that there are 2 movies such that at least 21 of the people name both of these
movies as favorites.

Solution:

(a) Let Ij be the indicator for the jth movie being on both lists, for 1 ≤ j ≤ 11. By
symmetry and linearity, the desired expected value is

11

(
5

11

)2

=
25

11
.

(b) Choose 2 random movies (one at a time, without replacement). Let X be the number
of people who name both of these movies. Creating an indicator r.v. for each person,

E(X) = 111P (Alice names both random movies) = 111

(
5

11
· 4

10

)
=

(
111

110

)
20 > 20,

since the first chosen movie has a 5/11 chance of being on Alice’s list and given that it
is, the second chosen movie has a 4/10 chance of being on the list (or we can use the
Hypergeometric PMF after “tagging” Alice’s favorite movies).

Thus, there must exist 2 movies such that at least 21 of the people name both of them
as favorites.
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69. s© The circumference of a circle is colored with red and blue ink such that 2/3 of the
circumference is red and 1/3 is blue. Prove that no matter how complicated the coloring
scheme is, there is a way to inscribe a square in the circle such that at least three of the
four corners of the square touch red ink.

Solution: Consider a random square, obtained by picking a uniformly random point on
the circumference and inscribing a square with that point a corner; say that the corners
are U1, . . . , U4, in clockwise order starting with the initial point chosen. Let Ij be the
indicator r.v. of Uj touching red ink. By symmetry, E(Ij) = 2/3 so by linearity, the
expected number of corners touching red ink is 8/3. Thus, there must exist an inscribed
square with at least 8/3 of its corners touching red ink. Such a square must have at
least 3 of its corners touching red ink.

70. s© A hundred students have taken an exam consisting of 8 problems, and for each
problem at least 65 of the students got the right answer. Show that there exist two
students who collectively got everything right, in the sense that for each problem, at
least one of the two got it right.

Solution: Say that the “score” of a pair of students is how many problems at least one of
them got right. The expected score of a random pair of students (with all pairs equally
likely) is at least 8(1 − 0.352) = 7.02, as seen by creating an indicator r.v. for each
problem for the event that at least one student in the pair got it right. (We can also
improve the 0.352 to 35

100
· 34
99

since the students are sampled without replacement.) So
some pair of students must have gotten a score of at least 7.02, which means that they
got a score of at least 8.

71. s© Ten points in the plane are designated. You have ten circular coins (of the same
radius). Show that you can position the coins in the plane (without stacking them) so
that all ten points are covered.

Hint: Consider a honeycomb tiling of the plane (this is a way to divide the plane into
hexagons). You can use the fact from geometry that if a circle is inscribed in a hexagon
then the ratio of the area of the circle to the area of the hexagon is π

2
√
3
> 0.9.

Solution: Take a uniformly random honeycomb tiling (to do this, start with any honey-
comb tiling and then shift it horizontally and vertically by uniformly random amounts;
by periodicity there is an upper bound on how large the shifts need to be). Choose
the tiling so that a circle the same size as one of the coins can be inscribed in each
hexagon. Then inscribe a circle in each hexagon, and let Ij be the indicator r.v. for the
jth point being contained inside one the circles. We have E(Ij) > 0.9 by the geometric
fact mentioned above, so by linearity E(I1 + · · ·+ I10) > 9. Thus, there is a positioning
of the honeycomb tiling such that all 10 points are contained inside the circles. Putting
coins on top of the circles containing the points, we can cover all ten points.

72. s© Let S be a set of binary strings a1 . . . an of length n (where juxtaposition means
concatenation). We call S k-complete if for any indices 1 ≤ i1 < · · · < ik ≤ n and any
binary string b1 . . . bk of length k, there is a string s1 . . . sn in S such that si1si2 . . . sik =
b1b2 . . . bk. For example, for n = 3, the set S = {001, 010, 011, 100, 101, 110} is 2-complete
since all 4 patterns of 0’s and 1’s of length 2 can be found in any 2 positions. Show that
if
(
n
k

)
2k(1− 2−k)m < 1, then there exists a k-complete set of size at most m.

Solution: Generate m random strings of length n independently, using fair coin flips to
determine each bit. Let S be the resulting random set of strings. If we can show that
the probability that S is k-complete is positive, then we know that a k-complete set of
size at most m must exist. Let A be the event that S is k-complete. Let N =

(
n
k

)
2k

and let A1, . . . , AN be the events of the form “S contains a string which is b1 . . . bk at
coordinates i1 < · · · < ik,” in any fixed order. For example, if k = 3 then A1 could be
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the event “S has an element which is 110 at positions 1, 2, 3.” Then P (A) > 0 since

P (Ac) = P (∪Nj=1A
c
j) ≤

N∑
j=1

P (Acj) = N(1− 2−k)m < 1.

Mixed practice

75. s© A group of 360 people is going to be split into 120 teams of 3 (where the order of
teams and the order within a team don’t matter).

(a) How many ways are there to do this?

(b) The group consists of 180 married couples. A random split into teams of 3 is chosen,
with all possible splits equally likely. Find the expected number of teams containing
married couples.

Solution:

(a) Imagine lining the people up and saying the first 3 are a team, the next 3 are a
team, etc. This overcounts by a factor of (3!)120 · 120! since the order within teams and
the order of teams don’t matter. So the number of ways is

360!

6120 · 120!
.

(b) Let Ij be the indicator for the jth team having a married couple (taking the teams
to be chosen one at a time, or with respect to a random ordering). By symmetry and
linearity, the desired quantity is 120E(I1). We have

E(I1) = P (first team has a married couple) =
180 · 358(

360
3

) ,

since the first team is equally likely to be any 3 of the people, and to have a married
couple on the team we need to choose a couple and then any third person. So the
expected value is

120 · 180 · 358(
360
3

) .

(This simplifies to 120·180·358
360·359·358/6 = 360

359
. Another way to find the probability that the

first team has a married couple is to note that any particular pair in the team has
probability 1

359
of being married to each other, so since there are 3 disjoint possibilities

the probability is 3
359

.)

76. s© The gambler de Méré asked Pascal whether it is more likely to get at least one six in
4 rolls of a die, or to get at least one double-six in 24 rolls of a pair of dice. Continuing
this pattern, suppose that a group of n fair dice is rolled 4 · 6n−1 times.

(a) Find the expected number of times that “all sixes” is achieved (i.e., how often among
the 4 · 6n−1 rolls it happens that all n dice land 6 simultaneously).

(b) Give a simple but accurate approximation of the probability of having at least one
occurrence of “all sixes”, for n large (in terms of e but not n).

(c) de Méré finds it tedious to re-roll so many dice. So after one normal roll of the n
dice, in going from one roll to the next, with probability 6/7 he leaves the dice in the
same configuration and with probability 1/7 he re-rolls. For example, if n = 3 and the
7th roll is (3, 1, 4), then 6/7 of the time the 8th roll remains (3, 1, 4) and 1/7 of the
time the 8th roll is a new random outcome. Does the expected number of times that
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“all sixes” is achieved stay the same, increase, or decrease (compared with (a))? Give a
short but clear explanation.

Solution:

(a) Let Ij be the indicator r.v. for the event “all sixes” on the jth roll. Then E(Ij) =
1/6n, so the expected value is 4 · 6n−1/6n = 2/3.

(b) By a Poisson approximation with λ = 2/3 (the expected value from (a)), the prob-
ability is approximately 1− e−2/3.

(c) The answer stays the same, by the same reasoning as in (a), since linearity of
expectation holds even for dependent r.v.s.

77. s© Five people have just won a $100 prize, and are deciding how to divide the $100 up
between them. Assume that whole dollars are used, not cents. Also, for example, giving
$50 to the first person and $10 to the second is different from vice versa.

(a) How many ways are there to divide up the $100, such that each gets at least $10?

(b) Assume that the $100 is randomly divided up, with all of the possible allocations
counted in (a) equally likely. Find the expected amount of money that the first person
receives.

(c) Let Aj be the event that the jth person receives more than the first person (for
2 ≤ j ≤ 5), when the $100 is randomly allocated as in (b). Are A2 and A3 independent?

Solution:

(a) Give each person $10, and then distribute the remaining $50 arbitrarily. By Bose-
Einstein (thinking of people as boxes and dollars as balls!), the number of ways is(

5 + 50− 1

50

)
=

(
54

50

)
=

(
54

4

)
.

(b) Let Xj be the amount that j gets. By symmetry, E(Xj) is the same for all j. But
X1 + · · ·+X5 = 100, so by linearity 100 = 5EX1. Thus, EX1 is $20.

(c) The events A2 and A3 are not independent since knowing that A2 occurred makes it
more likely that person 1 received a low percentage of the money, which in turn makes
it more likely that A3 occurred.

78. s© Joe’s iPod has 500 different songs, consisting of 50 albums of 10 songs each. He listens
to 11 random songs on his iPod, with all songs equally likely and chosen independently
(so repetitions may occur).

(a) What is the PMF of how many of the 11 songs are from his favorite album?

(b) What is the probability that there are 2 (or more) songs from the same album among
the 11 songs he listens to?

(c) A pair of songs is a match if they are from the same album. If, say, the 1st, 3rd, and
7th songs are all from the same album, this counts as 3 matches. Among the 11 songs
he listens to, how many matches are there on average?

Solution:

(a) The distribution is Bin(n, p) with n = 11, p = 1
50

(thinking of getting a song from
the favorite album as a “success”). So the PMF is(

11

k

)(
1

50

)k (
49

50

)11−k

, for 0 ≤ k ≤ 11.
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(b) This is a version of the birthday problem. We have

P (at least 1 match) = 1− P (no matches) = 1− 50 · 49 · · · · 40

5011
= 1− 49!

39! · 5010
.

(c) Defining an indicator r.v. Ijk for the event that the jth and kth songs match, we
have E(Ijk) = P (Ijk = 1) = 1/50, so the expected number of matches is(

11

2

)
1

50
=

11 · 10

2 · 50
=

110

100
= 1.1.

79. s© In each day that the Mass Cash lottery is run in Massachusetts, 5 of the integers
from 1 to 35 are chosen (randomly and without replacement).

(a) When playing this lottery, find the probability of guessing exactly 3 numbers right,
given that you guess at least 1 of the numbers right.

(b) Find an exact expression for the expected number of days needed so that all of the(
35
5

)
possible lottery outcomes will have occurred.

(c) Approximate the probability that after 50 days of the lottery, every number from 1
to 35 has been picked at least once.

Solution:

(a) The distribution is Hypergeometric (think of capture-recapture, “tagging” the num-
bers you choose). So

P (exactly 3 right|at least 1 right) =
P (exactly 3 right)

1− P (none right)

=

(
5
3

)(
30
2

)
/
(
35
5

)
1−

(
5
0

)(
30
5

)
/
(
35
5

) .
(b) Let n =

(
35
5

)
. By the coupon collector problem (or directly by linearity, writing the

expected number of days as a sum of Tj ’s with Tj − 1 a Geometric), the expected value
is

n

(
1

n
+

1

n− 1
+ · · ·+ 1

2
+ 1

)
.

(c) Let Aj be the event that j doesn’t get picked, so

P (Aj) = (30/35)50 = (6/7)50.

Let X be the number of Aj that occur. A Poisson approximation for X is reasonable
since these events are rare and weakly dependent. This gives

P (X = 0) ≈ e−35·(6/7)50 ≈ 0.98.
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Uniform and universality of the Uniform

11. s© Let U be a Uniform r.v. on the interval (−1, 1) (be careful about minus signs).

(a) Compute E(U),Var(U), and E(U4).

(b) Find the CDF and PDF of U2. Is the distribution of U2 Uniform on (0, 1)?

Solution:

(a) We have E(U) = 0 since the distribution is symmetric about 0. By LOTUS,

E(U2) =
1

2

∫ 1

−1

u2du =
1

3
.

So Var(U) = E(U2)− (EU)2 = E(U2) = 1
3
. Again by LOTUS,

E(U4) =
1

2

∫ 1

−1

u4du =
1

5
.

(b) Let G(t) be the CDF of U2. Clearly G(t) = 0 for t ≤ 0 and G(t) = 1 for t ≥ 1,
because 0 ≤ U2 ≤ 1. For 0 < t < 1,

G(t) = P (U2 ≤ t) = P (−
√
t ≤ U ≤

√
t) =

√
t,

since the probability of U being in an interval in (−1, 1) is proportional to its length.
The PDF is G′(t) = 1

2
t−1/2 for 0 < t < 1 (and 0 otherwise). The distribution of U2 is

not Uniform on (0, 1) as the PDF is not a constant on this interval (it is an example of
a Beta distribution, an important distribution that is introduced in Chapter 8).

12. s© A stick is broken into two pieces, at a uniformly random break point. Find the CDF
and average of the length of the longer piece.

Solution: We can assume the units are chosen so that the stick has length 1. Let L
be the length of the longer piece, and let the break point be U ∼ Unif(0, 1). For any
l ∈ [1/2, 1], observe that L < l is equivalent to {U < l and 1 − U < l}, which can be
written as 1− l < U < l. We can thus obtain L’s CDF as

FL(l) = P (L < l) = P (1− l < U < l) = 2l − 1,

so L ∼ Unif(1/2, 1). In particular, E(L) = 3/4.

16. s© Let U ∼ Unif(0, 1), and

X = log

(
U

1− U

)
.

Then X has the Logistic distribution, as defined in Example 5.1.6.

(a) Write down (but do not compute) an integral giving E(X2).

(b) Find E(X) without using calculus.

Hint: A useful symmetry property here is that 1− U has the same distribution as U .

43
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Solution:

(a) By LOTUS,

E(X2) =

∫ 1

0

(
log

(
u

1− u

))2

du.

(b) By the symmetry property mentioned in the hint, 1− U has the same distribution
as U . So by linearity,

E(X) = E(logU − log(1− U)) = E(logU)− E(log(1− U)) = 0.

19. s© Let F be a CDF which is continuous and strictly increasing. Let µ be the mean of
the distribution. The quantile function, F−1, has many applications in statistics and
econometrics. Show that the area under the curve of the quantile function from 0 to 1
is µ.

Hint: Use LOTUS and universality of the Uniform.

Solution: We want to find
∫ 1

0
F−1(u)du. Let U ∼ Unif(0, 1) and X = F−1(U). By

universality of the Uniform, X ∼ F . By LOTUS,∫ 1

0

F−1(u)du = E(F−1(U)) = E(X) = µ.

Equivalently, make the substitution u = F (x), so du = f(x)dx, where f is the PDF of
the distribution with CDF F . Then the integral becomes∫ ∞

−∞
F−1(F (x))f(x)dx =

∫ ∞
−∞

xf(x)dx = µ.

Sanity check : For the simple case that F is the Unif(0, 1) CDF, which is F (u) = u on
(0, 1), we have

∫ 1

0
F−1(u)du =

∫ 1

0
udu = 1/2, which is the mean of a Unif(0, 1).

Normal

32. s© Let Z ∼ N (0, 1) and let S be a random sign independent of Z, i.e., S is 1 with
probability 1/2 and −1 with probability 1/2. Show that SZ ∼ N (0, 1).

Solution: Condition on S to find the CDF of SZ:

P (SZ ≤ x) = P (SZ ≤ x|S = 1)
1

2
+ P (SZ ≤ x|S = −1)

1

2

= P (Z ≤ x)
1

2
+ P (Z ≥ −x)

1

2

= P (Z ≤ x)
1

2
+ P (Z ≤ x)

1

2

= Φ(x),

where the penultimate equality is by symmetry of the Normal.

33. s© Let Z ∼ N (0, 1). Find E (Φ(Z)) without using LOTUS, where Φ is the CDF of Z.

Solution: By universality of the Uniform, F (X) ∼ Unif(0, 1) for any continuous random
variable X with CDF F . Therefore, E(Φ(Z)) = 1/2.
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34. s© Let Z ∼ N (0, 1) and X = Z2. Then the distribution of X is called Chi-Square with
1 degree of freedom. This distribution appears in many statistical methods.

(a) Find a good numerical approximation to P (1 ≤ X ≤ 4) using facts about the Normal
distribution, without querying a calculator/computer/table about values of the Normal
CDF.

(b) Let Φ and ϕ be the CDF and PDF of Z, respectively. Show that for any t > 0,
I(Z > t) ≤ (Z/t)I(Z > t). Using this and LOTUS, show that Φ(t) ≥ 1− ϕ(t)/t.

Solution:

(a) By symmetry of the Normal,

P (1 ≤ Z2 ≤ 4) = P (−2 ≤ Z ≤ −1 or 1 ≤ Z ≤ 2) = 2P (1 ≤ Z ≤ 2) = 2(Φ(2)− Φ(1)).

By the 68-95-99.7% Rule, P (−1 ≤ Z ≤ 1) ≈ 0.68. This says that 32% of the area under
the Normal curve is outside of [−1, 1], which by symmetry says that 16% is in (1,∞).
So Φ(1) ≈ 1 − 0.16 = 0.84. Similarly, P (−2 ≤ Z ≤ 2) ≈ 0.95 gives Φ(2) ≈ 0.975. In
general, symmetry of the Normal implies that for any t > 0,

P (−t ≤ Z ≤ t) = Φ(t)− Φ(−t) = 2Φ(t)− 1.

(b) The inequality I(Z > t) ≤ (Z/t)I(Z > t) is true since if the indicator is 0 then both
sides are 0, and if it is 1 then Z/t > 1. So

E(I(Z > t)) ≤ 1

t
E(ZI(Z > t)) =

1

t

∫ ∞
−∞

zI(z > t)ϕ(z)dz =
1

t

∫ ∞
t

zϕ(z)dz.

The integral can be done using a substitution: letting u = z2/2, we have∫
ze−z

2/2dz =

∫
e−udu = −e−u + C = −e−z

2/2 + C.

Thus,
P (Z > t) = E(I(Z > t)) ≤ ϕ(t)/t,

which proves the desired bound on Φ(t).

36. s© Let Z ∼ N (0, 1). A measuring device is used to observe Z, but the device can only
handle positive values, and gives a reading of 0 if Z ≤ 0; this is an example of censored
data. So assume that X = ZIZ>0 is observed rather than Z, where IZ>0 is the indicator
of Z > 0. Find E(X) and Var(X).

Solution: By LOTUS,

E(X) =
1√
2π

∫ ∞
−∞

Iz>0ze
−z2/2dz =

1√
2π

∫ ∞
0

ze−z
2/2dz.

Letting u = z2/2, we have

E(X) =
1√
2π

∫ ∞
0

e−udu =
1√
2π
.

To obtain the variance, note that

E(X2) =
1√
2π

∫ ∞
0

z2e−z
2/2dz =

1

2

1√
2π

∫ ∞
−∞

z2e−z
2/2dz =

1

2
,

since a N (0, 1) r.v. has variance 1. Thus,

Var(X) = E(X2)− (EX)2 =
1

2
− 1

2π
.
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Note that X is neither purely discrete nor purely continuous, since X = 0 with prob-
ability 1/2 and P (X = x) = 0 for x 6= 0. So X has neither a PDF nor a PMF; but
LOTUS still works, allowing us to work with the PDF of Z to study expected values of
functions of Z.

Sanity check : The variance is positive, as it should be. It also makes sense that the
variance is substantially less than 1 (which is the variance of Z), since we are reducing
variability by making the r.v. 0 half the time, and making it nonnegative rather than
roaming over the entire real line.

Exponential

38. s© A post office has 2 clerks. Alice enters the post office while 2 other customers, Bob
and Claire, are being served by the 2 clerks. She is next in line. Assume that the time
a clerk spends serving a customer has the Exponential(λ) distribution.

(a) What is the probability that Alice is the last of the 3 customers to be done being
served?

Hint: No integrals are needed.

(b) What is the expected total time that Alice needs to spend at the post office?

Solution:

(a) Alice begins to be served when either Bob or Claire leaves. By the memoryless
property, the additional time needed to serve whichever of Bob or Claire is still there is
Expo(λ). The time it takes to serve Alice is also Expo(λ), so by symmetry the probability
is 1/2 that Alice is the last to be done being served.

(b) The expected time spent waiting in line is 1
2λ

, since the minimum of two independent
Expo(λ) r.v.s is Expo(2λ) (by Example 5.6.3). The expected time spent being served is
1
λ

. So the expected total time is

1

2λ
+

1

λ
=

3

2λ
.

41. s© Fred wants to sell his car, after moving back to Blissville (where he is happy with
the bus system). He decides to sell it to the first person to offer at least $15,000 for
it. Assume that the offers are independent Exponential random variables with mean
$10,000.

(a) Find the expected number of offers Fred will have.

(b) Find the expected amount of money that Fred will get for the car.

Solution:

(a) The offers on the car are i.i.d. Xi ∼ Expo(1/104). So the number of offers that are
too low is Geom(p) with p = P (Xi ≥ 15000) = e−1.5. Including the successful offer, the
expected number of offers is thus (1− p)/p+ 1 = 1/p = e1.5.

(b) Let N be the number of offers, so the sale price of the car is XN . Note that

E(XN ) = E(X|X ≥ 12000)

for X ∼ Expo(1/104), since the successful offer is an Exponential for which our infor-
mation is that the value is at least $15,000. To compute this, remember the memoryless
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property! For any a > 0, if X ∼ Expo(λ) then the distribution of X − a given X > a is
itself Expo(λ). So

E(X|X ≥ 15000) = 15000 + E(X) = 25000,

which shows that Fred’s expected sale price is $25,000.

44. s© Joe is waiting in continuous time for a book called The Winds of Winter to be
released. Suppose that the waiting time T until news of the book’s release is posted,
measured in years relative to some starting point, has an Exponential distribution with
λ = 1/5.

Joe is not so obsessive as to check multiple times a day; instead, he checks the website
once at the end of each day. Therefore, he observes the day on which the news was
posted, rather than the exact time T . Let X be this measurement, where X = 0 means
that the news was posted within the first day (after the starting point), X = 1 means
it was posted on the second day, etc. (assume that there are 365 days in a year). Find
the PMF of X. Is this a named distribution that we have studied?

Solution: The event X = k is the same as the event k ≤ 365T < k+1, i.e., X = b365T c,
where btc is the floor function of t (the greatest integer less than or equal to t). The
CDF of T is FT (t) = 1− e−t/5 for t > 0 (and 0 for t ≤ 0). So

P (X = k) = P

(
k

365
≤ T <

k + 1

365

)
= FT

(
k + 1

365

)
−FT

(
k

365

)
= e−k/1825−e−(k+1)/1825.

This factors as
(
e−1/1825

)k
(1− e−1/1825), which shows that X ∼ Geom(1− e−1/1825).

Sanity check : A Geometric distribution is plausible for a waiting time, and does take
values 0, 1, 2, . . . . The parameter p = 1− e−1/1825 ≈ 0.0005 is very small, which reflects
both the fact that there are a lot of days in a year (so each day is unlikely) and the fact
that the author is not known for the celerity of his writing.

50. s© Find E(X3) for X ∼ Expo(λ), using LOTUS and the fact that E(X) = 1/λ and
Var(X) = 1/λ2, and integration by parts at most once. In the next chapter, we’ll learn
how to find E(Xn) for all n.

Solution: By LOTUS,

E(X3) =

∫ ∞
0

x3λe−λxdx = −x3e−λx
∣∣∣∣∞
0

+
3

λ

∫ ∞
0

x2λe−λxdx

=
3

λ
E(X2) =

3

λ
(V ar(X) + (EX)2) =

6

λ3
,

where the second equality uses integration by parts, letting u = x3 and dv = λe−λxdx
and we multiply the second term by 1 written as λ/λ.

51. s© The Gumbel distribution is the distribution of − logX with X ∼ Expo(1).

(a) Find the CDF of the Gumbel distribution.

(b) Let X1, X2, . . . be i.i.d. Expo(1) and let Mn = max(X1, . . . , Xn). Show that Mn −
logn converges in distribution to the Gumbel distribution, i.e., as n → ∞ the CDF of
Mn − logn converges to the Gumbel CDF.

Solution:

(a) Let G be Gumbel and X ∼ Expo(1). The CDF is

P (G ≤ t) = P (− logX ≤ t) = P (X ≥ e−t) = e−e
−t
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for all real t.

(b) The CDF of Mn − logn is

P (Mn − logn ≤ t) = P (X1 ≤ t+ logn, . . . ,Xn ≤ t+ logn) = P (X1 ≤ t+ logn)n.

Using the Expo CDF and the fact that (1 + x
n

)n → ex as n→∞, this becomes

(1− e−(t+logn))n = (1− e−t

n
)n → e−e

−t
.

Mixed practice

55. s© Consider an experiment where we observe the value of a random variable X, and
estimate the value of an unknown constant θ using some random variable T = g(X) that
is a function of X. The r.v. T is called an estimator. Think of X as the data observed
in the experiment, and θ as an unknown parameter related to the distribution of X.

For example, consider the experiment of flipping a coin n times, where the coin has an
unknown probability θ of Heads. After the experiment is performed, we have observed
the value of X ∼ Bin(n, θ). The most natural estimator for θ is then X/n.

The bias of an estimator T for θ is defined as b(T ) = E(T )− θ. The mean squared error
is the average squared error when using T (X) to estimate θ:

MSE(T ) = E(T − θ)2.

Show that
MSE(T ) = Var(T ) + (b(T ))2 .

This implies that for fixed MSE, lower bias can only be attained at the cost of higher
variance and vice versa; this is a form of the bias-variance tradeoff, a phenomenon which
arises throughout statistics.

Solution: Using the fact that adding a constant does not affect variance, we have

Var(T ) = Var(T − θ)

= E(T − θ)2 − (E(T − θ))2

= MSE(T )− (b(T ))2,

which proves the desired identity.

56. s© (a) Suppose that we have a list of the populations of every country in the world.

Guess, without looking at data yet, what percentage of the populations have the digit
1 as their first digit (e.g., a country with a population of 1,234,567 has first digit 1 and
a country with population 89,012,345 does not).

(b) After having done (a), look through a list of populations and count how many start
with a 1. What percentage of countries is this? Benford’s law states that in a very large
variety of real-life data sets, the first digit approximately follows a particular distribution
with about a 30% chance of a 1, an 18% chance of a 2, and in general

P (D = j) = log10

(
j + 1

j

)
, for j ∈ {1, 2, 3, . . . , 9},

where D is the first digit of a randomly chosen element. (Exercise from Chapter 3 asks
for a proof that this is a valid PMF.) How closely does the percentage found in the data
agree with that predicted by Benford’s law?
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(c) Suppose that we write the random value in some problem (e.g., the population of
a random country) in scientific notation as X × 10N , where N is a nonnegative integer
and 1 ≤ X < 10. Assume that X is a continuous r.v. with PDF

f(x) = c/x, for 1 ≤ x ≤ 10,

and 0 otherwise, with c a constant. What is the value of c (be careful with the bases
of logs)? Intuitively, we might hope that the distribution of X does not depend on the
choice of units in which X is measured. To see whether this holds, let Y = aX with
a > 0. What is the PDF of Y (specifying where it is nonzero)?

(d) Show that if we have a random number X×10N (written in scientific notation) and
X has the PDF f from (c), then the first digit (which is also the first digit of X) has
Benford’s law as PMF.

Hint: What does D = j correspond to in terms of the values of X?

Solution:

(a) What did you guess?

(b) According to Wikipedia (as of October 15, 2011), 63 out of 225 countries have a
total population whose first digit is 1, which is 28%. (This depends slightly on whether
certain territories included in the Wikipedia list should be considered as “countries”
but the purpose of this problem is not to delve into the sovereignty or nation-status of
territories). It is striking that 28% of the countries have first digit 1, as this is so much
higher than one would expect from guessing that the first digit is equally likely to be
any of 1, 2, . . . , 9. This is an example of Benford’s law; similar phenomena have been
observed in many different settings (such as with lengths of rivers, physical constants,
and stock prices).

(c) The PDF (f(x) = c/x, 1 ≤ x ≤ 10) must integrate to one, by definition; therefore

1 = c

∫ 10

1

dx

x
= c(ln 10− ln 1) = c ln 10.

So the constant of proportionality c = 1/ ln 10 = log10 e). If Y = aX (a change in scale),
then Y has pdf c/y with the same value of c as before, except now a ≤ y ≤ 10a rather
than 1 ≤ x ≤ 10. So the PDF takes the same form for aX as for X, but over a different
range.

(d) The first digit D = d when d ≤ X < d+ 1. The probability of this is

P (D = d) = P (d ≤ X < d+ 1) =

∫ d+1

d

1

x ln 10
dx,

which is log10(d+ 1)− log10(d), as desired.

57. s© (a) Let X1, X2, . . . be independent N (0, 4) r.v.s., and let J be the smallest value of j
such that Xj > 4 (i.e., the index of the first Xj exceeding 4). In terms of Φ, find E(J).

(b) Let f and g be PDFs with f(x) > 0 and g(x) > 0 for all x. Let X be a random
variable with PDF f . Find the expected value of the ratio

R =
g(X)

f(X)
.

Such ratios come up very often in statistics, when working with a quantity known
as a likelihood ratio and when using a computational technique known as importance
sampling.
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(c) Define

F (x) = e−e
−x
.

This is a CDF and is a continuous, strictly increasing function. Let X have CDF F , and
define W = F (X). What are the mean and variance of W?

Solution:

(a) We have J − 1 ∼ Geom(p) with p = P (X1 > 4) = P (X1/2 > 2) = 1 − Φ(2), so
E(J) = 1/(1− Φ(2)).

(b) By LOTUS,

E
g(X)

f(X)
=

∫ ∞
−∞

g(x)

f(x)
f(x)dx =

∫ ∞
−∞

g(x)dx = 1.

(c) By universality of the Uniform, W ∼ Unif(0, 1). Alternatively, we can compute
directly that the CDF of W is

P (W ≤ w) = P (F (X) ≤ w) = P (X ≤ F−1(w)) = F (F−1(w)) = w

for 0 < w < 1, so again we have W ∼ Unif(0, 1). Thus, E(W ) = 1/2 and Var(W ) = 1/12.

59. s© As in Example 5.7.3, athletes compete one at a time at the high jump. Let Xj be
how high the jth jumper jumped, with X1, X2, . . . i.i.d. with a continuous distribution.
We say that the jth jumper is “best in recent memory” if he or she jumps higher than
the previous 2 jumpers (for j ≥ 3; the first 2 jumpers don’t qualify).

(a) Find the expected number of best in recent memory jumpers among the 3rd through
nth jumpers.

(b) Let Aj be the event that the jth jumper is the best in recent memory. Find P (A3 ∩
A4), P (A3), and P (A4). Are A3 and A4 independent?

Solution:

(a) Let Ij be the indicator of the jth jumper being best in recent memory, for each
j ≥ 3. By symmetry, E(Ij) = 1/3 (similarly to examples from class and the homework).
By linearity, the desired expected value is (n− 2)/3.

(b) The event A3 ∩ A4 occurs if and only if the ranks of the first 4 jumps are 4, 3, 2, 1
or 3, 4, 2, 1 (where 1 denotes the best of the first 4 jumps, etc.). Since all orderings are
equally likely,

P (A3 ∩A4) =
2

4!
=

1

12
.

As in (a), we have P (A3) = P (A4) = 1/3. So P (A3 ∩A4) 6= P (A3)P (A4), which shows
that A3 and A4 are not independent.
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Moment generating functions

13. s© A fair die is rolled twice, with outcomes X for the first roll and Y for the second
roll. Find the moment generating function MX+Y (t) of X + Y (your answer should be
a function of t and can contain unsimplified finite sums).

Solution: Since X and Y are i.i.d., LOTUS gives

MX+Y (t) = E(et(X+Y )) = E(etX)E(etY ) =

(
1

6

6∑
k=1

ekt
)2

.

14. s© Let U1, U2, . . . , U60 be i.i.d. Unif(0, 1) and X = U1 + U2 + · · ·+ U60. Find the MGF
of X.

Solution: The MGF of U1 is E(etU1) =
∫ 1

0
etudu = 1

t
(et − 1) for t 6= 0 (and the value is

1 for t = 0). Thus, the MGF of X is

E(etX) = E(et(U1+···+U60)) =
(
E(etU1)

)60
=

(et − 1)60

t60
,

for t 6= 0 (and the value is 1 for t = 0).

20. s© Let X ∼ Pois(λ), and let M(t) be the MGF of X. The cumulant generating function
is defined to be g(t) = logM(t). Expanding g(t) as a Taylor series

g(t) =

∞∑
j=1

cj
j!
tj

(the sum starts at j = 1 because g(0) = 0), the coefficient cj is called the jth cumulant
of X. Find the jth cumulant of X, for all j ≥ 1.

Solution: Using the Taylor series for et,

g(t) = λ(et − 1) =

∞∑
j=1

λ
tj

j!
,

so cj = λ for all j ≥ 1.

21. s© Let Xn ∼ Bin(n, pn) for all n ≥ 1, where npn is a constant λ > 0 for all n (so
pn = λ/n). Let X ∼ Pois(λ). Show that the MGF of Xn converges to the MGF of X
(this gives another way to see that the Bin(n, p) distribution can be well-approximated
by the Pois(λ) when n is large, p is small, and λ = np is moderate).

Solution: Using the fact that (1 + x/n)n → ex as n→∞ (the compound interest limit,
which is reviewed in the math appendix), we have

E(etXn) = (1− pn + pne
t)n = (1 + λ(et − 1)/n)n → eλ(e

t−1) = E(etX).
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Joint, marginal, and conditional distributions

14. s© (a) A stick is broken into three pieces by picking two points independently and
uniformly along the stick, and breaking the stick at those two points. What is the
probability that the three pieces can be assembled into a triangle?

Hint: A triangle can be formed from 3 line segments of lengths a, b, c if and only if
a, b, c ∈ (0, 1/2). The probability can be interpreted geometrically as proportional to
an area in the plane, avoiding all calculus, but make sure for that approach that the
distribution of the random point in the plane is Uniform over some region.

(b) Three legs are positioned uniformly and independently on the perimeter of a round
table. What is the probability that the table will stand?

Solution:

(a) We can assume the length is 1 (in some choice of units, the length will be 1, and
the choice of units for length does not affect whether a triangle can be formed). So let
X,Y be i.i.d. Unif(0,1) random variables. Let x and y be the observed values of X and
Y respectively. If x < y, then the side lengths are x, y−x, and 1− y, and a triangle can
be formed if and only if y > 1

2
, y < x+ 1

2
, x < 1

2
. Similarly, if x > y, then a triangle can

be formed if and only if x > 1
2
, x < y + 1

2
, y < 1

2
.

Since (X,Y ) is Uniform over the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, the probability of a
subregion is proportional to its area. The region given by y > 1/2, y < x+ 1/2, x < 1/2
is a triangle with area 1/8, as is the region given by x > 1/2, x < y + 1/2, y < 1/2, as
illustrated in the picture below. Thus, the probability that a triangle can be formed is
1/8 + 1/8 = 1/4.

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

y

Note that the idea of interpreting probabilities as areas works here because (X,Y ) is
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Uniform on the square. For other distributions, in general we would need to find the
joint PDF of X,Y and integrate over the appropriate region.

(b) Think of the legs as points on a circle, chosen randomly one at a time, and choose
units so that the circumference of the circle is 1. Let A,B,C be the arc lengths from
one point to the next (clockwise, starting with the first point chosen). Then

P (table falls) = P (the 3 legs are all contained in some semicircle)

= P (at least one of A,B,C is greater than 1/2) = 3/4,

by Part (a). So the probability that the table will stand is 1/4.

Alternatively, let Cj be the clockwise semicircle starting from the jth of the 3 points. Let
Aj be the event that Cj contains all 3 points. Then P (Aj) = 1/4 and with probability
1, at most one Aj occurs. So P (A1 ∪ A2 ∪ A3) = 3/4, which again shows that the
probability that the table will stand is 1/4.

18. s© Let (X,Y ) be a uniformly random point in the triangle in the plane with vertices
(0, 0), (0, 1), (1, 0). Find the joint PDF of X and Y , the marginal PDF of X, and the
conditional PDF of X given Y .

Solution: The area of the triangle is 1
2
, so the joint PDF of (X,Y ) is 2 inside the

triangle and 0 outside the triangle. The triangle is given by x ≥ 0, y ≥ 0, x + y ≤ 1,
so the marginal PDF of X is

∫ 1−x
0

2dy = 2(1 − x), for x ∈ [0, 1] (note that this is
nonnegative and integrates to 1). The conditional PDF of X given Y is

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

2

2(1− y)
=

1

1− y ,

for (x, y) in the triangle (and 0 otherwise). Since 1
1−y is constant with respect to x, we

have X|Y ∼ Unif(0, 1− Y ).

19. s© A random point (X,Y, Z) is chosen uniformly in the ball B = {(x, y, z) : x2+y2+z2 ≤
1}.

(a) Find the joint PDF of X,Y, Z.

(b) Find the joint PDF of X,Y .

(c) Find an expression for the marginal PDF of X, as an integral.

Solution:

(a) Just as in 2 dimensions uniform in a region means that probability is proportional
to area, in 3 dimensions probability is proportional to volume. That is,

P ((X,Y, Z) ∈ A) = c · volume(A)

if A is contained in B, where c is a constant. Letting A = B, we have that 1
c

is 4
3
π, the

volume of the ball. So the joint PDF of (X,Y, Z) is

f(x, y, z) =

{
3
4π
, if x2 + y2 + z2 ≤ 1;

0, otherwise.

(b) We just need to integrate out the z from the joint PDF of X,Y, Z. The limits of
integration are found by noting that for any (x, y), we need to have z satisfy x2+y2+z2 ≤
1.

fX,Y (x, y) =

∫ ∞
−∞

f(x, y, z)dz

=
3

4π

∫ √1−x2−y2

−
√

1−x2−y2
dz

=
3

2π

√
1− x2 − y2,
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for x2 + y2 ≤ 1 (and the PDF is 0 otherwise).

(c) We can integrate out y, z from the joint PDF of X,Y, Z, or integrate out y from the
joint PDF of X,Y . Using the result of (b), we have for −1 ≤ x ≤ 1 that the marginal
PDF of X is

fX(x) =
3

2π

∫ √1−x2

−
√

1−x2

√
1− x2 − y2dy.

20. s© Let U1, U2, U3 be i.i.d. Unif(0, 1), and let L = min(U1, U2, U3),M = max(U1, U2, U3).

(a) Find the marginal CDF and marginal PDF of M, and the joint CDF and joint PDF
of L,M .

Hint: For the latter, start by considering P (L ≥ l,M ≤ m).

(b) Find the conditional PDF of M given L.

Solution:

(a) The event M ≤ m is the same as the event that all 3 of the Uj are at most m, so
the CDF of M is FM (m) = m3 and the PDF is fM (m) = 3m2, for 0 ≤ m ≤ 1.

The event L ≥ l,M ≤ m is the same as the event that all 3 of the Uj are between l and
m (inclusive), so

P (L ≥ l,M ≤ m) = (m− l)3

for m ≥ l with m, l ∈ [0, 1]. By the axioms of probability, we have

P (M ≤ m) = P (L ≤ l,M ≤ m) + P (L > l,M ≤ m).

So the joint CDF is

P (L ≤ l,M ≤ m) = m3 − (m− l)3,

for m ≥ l with m, l ∈ [0, 1]. The joint PDF is obtained by differentiating this with
respect to l and then with respect to m (or vice versa):

f(l,m) = 6(m− l),

for m ≥ l with m, l ∈ [0, 1]. As a check, note that getting the marginal PDF of M by
finding

∫m
0
f(l,m)dl does recover the PDF of M (the limits of integration are from 0 to

m since the min can’t be more than the max).

(b) The marginal PDF of L is fL(l) = 3(1− l)2 for 0 ≤ l ≤ 1 since P (L > l) = P (U1 >
l, U2 > l, U3 > l) = (1−l)3 (alternatively, use the PDF of M together with the symmetry
that 1 − Uj has the same distribution as Uj , or integrate out m in the joint PDF of
L,M). So the conditional PDF of M given L is

fM|L(m|l) =
f(l,m)

fL(l)
=

2(m− l)
(1− l)2 ,

for all m, l ∈ [0, 1] with m ≥ l.
24. s© Two students, A and B, are working independently on homework (not necessarily for

the same class). Student A takes Y1 ∼ Expo(λ1) hours to finish his or her homework,
while B takes Y2 ∼ Expo(λ2) hours.

(a) Find the CDF and PDF of Y1/Y2, the ratio of their problem-solving times.

(b) Find the probability that A finishes his or her homework before B does.

Solution:
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(a) Let t > 0. The CDF of the ratio is

F (t) = P

(
Y1

Y2
≤ t
)

= P (Y1 ≤ tY2)

=

∫ ∞
0

(∫ ty2

0

λ1e
−λ1y1dy1

)
λ2e
−λ2y2dy2

=

∫ ∞
0

(1− e−λ1ty2)λ2e
−λ2y2dy2

= 1−
∫ ∞
0

λ2e
−(λ1t+λ2)y2dy2

= 1− λ2

tλ1 + λ2

=
tλ1

tλ1 + λ2
.

Of course, F (t) = 0 for t ≤ 0. The PDF of the ratio is

f(t) =
d

dt

(
tλ1

tλ1 + λ2

)
=

λ1λ2

(λ1t+ λ2)2
, for t > 0.

(b) Plugging in t = 1 above, we have

P (Y1 < Y2) =
λ1

λ1 + λ2
.

Alternatively, we can get the same result by applying Example 7.1.23. (The result can
also be derived without using calculus by thinking about Poisson processes, as shown
in Chapter 13.)

26. s© The bus company from Blissville decides to start service in Blotchville, sensing a
promising business opportunity. Meanwhile, Fred has moved back to Blotchville. Now
when Fred arrives at the bus stop, either of two independent bus lines may come by
(both of which take him home). The Blissville company’s bus arrival times are exactly
10 minutes apart, whereas the time from one Blotchville company bus to the next is
Expo( 1

10
). Fred arrives at a uniformly random time on a certain day.

(a) What is the probability that the Blotchville company bus arrives first?

Hint: One good way is to use the continuous law of total probability.

(b) What is the CDF of Fred’s waiting time for a bus?

Solution:

(a) Let U ∼ Unif(0, 10) be the arrival time of the next Blissville company bus, and
X ∼ Expo( 1

10
) be the arrival time of the next Blotchville company bus (the latter is

X ∼ Expo( 1
10

) by the memoryless property). Then

P (X < U) =

∫ 10

0

P (X < U |U = u)
1

10
du

=
1

10

∫ 10

0

P (X < u|U = u)du

=
1

10

∫ 10

0

(1− e−u/10)du =
1

e
.

(b) Let T = min(X,U) be the waiting time. Then

P (T > t) = P (X > t,U > t) = P (X > t)P (U > t).
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So the CDF of T is

P (T ≤ t) = 1− P (X > t)P (U > t) = 1− e−t/10(1− t/10),

for 0 < t < 10 (and 0 for t ≤ 0, and 1 for t ≥ 10).

2D LOTUS

31. s© Let X and Y be i.i.d. Unif(0, 1). Find the standard deviation of the distance between
X and Y .

Solution: Let W = |X − Y |. By 2-D LOTUS,

E(W ) =

∫ 1

0

∫ 1

0

|x− y|dxdy.

Split this into two parts (to get rid of the absolute values): x < y and x ≥ y (i.e., break
the square into two triangles). By symmetry the integral over x < y equals the integral
over x > y, so

E(W ) = 2

∫ 1

0

∫ y

0

(y − x)dxdy = 2

∫ 1

0

y2

2
dy =

1

3
.

Next, we find E(W 2). This can either be done by computing the double integral

E(W 2) =

∫ 1

0

∫ 1

0

(x− y)2dxdy,

or by writing
E(W 2) = E(X − Y )2 = EX2 + EY 2 − 2E(XY ),

which is

2E(X2)− 2(EX)2 = 2Var(X) =
1

6
,

since E(XY ) = E(X)E(Y ) for X,Y independent, and E(X) = E(Y ) and E(X2) =
E(Y 2) (as X and Y have the same distribution). Thus, E(W ) = 1/3,

Var(W ) = E(W 2)− (E(W ))2 =
1

18
,

and the standard deviation of the distance between X and Y is 1√
18

= 1

3
√
2
.

32. s© Let X,Y be i.i.d. Expo(λ). Find E|X−Y | in two different ways: (a) using 2D LOTUS
and (b) using the memoryless property without any calculus.

Solution:

(a) First consider the case λ = 1. By LOTUS,

E|X − Y | =
∫ ∞
0

∫ ∞
0

|x− y|e−xe−ydxdy

= 2

∫ ∞
0

∫ ∞
y

(x− y)e−xe−ydxdy

= 2

∫ ∞
0

e−y
∫ ∞
y

(xe−x − ye−x)dxdy

= 2

∫ ∞
0

e−y
(
−e−x(x+ 1) + ye−x

)
|∞y dy

= 2

∫ ∞
0

e−ye−ydy = 2

∫ ∞
0

e−2ydy = 1.

For general λ, this and the fact that λX, λY are i.i.d. Expo(1) yield E|X − Y | = 1/λ.

(b) Write |X − Y | = max(X,Y ) − min(X,Y ). By the memoryless property, this is
Expo(λ), as in Example 7.3.6. So E|X − Y | = 1

λ
, which agrees with (a). (This also

shows Var(|X − Y |) = 1
λ2 .)
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Covariance

38. s© Let X and Y be r.v.s. Is it correct to say “max(X,Y ) + min(X,Y ) = X + Y ”? Is it
correct to say “Cov(max(X,Y ),min(X,Y )) = Cov(X,Y ) since either the max is X and
the min is Y or vice versa, and covariance is symmetric”? Explain.

Solution: The identity max(x, y) + min(x, y) = x + y is true for all numbers x and y.
The random variable M = max(X,Y ) is defined by M(s) = max(X(s), Y (s)); this just
says to perform the random experiment, observe the numerical values of X and Y , and
take their maximum. It follows that

max(X,Y ) + min(X,Y ) = X + Y

for all r.v.s X and Y , since whatever the outcome s of the random experiment is, we
have

max(X(s), Y (s)) + min(X(s), Y (s)) = X(s) + Y (s).

In contrast, the covariance of two r.v.s is a number, not a r.v.; it is not defined by
observing the values of the two r.v.s and then taking their covariance (that would be
a useless quantity, since the covariance between two numbers is 0). It is wrong to say
“Cov(max(X,Y ),min(X,Y )) = Cov(X,Y ) since either the max is X and the min is
Y or vice versa, and covariance is symmetric” since the r.v. X does not equal the
r.v. max(X,Y ), nor does it equal the r.v. min(X,Y ).

To gain more intuition into this, consider a repeated sampling interpretation,
where we independently repeat the same experiment many times and observe pairs
(x1, y1), . . . , (xn, yn), where (xj , yj) is the observed value of (X,Y ) for the jthe exper-
iment. Suppose that X and Y are independent non-constant r.v.s (and thus they are
uncorrelated). Imagine a scatter plot of the observations (which is just a plot of the
points (xj , yj)). Since X and Y are independent, there should be no trend in the plot.

On the other hand, imagine a scatter plot of the (max(xj , yj),min(xj , yj)) points. Here
we’d expect to see a clear increasing trend (since the max is always bigger than or equal
to the min, so having a large value of the min (relative to its mean) should make it
more likely that we’ll have a large value of the max (relative to its mean). So it makes
sense that max(X,Y ) and min(X,Y ) should be positive correlated. This is illustrated
in the plots below, in which we generated (X1, Y1), . . . , (X100, Y100) with the Xi’s and
Yj ’s i.i.d. N (0, 1).
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The simulation was done in R, using the following code:
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x <- rnorm(100); y <- rnorm(100)

plot(x,y, xlim=c(-3,3),ylim=c(-3,3), pch=16)

plot(pmax(x,y),pmin(x,y), xlim=c(-3,3),ylim=c(-3,3), xlab="max(x,y)",

ylab = "min(x,y)", pch=16)

39. s© Two fair six-sided dice are rolled (one green and one orange), with outcomes X and
Y respectively for the green and the orange.

(a) Compute the covariance of X + Y and X − Y .

(b) Are X + Y and X − Y independent?

Solution:

(a) We have

Cov(X + Y,X − Y ) = Cov(X,X)− Cov(X,Y ) + Cov(Y,X)− Cov(Y, Y ) = 0.

(b) They are not independent: information about X + Y may give information about
X − Y , as shown by considering an extreme example. Note that if X + Y = 12, then
X = Y = 6, so X −Y = 0. Therefore, P (X −Y = 0|X +Y = 12) = 1 6= P (X −Y = 0),
which shows that X+Y and X−Y are not independent. Alternatively, note that X+Y
and X − Y are both even or both odd, since the sum (X + Y ) + (X − Y ) = 2X is even.

41. s© Let X and Y be standardized r.v.s (i.e., marginally they each have mean 0 and
variance 1) with correlation ρ ∈ (−1, 1). Find a, b, c, d (in terms of ρ) such that Z =
aX + bY and W = cX + dY are uncorrelated but still standardized.

Solution: Let us look for a solution with Z = X, finding c and d to make Z and W
uncorrelated:

Cov(Z,W ) = Cov(X, cX + dY ) = Cov(X, cX) + Cov(X, dY ) = c+ dρ = 0.

Also, Var(W ) = c2 + d2 + 2cdρ = 1. Solving for c, d gives

a = 1, b = 0, c = −ρ/
√

1− ρ2, d = 1/
√

1− ρ2.

42. s© Let X be the number of distinct birthdays in a group of 110 people (i.e., the number
of days in a year such that at least one person in the group has that birthday). Under
the usual assumptions (no February 29, all the other 365 days of the year are equally
likely, and the day when one person is born is independent of the days when the other
people are born), find the mean and variance of X.

Solution: Let Ij be the indicator r.v. for the event that at least one of the people
was born on the jth day of the year, so X =

∑365
j=1 Ij with Ij ∼ Bern(p), where p =

1− (364/365)110. The Ij ’s are dependent but by linearity, we still have

E(X) = 365p ≈ 95.083.

By symmetry, the variance is

Var(X) = 365Var(I1) + 2

(
365

2

)
Cov(I1, I2).

To get the covariance, note that Cov(I1, I2) = E(I1I2)−E(I1)E(I2) = E(I1I2)−p2, and
E(I1I2) = P (I1I2 = 1) = P (A1 ∩ A2), where Aj is the event that at least one person
was born on the jth day of the year. The probability of the complement is

P (Ac1 ∪Ac2) = P (Ac1) + P (Ac2)− P (Ac1 ∩Ac2) = 2

(
364

365

)110

−
(

363

365

)110

,

so Var(X) = 365p(1− p) + 365 · 364 · (1− (2
(
364
365

)110 − ( 363
365

)110
)− p2) ≈ 10.019.
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47. s© Athletes compete one at a time at the high jump. Let Xj be how high the jth
jumper jumped, with X1, X2, . . . i.i.d. with a continuous distribution. We say that the
jth jumper sets a record if Xj is greater than all of Xj−1, . . . , X1.

Find the variance of the number of records among the first n jumpers (as a sum). What
happens to the variance as n→∞?

Solution: Let Ij be the indicator r.v. for the jth jumper setting a record. By symmetry,
E(Ij) = P (Ij = 1) = 1/j (as all of the first j jumps are equally likely to be the largest
of those jumps). It was shown on Example 5.7.3 that I110 and I111 are independent.
Similarly, Ii is independent of Ij for all i, j with i < j (in fact, they are independent,
not just pairwise independent). To see this, note that by symmetry, learning that the
jth jumper sets a record gives no information whatsoever about how the first i jumpers
rank among themselves, or compute

P (Ii = Ij = 1) =

(
j−1
j−i−1

)
(j − i− 1)!(i− 1)!

j!
=

(i− 1)!(j − 1)!

i!j!
=

1

ij
= P (I1 = 1)P (I2 = 1),

where the numerator corresponds to putting the best of the first j jumps in position j,
picking any j − 1 + 1 of the remaining jumps to fill positions i + 1 through j − 1 and
putting them in any order, putting the best of the remaining i jumps in position i, and
then putting the remaining i− 1 jumps in any order.

The variance of Ij is Var(Ij) = E(I2j ) − (EIj)
2 = 1

j
− 1

j2
. Since the Ij are pairwise

independent (and thus uncorrelated), the variance of I1 + · · ·+ In is

n∑
j=1

(
1

j
− 1

j2

)
,

which goes to ∞ as n→∞ since
∑n
j=1

1
j

diverges and
∑n
j=1

1
j2

converges (to π2/6, as

it turns out).

48. s© A chicken lays a Pois(λ) number N of eggs. Each egg hatches a chick with probability
p, independently. Let X be the number which hatch, so X|N = n ∼ Bin(n, p).

Find the correlation between N (the number of eggs) and X (the number of eggs which
hatch). Simplify; your final answer should work out to a simple function of p (the λ
should cancel out).

Solution: By the chicken-egg story, X is independent of Y , with X ∼ Pois(λp) and
Y ∼ Pois(λq), for q = 1− p. So

Cov(N,X) = Cov(X + Y,X) = Cov(X,X) + Cov(Y,X) = Var(X) = λp,

giving

Corr(N,X) =
λp

SD(N)SD(X)
=

λp√
λλp

=
√
p.

52. s© A drunken man wanders around randomly in a large space. At each step, he moves
one unit of distance North, South, East, or West, with equal probabilities. Choose
coordinates such that his initial position is (0, 0) and if he is at (x, y) at some time, then
one step later he is at (x, y+ 1), (x, y− 1), (x+ 1, y), or (x− 1, y). Let (Xn, Yn) and Rn
be his position and distance from the origin after n steps, respectively.

General hint: Note that Xn is a sum of r.v.s with possible values −1, 0, 1, and likewise
for Yn, but be careful throughout the problem about independence.

(a) Determine whether or not Xn is independent of Yn.

(b) Find Cov(Xn, Yn).
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(c) Find E(R2
n).

Solution:

(a) They are not independent, as seen by considering an extreme case such as the event
that the drunk headed East for the entire time: note that P (Yn = 0|Xn = n) = 1.

(b) WriteXn =
∑n
i=1 Zi and Yn =

∑n
j=1Wj , where Zi is−1 if his ith step is Westward, 1

if his ith step is Eastward, and 0 otherwise, and similarly for Wj . Then Zi is independent
of Wj for i 6= j. But Zi and Wi are highly dependent: exactly one of them is 0 since
he moves in one direction at a time. Then Cov(Zi,Wi) = E(ZiWi) − E(Zi)E(Wi) = 0
since ZiWi is always 0, and Zi and Wi have mean 0. So

Cov(Xn, Yn) =
∑
i,j

Cov(Zi,Wj) = 0.

(c) We have R2
n = X2

n + Y 2
n , and E(ZiZj) = 0 for i 6= j. So

E(R2
n) = E(X2

n) + E(Y 2
n ) = 2E(X2

n) = 2nE(Z2
1 ) = n,

since Z2
1 ∼ Bern(1/2).

53. s© A scientist makes two measurements, considered to be independent standard Normal
r.v.s. Find the correlation between the larger and smaller of the values.

Hint: Note that max(x, y) + min(x, y) = x+ y and max(x, y)−min(x, y) = |x− y|.

Solution: Let X and Y be i.i.d N (0, 1) and M = max(X,Y ), L = min(X,Y ). By the
hint,

E(M) + E(L) = E(M + L) = E(X + Y ) = E(X) + E(Y ) = 0,

E(M)− E(L) = E(M − L) = E|X − Y | = 2√
π
,

where the last equality was shown in class. So E(M) = 1/
√
π, and

Cov(M,L) = E(ML)− E(M)E(L) = E(XY ) + (EM)2 = (EM)2 =
1

π
,

since ML = XY has mean E(XY ) = E(X)E(Y ) = 0. To obtain the correlation, we
also need Var(M) and Var(L). By symmetry of the Normal, (−X,−Y ) has the same
distribution as (X,Y ), so Var(M) = Var(L); call this v. Then

E(X − Y )2 = Var(X − Y ) = 2, and also

E(X − Y )2 = E(M − L)2 = EM2 + EL2 − 2E(ML) = 2v +
2

π
.

So v = 1 − 1
π

(alternatively, we can get this by taking the variance of both sides of
max(X,Y ) + min(X,Y ) = X + Y ). Thus,

Corr(M,L) =
Cov(M,L)√

Var(M)Var(L)
=

1/π

1− 1/π
=

1

π − 1
.

55. s© Consider the following method for creating a bivariate Poisson (a joint distribution
for two r.v.s such that both marginals are Poissons). Let X = V +W,Y = V +Z where
V,W,Z are i.i.d. Pois(λ) (the idea is to have something borrowed and something new
but not something old or something blue).

(a) Find Cov(X,Y ).

(b) Are X and Y independent? Are they conditionally independent given V ?
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(c) Find the joint PMF of X,Y (as a sum).

Solution:

(a) Using the properties of covariance, we have

Cov(X,Y ) = Cov(V, V ) + Cov(V,Z) + Cov(W,V ) + Cov(W,Z) = Var(V ) = λ.

(b) Since X and Y are correlated (with covariance λ > 0), they are not independent.
Alternatively, note that E(Y ) = 2λ but E(Y |X = 0) = λ since if X = 0 occurs then
V = 0 occurs. But X and Y are conditionally independent given V , since the conditional
joint PMF is

P (X = x, Y = y|V = v) = P (W = x− v, Z = y − v|V = v)

= P (W = x− v, Z = y − v)

= P (W = x− v)P (Z = y − v)

= P (X = x|V = v)P (Y = y|V = v).

This makes sense intuitively since if we observe that V = v, then X and Y are the
independent r.v.s W and Z, shifted by the constant v.

(c) By (b), a good strategy is to condition on V :

P (X = x, Y = y) =

∞∑
v=0

P (X = x, Y = y|V = v)P (V = v)

=

min(x,y)∑
v=0

P (X = x|V = v)P (Y = y|V = v)P (V = v)

=

min(x,y)∑
v=0

e−λ
λx−v

(x− v)!
e−λ

λy−v

(y − v)!
e−λ

λv

v!

= e−3λλx+y
min(x,y)∑
v=0

λ−v

(x− v)!(y − v)!v!
,

for x and y nonnegative integers. Note that we sum only up to min(x, y) since we know
for sure that V ≤ X and V ≤ Y .

Sanity check : Note that P (X = 0, Y = 0) = P (V = 0,W = 0, Z = 0) = e−3λ.

Chicken-egg

59. s© A Pois(λ) number of people vote in a certain election. Each voter votes for candidate
A with probability p and for candidate B with probability q = 1− p, independently of
all the other voters. Let V be the difference in votes, defined as the number of votes for
A minus the number for B.

(a) Find E(V ).

(b) Find Var(V ).

Solution:

(a) Let X and Y be the number of votes for A and B respectively, and let N = X + Y .
Then X|N ∼ Bin(N, p) and Y |N ∼ Bin(N, q). By Adam’s Law or the chicken-egg story,
E(X) = λp and E(Y ) = λq. So

E(V ) = E(X − Y ) = E(X)− E(Y ) = λ(p− q).

(b) By the chicken-egg story, X ∼ Pois(λp) and Y ∼ Pois(λq) are independent. So

Var(X − Y ) = Var(X) + Var(Y ) = λp+ λq = λ.
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Multinomial

64. s© Let (X1, . . . , Xk) be Multinomial with parameters n and (p1, . . . , pk). Use indicator
r.v.s to show that Cov(Xi, Xj) = −npipj for i 6= j.

Solution: First let us find Cov(X1, X2). Consider the story of the Multinomial, where n
objects are being placed into categories 1, . . . , k. Let Ii be the indicator r.v. for object
i being in category 1, and let Jj be the indicator r.v. for object j being in category 2.
Then X1 =

∑n
i=1 Ii, X2 =

∑n
j=1 Jj . So

Cov(X1, X2) = Cov(

n∑
i=1

Ii,

n∑
j=1

Jj)

=
∑
i,j

Cov(Ii, Jj).

All the terms here with i 6= j are 0 since the ith object is categorized independently of
the jth object. So this becomes

n∑
i=1

Cov(Ii, Ji) = nCov(I1, J1) = −np1p2,

since
Cov(I1, J1) = E(I1J1)− (EI1)(EJ1) = −p1p2.

By the same method, we have Cov(Xi, Xj) = −npipj for all i 6= j.

65. s© Consider the birthdays of 100 people. Assume people’s birthdays are independent,
and the 365 days of the year (exclude the possibility of February 29) are equally likely.
Find the covariance and correlation between how many of the people were born on
January 1 and how many were born on January 2.

Solution: Let Xj be the number of people born on January j. Then

Cov(X1, X2) = − 100

3652
,

using the result about covariances in a Multinomial. Since Xj ∼ Bin(100, 1/365), we
then have

Corr(X1, X2) =
Cov(X,Y )√

Var(X)Var(Y )
= − 100/3652

100(1/365)(364/365)
= − 1

364
.

67. s© A group of n ≥ 2 people decide to play an exciting game of Rock-Paper-Scissors.
As you may recall, Rock smashes Scissors, Scissors cuts Paper, and Paper covers Rock
(despite Bart Simpson saying “Good old rock, nothing beats that!”).

Usually this game is played with 2 players, but it can be extended to more players as
follows. If exactly 2 of the 3 choices appear when everyone reveals their choice, say
a, b ∈ {Rock,Paper, Scissors} where a beats b, the game is decisive: the players who
chose a win, and the players who chose b lose. Otherwise, the game is indecisive and the
players play again.

For example, with 5 players, if one player picks Rock, two pick Scissors, and two pick
Paper, the round is indecisive and they play again. But if 3 pick Rock and 2 pick Scissors,
then the Rock players win and the Scissors players lose the game.

Assume that the n players independently and randomly choose between Rock, Scissors,
and Paper, with equal probabilities. Let X,Y, Z be the number of players who pick
Rock, Scissors, Paper, respectively in one game.

(a) Find the joint PMF of X,Y, Z.
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(b) Find the probability that the game is decisive. Simplify your answer.

(c) What is the probability that the game is decisive for n = 5? What is the limiting
probability that a game is decisive as n→∞? Explain briefly why your answer makes
sense.

Solution:

(a) The joint PMF of X,Y, Z is

P (X = a, Y = b, Z = c) =
n!

a!b!c!

(
1

3

)a+b+c
where a, b, c are any nonnegative integers with a + b + c = n, since (1/3)a+b+c is the
probability of any specific configuration of choices for each player with the right numbers
in each category, and the coefficient in front counts the number of distinct ways to
permute such a configuration.

Alternatively, we can write the joint PMF as

P (X = a, Y = b, Z = c) = P (X = a)P (Y = b|X = a)P (Z = c|X = a, Y = b),

where for a + b + c = n, P (X = a) can be found from the Bin(n, 1/3) PMF, P (Y =
b|X = a) can be found from the Bin(n− a, 1/2) PMF, and P (Z = c|X = a, Y = b) = 1.

This is a Mult3(n, ( 1
3
, 1
3
, 1
3
)) distribution.

(b) The game is decisive if and only if exactly one of X,Y, Z is 0. These cases are disjoint
so by symmetry, the probability is 3 times the probability that X is zero and Y and Z
are nonzero. Note that if X = 0 and Y = k, then Z = n− k. This gives

P (decisive) = 3

n−1∑
k=1

n!

0!k!(n− k)!

(
1

3

)n

= 3

(
1

3

)n n−1∑
k=1

(
n

k

)

=
2n − 2

3n−1

since
∑n−1
k=1

(
n
k

)
= −1 − 1 +

∑n
k=0

(
n
k

)
= 2n − 2 (by the binomial theorem or the fact

that a set with n elements has 2n subsets). As a check, when n = 2 this reduces to 2/3,
which makes sense since for 2 players, the game is decisive if and only if the two players
do not pick the same choice.

(c) For n = 5, the probability is (25−2)/34 = 30/81 ≈ 0.37. As n→∞, (2n−2)/3n−1 →
0, which make sense since if the number of players is very large, it is very likely that
there will be at least one of each of Rock, Paper, and Scissors.

68. s© Emails arrive in an inbox according to a Poisson process with rate λ (so the number
of emails in a time interval of length t is distributed as Pois(λt), and the numbers of
emails arriving in disjoint time intervals are independent). Let X,Y, Z be the numbers of
emails that arrive from 9 am to noon, noon to 6 pm, and 6 pm to midnight (respectively)
on a certain day.

(a) Find the joint PMF of X,Y, Z.

(b) Find the conditional joint PMF of X,Y, Z given that X + Y + Z = 36.

(c) Find the conditional PMF of X+Y given that X+Y +Z = 36, and find E(X+Y |X+
Y +Z = 36) and Var(X +Y |X +Y +Z = 36) (conditional expectation and conditional
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variance given an event are defined in the same way as expectation and variance, using
the conditional distribution given the event in place of the unconditional distribution).

Solution:

(a) Since X ∼ Pois(3λ), Y ∼ Pois(6λ), Z ∼ Pois(6λ) independently, the joint PMF is

P (X = x, Y = y, Z = z) =
e−3λ(3λ)x

x!

e−6λ(6λ)y

y!

e−6λ(6λ)z

z!
,

for any nonnegative integers x, y, z.

(b) Let T = X+Y +Z ∼ Pois(15λ), and suppose that we observe T = t. The conditional
PMF is 0 for x+ y + z 6= t. For x+ y + z = t,

P (X = x, Y = y, Z = z|T = t) =
P (T = t|X = x, Y = y, Z = z)P (X = x, Y = y, Z = z)

P (T = t)

=

e−3λ(3λ)x

x!
e−6λ(6λ)y

y
e−6λ(6λ)z

z!

e−15λ(15λ)t

t!

=
t!

x!y!z!

(
3

15

)x(
6

15

)y (
6

15

)z
.

Thus, (X,Y, Z) is conditionally Multinomial given T = t, and we have that (X,Y, Z) is
conditionally Mult3(36, ( 1

5
, 2
5
, 2
5
)) given T = 36.

(c) Let W = X + Y and T = X + Y + Z. Using the story of the Multinomial and Part
(b), we can merge the categories “9 am to noon” and “noon to 6 pm” to get

W |T = 36 ∼ Bin

(
36,

9

15

)
.

Therefore, E(W |T = 36) = 36 · 9
15

= 21.6 and Var(W |T = 36) = 36 · 9
15
· 6
15

= 8.64.

Multivariate Normal

71. s© Let (X,Y ) be Bivariate Normal, with X and Y marginally N (0, 1) and with corre-
lation ρ between X and Y .

(a) Show that (X + Y,X − Y ) is also Bivariate Normal.

(b) Find the joint PDF of X + Y and X − Y (without using calculus), assuming −1 <
ρ < 1.

Solution:

(a) The linear combination s(X + Y ) + t(X − Y ) = (s+ t)X + (s− t)Y is also a linear
combination of X and Y , so it is Normal, which shows that (X + Y,X − Y ) is MVN.

(b) Since X+Y and X−Y are uncorrelated (as Cov(X+Y,X−Y ) = Var(X)−Var(Y ) =
0) and (X+Y,X−Y ) is MVN, they are independent. Marginally, X+Y ∼ N (0, 2+2ρ)
and X − Y ∼ N (0, 2− 2ρ). Thus, the joint PDF is

f(s, t) =
1

4π
√

1− ρ2
e−

1
4
(s2/(1+ρ)+t2/(1−ρ)).
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Mixed practice

84. s© A network consists of n nodes, each pair of which may or may not have an edge
joining them. For example, a social network can be modeled as a group of n nodes
(representing people), where an edge between i and j means they know each other.
Assume the network is undirected and does not have edges from a node to itself (for a
social network, this says that if i knows j, then j knows i and that, contrary to Socrates’
advice, a person does not know himself or herself). A clique of size k is a set of k nodes
where every node has an edge to every other node (i.e., within the clique, everyone
knows everyone). An anticlique of size k is a set of k nodes where there are no edges
between them (i.e., within the anticlique, no one knows anyone else). For example, the
picture below shows a network with nodes labeled 1, 2, . . . , 7, where {1, 2, 3, 4} is a clique
of size 4, and {3, 5, 7} is an anticlique of size 3.

1
2

3

7

4

5 6

(a) Form a random network with n nodes by independently flipping fair coins to decide
for each pair {x, y} whether there is an edge joining them. Find the expected number
of cliques of size k (in terms of n and k).

(b) A triangle is a clique of size 3. For a random network as in (a), find the variance of
the number of triangles (in terms of n).

Hint: Find the covariances of the indicator random variables for each possible clique.
There are

(
n
3

)
such indicator r.v.s, some pairs of which are dependent.

*(c) Suppose that
(
n
k

)
< 2(k2)−1. Show that there is a network with n nodes containing

no cliques of size k or anticliques of size k.

Hint: Explain why it is enough to show that for a random network with n nodes, the
probability of the desired property is positive; then consider the complement.

Solution:

(a) Order the
(
n
k

)
subsets of people of size k in some way (i.e., give each subset of size k

a code number), and let Xi be the indicator. Since X1 +X2 + · · ·+X(nk)
is the number

of cliques of size k, the expected number is

E(X1 +X2 + · · ·+X(nk)
) =

(
n

k

)
E(X1) =

(
n

k

)
P (X1 = 1) =

(
n
k

)
2(k2)

.

(b) Let k = 3 and the Xi be as in (a). Then

Var(X1 + · · ·+X(n3)) = Var(X1) + · · ·+ Var(X(n3)) + 2
∑
i<j

Cov(Xi, Xj)

=

(
n

3

)
Var(X1) + 2

∑
i<j

Cov(Xi, Xj),

with

Var(X1) = 2−(32)(1− 2−(32)) =
7

64
.
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Group i Group j

3

4

6     5

1

2

3

4

     5

1

2

Group i Group j

      3  

2

1

4

Group i Group j

FIGURE 1

Two groups with 0 (upper), 1 (lower left), 2 (lower right) people in common.

To compute Cov(Xi, Xj) for i < j, consider how many people are in common for group
i and group j. If the number of people in common is 0 or 1 (as shown in the upper and
lower left cases in the above figure, respectively), then the Cov(Xi, Xj) = 0 since the
coin flips used to determine whether Group i is a clique are independent of those used
for Group j. If there are 2 people in common (as shown in the lower right case of Figure
1), then

Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj) =
1

25
− (

1

23
)2 =

1

64
,

since 5 distinct pairs of people must know each other to make XiXj equal to 1.

There are
(
n
4

)(
4
2

)
= 6
(
n
4

)
pairs of groups {i, j} (i 6= j) with 1 pair of people in common

(choose 4 people out of the n, then choose which 2 of the 4 are the overlap of the groups).
The remaining pairs of groups have covariance 0. Thus, the variance of the number of
cliques is

7

64

(
n

3

)
+ 2 · 6

(
n

4

)
· 1

64
=

7

64

(
n

3

)
+

3

16

(
n

4

)
.

(c) We will prove the existence of a network with the desired property by showing that
the probability is positive that a random network has the property is positive (this
strategy is explored in the starred Section 4.9). Form a random network as in (a), and
let Ai be the event that the ith group of k people (in any fixed ordering) is neither a
clique nor an anticlique. We have

P (

(nk)⋃
i=1

Aci ) ≤
(nk)∑
i=1

P (Aci ) =

(
n

k

)
2−(k2)+1 < 1,
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which shows that

P (

(nk)⋂
i=1

Ai) = 1− P (

(nk)⋃
i=1

Aci ) > 0,

as desired. Alternatively, let C be the number of cliques of size k and A be the number
of anticliques of size k, and write C +A = T . Then

E(T ) = E(C) + E(A) =

(
n

k

)
2−(k2)+1 < 1,

by the method of Part (a). So P (T = 0) > 0, since P (T ≥ 1) = 1 would imply E(T ) ≥ 1.
This again shows that there must be a network with the desired property.

85. s© Shakespeare wrote a total of 884647 words in his known works. Of course, many
words are used more than once, and the number of distinct words in Shakespeare’s
known writings is 31534 (according to one computation). This puts a lower bound on
the size of Shakespeare’s vocabulary, but it is likely that Shakespeare knew words which
he did not use in these known writings.

More specifically, suppose that a new poem of Shakespeare were uncovered, and consider
the following (seemingly impossible) problem: give a good prediction of the number of
words in the new poem that do not appear anywhere in Shakespeare’s previously known
works.

Ronald Thisted and Bradley Efron studied this problem in the papers [?] and [?], devel-
oping theory and methods and then applying the methods to try to determine whether
Shakespeare was the author of a poem discovered by a Shakespearean scholar in 1985.
A simplified version of their method is developed in the problem below. The method
was originally invented by Alan Turing (the founder of computer science) and I.J. Good
as part of the effort to break the German Enigma code during World War II.

Let N be the number of distinct words that Shakespeare knew, and assume these words
are numbered from 1 to N . Suppose for simplicity that Shakespeare wrote only two
plays, A and B. The plays are reasonably long and they are of the same length. Let Xj
be the number of times that word j appears in play A, and Yj be the number of times
it appears in play B, for 1 ≤ j ≤ N .

(a) Explain why it is reasonable to model Xj as being Poisson, and Yj as being Poisson
with the same parameter as Xj .

(b) Let the numbers of occurrences of the word “eyeball” (which was coined by
Shakespare) in the two plays be independent Pois(λ) r.v.s. Show that the probability
that “eyeball” is used in play B but not in play A is

e−λ(λ− λ2/2! + λ3/3!− λ4/4! + . . . ).

(c) Now assume that λ from (b) is unknown and is itself taken to be a random variable
to reflect this uncertainty. So let λ have a PDF f0. Let X be the number of times the
word “eyeball” appears in play A and Y be the corresponding value for play B. Assume
that the conditional distribution of X,Y given λ is that they are independent Pois(λ)
r.v.s. Show that the probability that “eyeball” is used in play B but not in play A is
the alternating series

P (X = 1)− P (X = 2) + P (X = 3)− P (X = 4) + . . . .

Hint: Condition on λ and use (b).

(d) Assume that every word’s numbers of occurrences in A and B are distributed as in
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(c), where λ may be different for different words but f0 is fixed. Let Wj be the number of
words that appear exactly j times in play A. Show that the expected number of distinct
words appearing in play B but not in play A is

E(W1)− E(W2) + E(W3)− E(W4) + . . . .

(This shows that W1 −W2 +W3 −W4 + . . . is an unbiased predictor of the number of
distinct words appearing in play B but not in play A: on average it is correct. Moreover,
it can be computed just from having seen play A, without needing to know f0 or any of
the λj . This method can be extended in various ways to give predictions for unobserved
plays based on observed plays.)

Solution:

(a) It is reasonable to model Xj and Yj as Poisson, because this distribution is used to
describe the number of “events” (such as emails received) happening at some average
rate in a fixed interval or volume. The Poisson paradigm applies here: each individual
word in a play has some very small probability of being word j, and the words are
weakly dependent. Here an event means using word j, the average rate is determined by
how frequently Shakespeare uses that word overall. It is reasonable to assume that the
average rate of occurrence of a particular word is the same for two plays by the same
author, so we take λ to be the same for Xj and Yj .

(b) Let X be the number of times that “eyeball” is used in play A, and Y be the number
of times that it is used in play B. Since X and Y are independent Pois(λ),

P (X = 0, Y > 0) = P (X = 0) (1− P (Y = 0)) = e−λ
(

1− e−λ
)

= e−λ
(

1−
(

1− λ+
λ2

2!
− λ3

3!
+
λ4

4!
− . . .

))
= e−λ

(
λ− λ2

2!
+
λ3

3!
− λ4

4!
+ . . .

)
.

(c) Now λ is a random variable. Given λ, the calculation from (b) holds. By the law of
total probability,

P (X = 0, Y > 0) =

∫ ∞
0

P (X = 0, Y > 0 | λ)f0(λ)dλ

=

∫ ∞
0

P (X = 1 | λ)f0(λ)dλ−
∫ ∞
0

P (X = 2 | λ)f0(λ)dλ

+

∫ ∞
0

P (X = 3 | λ)f0(λ)dλ−
∫ ∞
0

P (X = 4 | λ)f0(λ)dλ+ . . .

= P (X = 1)− P (X = 2) + P (X = 3)− P (X = 4) + . . .

(d) Let Xj be the number of times word j appears in play A and let W be the number
of distinct words that appear in play B but not in A. Then W =

∑N
j=1 Ij , where Ij is

the indicator r.v. of the event that word j appears in play B but not in play A, and N
is the total number of words. By (c), for 1 ≤ j ≤ N ,

EIj =

∞∑
i=1

(−1)i+1P (Xj = i).

Also, note that the number of words that appear exactly i times in play A is

Wi = I(X1 = i) + I(X2 = i) + I(X3 = i) + · · ·+ I(XN = i),
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where I(Xj = i) is the indicator of word j appearing exactly i times in play A. So

EWi =

N∑
j=1

EI(Xj = i) =

N∑
j=1

P (Xj = i).

Then

EW =

N∑
j=1

EIj =

N∑
j=1

∞∑
i=1

(−1)i+1P (Xj = i)

=

∞∑
i=1

(−1)i+1
N∑
j=1

P (Xj = i)

=

∞∑
i=1

(−1)i+1EWi

= EW1 − EW2 + EW3 − EW4 + . . . .
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Change of variables

4. s© Find the PDF of Z4 for Z ∼ N (0, 1).

Solution: Let Y = Z4. For y > 0, the CDF of Y is

P (Y ≤ y) = P (Z4 ≤ y) = P (−y1/4 ≤ Z ≤ y1/4) = Φ(y1/4)− Φ(−y1/4) = 2Φ(y1/4)− 1.

So the PDF is

fY (y) =
2

4
y−3/4ϕ(y1/4) =

1

2
√

2π
y−3/4e−y

1/2/2,

for y > 0, where ϕ is the N (0, 1) PDF.

6. s© Let U ∼ Unif(0, 1). Find the PDFs of U2 and
√
U .

Solution:

(PDF of U2.) Let Y = U2, 0 < u < 1, and y = u2, so u =
√
y. The absolute Jacobian

determinant is
∣∣∣ dudy ∣∣∣ =

∣∣∣ 1
2
√
y

∣∣∣ = 1
2
√
y

for 0 < y < 1. The PDF of Y for 0 < y < 1 is

fY (y) = fU (u)

∣∣∣∣dudy
∣∣∣∣ =

1

2
√
y
,

with fY (y) = 0 otherwise. This is the Beta( 1
2
, 1) PDF, so Y = U2 ∼ Beta( 1

2
, 1).

(PDF of
√
U .) Now let Y = U1/2, 0 < u < 1, and y = u1/2, so u = y2. The absolute

Jacobian determinant is
∣∣∣ dudy ∣∣∣ = |2y| = 2y for 0 < y < 1. The PDF of Y for 0 < y < 1 is

fY (y) = fU (u)

∣∣∣∣dudy
∣∣∣∣ = 2y,

with fY (y) = 0 otherwise. This says that Y has a Beta(2,1) distribution.

In general, the same method shows that U
1
α ∼ Beta(α, 1) for any α > 0.

16. s© Let X,Y be continuous r.v.s with a spherically symmetric joint distribution, which
means that the joint PDF is of the form f(x, y) = g(x2 + y2) for some function g. Let
(R, θ) be the polar coordinates of (X,Y ), so R2 = X2 +Y 2 is the squared distance from
the origin and θ is the angle (in [0, 2π)), with X = R cos θ, Y = R sin θ.

(a) Explain intuitively why R and θ are independent. Then prove this by finding the
joint PDF of (R, θ).

(b) What is the joint PDF of (R, θ) when (X,Y ) is Uniform in the unit disk {(x, y) :
x2 + y2 ≤ 1}?

(c) What is the joint PDF of (R, θ) when X and Y are i.i.d. N (0, 1)?

Solution:

(a) Intuitively, this makes sense since the joint PDF of X,Y at a point (x, y) only

71
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depends on the distance from (x, y) to the origin, not on the angle, so knowing R gives
no information about θ. The absolute Jacobian is r (as shown on the math review
handout), so

fR,θ(r, t) = fX,Y (x, y)r = r · g(r2)

for all r ≥ 0, t ∈ [0, 2π). This factors as a function of r times a (constant) function of t,
so R and θ are independent with θ ∼ Unif(0, 2π).

(b) We have fX,Y (x, y) = 1
π

for x2 + y2 ≤ 1, so fR,θ(r, t) = r
π

for 0 ≤ r ≤ 1, t ∈ [0, 2π)
(and the PDF is 0 otherwise). This says that R and θ are independent with marginal
PDFs fR(r) = 2r for 0 ≤ r ≤ 1 and fθ(t) = 1

2π
for 0 ≤ t < 2π.

(c) The joint PDF of X,Y is 1
2π
e−(x2+y2)/2, so g(r2) = 1

2π
e−r

2/2 and the joint PDF

of (R, θ) is 1
2π
re−r

2/2. This says that R and θ are independent with marginal PDFs

fR(r) = re−r
2/2 for r ≥ 0 and fθ(t) = 1

2π
for 0 ≤ t < 2π. (The distribution of R is an

example of a Weibull ; note that it is the distribution of W 1/2 for W ∼ Expo(1/2).)

Convolutions

24. s© Let X and Y be independent positive r.v.s, with PDFs fX and fY respectively, and
consider the product T = XY . When asked to find the PDF of T , Jacobno argues
that “it’s like a convolution, with a product instead of a sum. To have T = t we need
X = x and Y = t/x for some x; that has probability fX(x)fY (t/x), so summing up
these possibilities we get that the PDF of T is

∫∞
0
fX(x)fY (t/x)dx.” Evaluate Jacobno’s

argument, while getting the PDF of T (as an integral) in 2 ways:

(a) using the continuous version of the law of total probability to get the CDF, and
then taking the derivative (you can assume that swapping the derivative and integral is
valid);

(b) by taking the log of both sides of T = XY and doing a convolution (and then
converting back to get the PDF of T ).

Solution:

(a) By the law of total probability (conditioning on X),

P (T ≤ t) =

∫ ∞
0

P (XY ≤ t|X = x)fX(x)dx

=

∫ ∞
0

P (Y ≤ t/x|X = x)fX(x)dx

=

∫ ∞
0

FY (t/x)fX(x)dx,

which has derivative

fT (t) =

∫ ∞
0

fX(x)fY (t/x)
dx

x
.

This is not the same as Jacobno claimed: there is an extra x in the denominator. This
stems from the fact that the transformation (X,Y ) to (XY,X) is nonlinear, in contrast
to the transformation (X,Y ) to (X+Y,X) considered in SP 8 # 2.3. Jacobno is ignoring
the distinction between probabilities and probability densities, and is implicitly (and
incorrectly) assuming that there is no Jacobian term.

(b) Let Z = log(T ),W = log(X), V = log(Y ), so Z = W + V . The PDF of Z is

fZ(z) =

∫ ∞
−∞

fW (w)fV (z − w)dw,
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where by change of variables fW (w) = fX(ew)ew, fV (v) = fY (ev)ev. So

fZ(z) =

∫ ∞
−∞

fX(ew)ewfY (ez−w)ez−wdw = ez
∫ ∞
−∞

fX(ew)fY (ez−w)dw.

Transforming back to T , we have

fT (t) = fZ(log t)
1

t
=

∫ ∞
−∞

fX(ew)fY (elog(t)−w)dw =

∫ ∞
0

fX(x)fY (t/x)
dx

x
,

letting x = ew. This concurs with (a): Jacobno is missing the x in the denominator.

Beta and Gamma

29. s© Let B ∼ Beta(a, b). Find the distribution of 1−B in two ways: (a) using a change of
variables and (b) using a story proof. Also explain why the result makes sense in terms
of Beta being the conjugate prior for the Binomial.

Solution:

(a) Let W = 1 − B. The function g(t) = 1 − t is strictly decreasing with absolute
derivative | − 1| = 1, so the PDF of W is

fW (w) =
Γ(a+ b)

Γ(a)Γ(b)
(1− w)a−1wb−1,

for 0 < w < 1, which shows that W ∼ Beta(b, a).

(b) Using the bank–post office story, we can represent B = X
X+Y

with X ∼ Gamma(a, 1)

and Y ∼ Gamma(b, 1) independent. Then 1−B = Y
X+Y

∼ Beta(b, a) by the same story.

This result makes sense intuitively since if we use Beta(a, b) as the prior distribution
for the probability p of success in a Binomial problem, interpreting a as the number of
prior successes and b as the number of prior failures, then 1 − p is the probability of
failure and, interchanging the roles of “success” and “failure,” it makes sense to have
1− p ∼ Beta(b, a).

30. s© Let X ∼ Gamma(a, λ) and Y ∼ Gamma(b, λ) be independent, with a and b integers.
Show that X +Y ∼ Gamma(a+ b, λ) in three ways: (a) with a convolution integral; (b)
with MGFs; (c) with a story proof.

Solution:

(a) The convolution integral is

fX+Y (t) =

∫ ∞
−∞

fX(x)fY (t−x)dx =

∫ t

0

1

Γ(a)

1

Γ(b)
(λx)a(λ(t−x))be−λxe−λ(t−x)

1

x

1

t− xdx,

where we integrate from 0 to t since we need x > 0 and t− x > 0. This is

λa+b
e−λt

Γ(a)Γ(b)

∫ t

0

xa−1(t−x)b−1dx = λa+b
e−λt

Γ(a)Γ(b)

Γ(a)Γ(b)

Γ(a+ b)
ta+b−1 =

1

Γ(a+ b)
(λt)a+be−λt

1

t
,

using a Beta integral (after letting u = x/t so that we can integrate from 0 to 1 rather
than 0 to t). Thus, X + Y ∼ Gamma(a+ b, λ).

(b) The MGF of X + Y is MX(t)MY (t) = λa

(λ−t)a
λb

(λ−t)b = λa+b

(λ−t)a+b = MX+Y (t), which

again shows that X + Y ∼ Gamma(a+ b, λ).

(c) Interpret X as the time of the ath arrival in a Poisson process with rate λ, and Y
as the time needed for b more arrivals to occur (which is independent of X since the
times between arrivals are independent Expo(λ) r.v.s). Then X + Y is the time of the
(a+ b)th arrival, so X + Y ∼ Gamma(a+ b, λ).
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32. s© Fred waits X ∼ Gamma(a, λ) minutes for the bus to work, and then waits Y ∼
Gamma(b, λ) for the bus going home, with X and Y independent. Is the ratio X/Y
independent of the total wait time X + Y ?

Solution: As shown in the bank–post office story, W = X
X+Y

is independent of X + Y .
So any function of W is independent of any function of X + Y . And we have that X/Y
is a function of W , since

X

Y
=

X
X+Y

Y
X+Y

=
W

1−W ,

so X/Y is independent of X + Y .

33. s© The F -test is a very widely used statistical test based on the F (m,n) distribution,

which is the distribution of X/m
Y/n

with X ∼ Gamma(m
2
, 1
2
), Y ∼ Gamma(n

2
, 1
2
). Find the

distribution of mV/(n+mV ) for V ∼ F (m,n).

Solution: Let X ∼ Gamma(m
2
, 1
2
), Y ∼ Gamma(n

2
, 1
2
), and V = n

m
X
Y

. Then

mV/(n+mV ) =
nX/Y

n+ nX/Y
=

X

X + Y
∼ Beta

(m
2
,
n

2

)
.

34. s© Customers arrive at the Leftorium store according to a Poisson process with rate λ
customers per hour. The true value of λ is unknown, so we treat it as a random variable.
Suppose that our prior beliefs about λ can be expressed as λ ∼ Expo(3). Let X be the
number of customers who arrive at the Leftorium between 1 pm and 3 pm tomorrow.
Given that X = 2 is observed, find the posterior PDF of λ.

Solution: It follows from Story 8.4.5 (Gamma-Poisson conjugacy) that the posterior
distribution of λ given the data is Gamma(3, 5). Equivalently, we can use Bayes’ rule
directly. Writing f0 for the prior PDF and f1 for the posterior PDF, we have

f1(λ|x) =
P (X = x|λ)f0(λ)

P (X = x)
,

where f0(λ) = 3e−3λ for λ > 0, and P (X = x|λ) is obtained from the Pois(2λ) PMF.
For x = 2, the numerator is

e−2λ(2λ)2

2!
· 3e−3λ = 6λ2e−5λ.

The denominator does not depend on λ, so it serves as a normalizing constant for
the posterior PDF. So the posterior PDF is proportional to λ2e−5λ, which shows that
the posterior distribution is Gamma(3, 5). Including the normalizing constant for the
Gamma distribution, we have

f1(λ|2) =
53

Γ(3)
λ2e−5λ =

125

2
λ2e−5λ,

for λ > 0.

35. s© Let X and Y be independent, positive r.v.s. with finite expected values.

(a) Give an example where E( X
X+Y

) 6= E(X)
E(X+Y )

, computing both sides exactly.

Hint: Start by thinking about the simplest examples you can think of!

(b) If X and Y are i.i.d., then is it necessarily true that E( X
X+Y

) = E(X)
E(X+Y )

?

(c) Now let X ∼ Gamma(a, λ) and Y ∼ Gamma(b, λ). Show without using calculus that

E

(
Xc

(X + Y )c

)
=

E(Xc)

E((X + Y )c)
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for every real c > 0.

Solution:

(a) As a simple example, let X take on the values 1 and 3 with probability 1/2 each, and
let Y take on the values 3 and 5 with probability 1/2 each. Then E(X)/E(X + Y ) =
2/(2 + 4) = 1/3, but E(X/(X + Y )) = 31/96 (the average of the 4 possible values
of X/(X + Y ), which are equally likely). An even simpler example is to let X be the
constant 1 (a degenerate r.v.), and let Y be 1 or 3 with probability 1/2 each. Then
E(X)/E(X + Y ) = 1/(1 + 2) = 1/3, but E(X/(X + Y )) = 3/8.

(b) Yes, since by symmetry E( X
X+Y

) = E( Y
X+Y

) and by linearity

E

(
X

X + Y

)
+ E

(
Y

X + Y

)
= E

(
X + Y

X + Y

)
= 1,

so E( X
X+Y

) = 1/2, while on the other hand

E(X)

E(X + Y )
=

E(X)

E(X) + E(Y )
=

E(X)

E(X) + E(X)
= 1/2.

(c) The equation we need to show can be paraphrased as the statement that Xc/(X+Y )c

and (X+Y )c are uncorrelated. By the bank–post office story, X/(X+Y ) is independent
of X + Y . So Xc/(X + Y )c is independent of (X + Y )c, which shows that they are
uncorrelated.

Order statistics

41. s© Let X ∼ Bin(n, p) and B ∼ Beta(j, n− j + 1), where n is a positive integer and j is
a positive integer with j ≤ n. Show using a story about order statistics that

P (X ≥ j) = P (B ≤ p).

This shows that the CDF of the continuous r.v. B is closely related to the CDF of the
discrete r.v. X, and is another connection between the Beta and Binomial.

Solution: Let U1, . . . , Un be i.i.d. Unif(0, 1). Think of these as Bernoulli trials, where
Uj is defined to be “successful” if Uj ≤ p (so the probability of success is p for each
trial). Let X be the number of successes. Then X ≥ j is the same event as U(j) ≤ p, so
P (X ≥ j) = P (U(j) ≤ p).

45. s© Let X and Y be independent Expo(λ) r.v.s and M = max(X,Y ). Show that M has
the same distribution as X+ 1

2
Y , in two ways: (a) using calculus and (b) by remembering

the memoryless property and other properties of the Exponential.

Solution:

(a) The CDF of M is

FM (x) = P (M ≤ x) = P (X ≤ x, Y ≤ x) = (1− e−λx)2,

and the CDF of X + 1
2
Y is

FX+ 1
2
Y (x) = P (X +

1

2
Y ≤ x) =

∫∫
s+ 1

2
t≤x

λ2e−λs−λtdsdt

=

∫ 2x

0

λe−λtdt

∫ x− 1
2
t

0

λe−λsds
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=

∫ 2x

0

(1− e−λx−
1
2
t)λe−λtdt = (1− e−λx)2.

Thus, M and X + 1
2
Y have the same CDF.

(b) As in Example 7.3.6, imagine that two students are independently trying to solve a
problem. Suppose that X and Y are the times required. Let L = min(X,Y ), and write
M = L + (M − L). L ∼ Expo(2λ) is the time it takes for the first student to solve
the problem and then by the memoryless property, the additional time until the second
student solves the problem is M−L ∼ Expo(λ), independent of L. Since 1

2
Y ∼ Expo(2λ)

is independent of X ∼ Expo(λ), M = L+(M−L) has the same distribution as 1
2
Y +X.

46. s© (a) If X and Y are i.i.d. continuous r.v.s with CDF F (x) and PDF f(x), then
M = max(X,Y ) has PDF 2F (x)f(x). Now let X and Y be discrete and i.i.d., with
CDF F (x) and PMF f(x). Explain in words why the PMF of M is not 2F (x)f(x).

(b) Let X and Y be independent Bern(1/2) r.v.s, and let M = max(X,Y ), L =
min(X,Y ). Find the joint PMF of M and L, i.e., P (M = a, L = b), and the marginal
PMFs of M and L.

Solution:

(a) The PMF is not 2F (x)f(x) in the discrete case due to the problem of ties: there
is a nonzero chance that X = Y . We can write the PMF as P (M = a) = P (X =
a, Y < a) + P (Y = a,X < a) + P (X = Y = a) since M = a means that at least
one of X,Y equals a, with neither greater than a. The first two terms together become
2f(a)P (Y < a), but the third term may be nonzero and also P (Y < a) may not equal
F (a) = P (Y ≤ a).

(b) In order statistics notation, L = X(1),M = X(2). Marginally, we have X(1) ∼
Bern(1/4), X(2) ∼ Bern(3/4). The joint PMF is

P (X(1) = 0, X(2) = 0) = 1/4

P (X(1) = 0, X(2) = 1) = 1/2

P (X(1) = 1, X(2) = 0) = 0

P (X(1) = 1, X(2) = 1) = 1/4.

Note that these values are nonnegative and sum to 1, and that X(1) and X(2) are
dependent.

48. s© Let X1, X2, . . . , Xn be i.i.d. r.v.s with CDF F and PDF f . Find the joint PDF of
the order statistics X(i) and X(j) for 1 ≤ i < j ≤ n, by drawing and thinking about a
picture.

Solution:

a b

i-1 left of a n-j right of bj-i-1 between a,b

To have X(i) be in a tiny interval around a and X(j) be in a tiny interval around b,
where a < b, we need to have 1 of the Xk’s be almost exactly at a, another be almost
exactly at b, i− 1 of them should be to the left of a, n− j should be to the right of b,
and the remaining j − i − 1 should be between a and b, as shown in the picture. This
gives that the PDF is

f(i),(j)(a, b) =
n!

(i− 1)!(j − i− 1)!(n− j)!F (a)i−1f(a)(F (b)−F (a))j−i−1f(b)(1−F (b))n−j ,
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for a < b. The coefficient in front counts the number of ways to put the Xk’s into the 5
categories “left of a,” “at a,” “between a and b,” “at b,” “right of b” with the desired
number in each category (which is the same idea used to find the coefficient in front of the
Multinomial PMF). Equivalently, we could write the coefficient as n(n−1)

(
n−2
i−1

)(
n−i−1
j−i−1

)
,

since there are n choices for which Xk is at a, then n− 1 choices for which is at b, etc.

49. s© Two women are pregnant, both with the same due date. On a timeline, define time
0 to be the instant when the due date begins. Suppose that the time when the woman
gives birth has a Normal distribution, centered at 0 and with standard deviation 8 days.
Assume that the two birth times are i.i.d. Let T be the time of the first of the two births
(in days).

(a) Show that

E(T ) =
−8√
π
.

Hint: For any two random variables X and Y , we have max(X,Y )+min(X,Y ) = X+Y
and max(X,Y ) − min(X,Y ) = |X − Y |. Example 7.2.3 derives the expected distance
between two i.i.d. N (0, 1) r.v.s.

(b) Find Var(T ), in terms of integrals. You can leave your answers unsimplified for this
problem, but it can be shown that the answer works out to

Var(T ) = 64

(
1− 1

π

)
.

Solution: Let T = min(T1, T2), with T1 and T2 the i.i.d. birth times. Standardizing, let

X =
T1

8
, Y =

T2

8
, L =

T

8
,

so X and Y are i.i.d. N (0, 1), and L = min(X,Y ). Also, let

M = max(X,Y ), S = X + Y,W = |X − Y |.

We have M + L = S and M − L = W , so M = 1
2
(S +W ) and L = 1

2
(S −W ). Then

E(S) = 0 and E(W ) =
2√
π
,

by Example 7.2.3. Thus,

E(M) =
1

2
E(W ) =

1√
π
,E(L) =

−1

2
E(W ) =

−1√
π
.

It follows that

E(T ) = 8E(L) =
−8√
π
.

(b) We can find the PDF of T using order statistics results, or directly using

P (T > t) = P (T1 > t, T2 > t) = (1− Φ(t/8))2.

So the PDF of T is

f(t) =
1

4
(1− Φ(t/8))ϕ(t/8),

where ϕ(z) = 1√
2π
e−z

2/2 is the N (0, 1) PDF. Thus,

Var(T ) =

∫ ∞
−∞

t2f(t)dt−
(∫ ∞
−∞

tf(t)dt

)2

,
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with f as above.

To get the variance in closed form (which was not requested in the problem), note that
(with notation as above) X+Y and X−Y are independent since they are uncorrelated
and (X + Y,X − Y ) is MVN. So S = X + Y and W = |X − Y | are independent. Thus,

Var(L) =
1

4
(Var(S) + Var(W )).

We have Var(S) = 2, and

Var(W ) = E(X − Y )2 − (E(W ))2 = Var(X − Y )− (E(W ))2 = 2− 4

π
.

Therefore,

Var(L) = 1− 1

π
,

which shows that

Var(T ) = 64

(
1− 1

π

)
.

Mixed practice

53. s© A DNA sequence can be represented as a sequence of letters, where the “alphabet”
has 4 letters: A,C,T,G. Suppose such a sequence is generated randomly, where the letters
are independent and the probabilities of A,C,T,G are p1, p2, p3, p4 respectively.

(a) In a DNA sequence of length 115, what is the expected number of occurrences of
the expression “CATCAT” (in terms of the pj)? (Note that, for example, the expression
“CATCATCAT” counts as 2 occurrences.)

(b) What is the probability that the first A appears earlier than the first C appears, as
letters are generated one by one (in terms of the pj)?

(c) For this part, assume that the pj are unknown. Suppose we treat p2 as a Unif(0, 1)
r.v. before observing any data, and that then the first 3 letters observed are “CAT”.
Given this information, what is the probability that the next letter is C?

Solution:

(a) Let Ij be the indicator r.v. of “CATCAT” appearing starting at position j, for
1 ≤ j ≤ 110. Then E(Ij) = (p1p2p3)2, so the expected number is 110(p1p2p3)2.

Sanity check : The number of occurrences is between 0 and 110, so the expected value
must also be between 0 and 110. If any of the letters C, A, or T is very rare, then
“CATCAT” will be even more rare; this is reflected in the p2j factors, which will make
the expected number small if any of p1, p2, p3 is small.

(b) Consider the first letter which is an A or a C (call it X; alternatively, condition on
the first letter of the sequence). This gives

P (A before C) = P (X is A|X is A or C) =
P (X is A)

P (X is A or C)
=

p1
p1 + p2

.

Sanity check : The answer should be 1/2 for p1 = p2, should go to 0 as p1 → 0, should be
increasing in p1 and decreasing in p2, and finding P (A before C) by 1− P (A before C)
should agree with finding it by swapping p1, p2.

(c) Let X be the number of C’s in the data (so X = 1 is observed here). The prior is
p2 ∼ Beta(1, 1), so the posterior is p2|X = 1 ∼ Beta(2, 3) (by the connection between
Beta and Binomial, or by Bayes’ Rule). Given p2, the indicator of the next letter being
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C is Bern(p2). So given X (but not given p2), the probability of the next letter being C
is E(p2|X) = 2

5
.

Sanity check : It makes sense that the answer should be strictly in between 1/2 (the
mean of the prior distribution) and 1/3 (the observed frequency of C’s in the data).

54. s© Consider independent Bernoulli trials with probability p of success for each. Let X
be the number of failures incurred before getting a total of r successes.

(a) Determine what happens to the distribution of p
1−pX as p→ 0, using MGFs; what

is the PDF of the limiting distribution, and its name and parameters if it is one we have
studied?

Hint: Start by finding the Geom(p) MGF. Then find the MGF of p
1−pX, and use the

fact that if the MGFs of r.v.s Yn converge to the MGF of an r.v. Y , then the CDFs of
the Yn converge to the CDF of Y .

(b) Explain intuitively why the result of (a) makes sense.

Solution:

(a) Let q = 1− p. For G ∼ Geom(p), the MGF is

E(etG) = p

∞∑
k=0

etkqk = p

∞∑
k=0

(qet)k =
p

1− qet ,

for qet < 1. So the NBin(r, p) MGF is pr

(1−qet)r for qet < 1. Then the MGF of p
1−pX is

E(e
tp
q
X

) =
pr

(1− qetp/q)r

for qetp/q < 1. Let us first consider the limit for r = 1. As p → 0, the numerator goes
to 0 and so does the denominator (since qetp/q → 1e0 = 1). By L’Hôpital’s Rule,

lim
p→0

p

1− (1− p)etp/(1−p)
= lim
p→0

1

etp/(1−p) − (1− p)t
(

1−p+p
(1−p)2

)
etp/(1−p)

=
1

1− t .

So for any fixed r > 0, as p→ 0 we have

E
(
e
tp
q
X
)

=
pr

(1− qetp/q)r
→ 1

(1− t)r .

This is the Gamma(r, 1) MGF for t < 1 (note also that the condition qetp/q < 1 is
equivalent to t < − 1−p

p
log(1−p), which converges to the condition t < 1 since again by

L’Hôpital’s Rule, −p
log(1−p) → 1). Thus, the scaled Negative Binomial p

1−pX converges to

Gamma(r, 1) in distribution as p→ 0.

(b) The result of (a) makes sense intuitively since the Gamma is the continuous analogue
of the Negative Binomial, just as the Exponential is the continuous analog of the Geo-
metric. To convert from discrete to continuous, imagine performing many, many trials
where each is performed very, very quickly and has a very, very low chance of success.
To balance the rate of trials with the chance of success, we use the scaling p

q
since this

makes E( p
q
X) = r, matching the Gamma(r, 1) mean.
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Conditional expectation given an event

7. s© You get to choose between two envelopes, each of which contains a check for some
positive amount of money. Unlike in the two-envelope paradox, it is not given that one
envelope contains twice as much money as the other envelope. Instead, assume that the
two values were generated independently from some distribution on the positive real
numbers, with no information given about what that distribution is.

After picking an envelope, you can open it and see how much money is inside (call this
value x), and then you have the option of switching. As no information has been given
about the distribution, it may seem impossible to have better than a 50% chance of
picking the better envelope. Intuitively, we may want to switch if x is “small” and not
switch if x is “large”, but how do we define “small” and “large” in the grand scheme of
all possible distributions? [The last sentence was a rhetorical question.]

Consider the following strategy for deciding whether to switch. Generate a threshold
T ∼ Expo(1), and switch envelopes if and only if the observed value x is less than the
value of T . Show that this strategy succeeds in picking the envelope with more money
with probability strictly greater than 1/2.

Hint: Let t be the value of T (generated by a random draw from the Expo(1) distribu-
tion). First explain why the strategy works very well if t happens to be in between the
two envelope values, and does no harm in any case (i.e., there is no case in which the
strategy succeeds with probability strictly less than 1/2).

Solution: Let a be the smaller value of the two envelopes and b be the larger value
(assume a < b since in the case a = b it makes no difference which envelope is chosen!).
Let G be the event that the strategy succeeds and A be the event that we pick the
envelope with a initially. Then P (G|A) = P (T > a) = 1 − (1 − e−a) = e−a, and
P (G|Ac) = P (T ≤ b) = 1− e−b. Thus, the probability that the strategy succeeds is

1

2
e−a +

1

2
(1− e−b) =

1

2
+

1

2
(e−a − e−b) > 1

2
,

because e−a − e−b > 0.

10. s© A coin with probability p of Heads is flipped repeatedly. For (a) and (b), suppose
that p is a known constant, with 0 < p < 1.

(a) What is the expected number of flips until the pattern HT is observed?

(b) What is the expected number of flips until the pattern HH is observed?

(c) Now suppose that p is unknown, and that we use a Beta(a, b) prior to reflect our
uncertainty about p (where a and b are known constants and are greater than 2). In
terms of a and b, find the corresponding answers to (a) and (b) in this setting.

Solution:

(a) This can be thought of as “Wait for Heads, then wait for the first Tails after the
first Heads,” so the expected value is 1

p
+ 1

q
, with q = 1− p.

81



82 Chapter 9: Conditional expectation

(b) Let X be the waiting time for HH and condition on the first toss, writing H for the
event that the first toss is Heads and T for the complement of H:

E(X) = E(X|H)p+ E(X|T )q = E(X|H)p+ (1 + EX)q.

To find E(X|H), condition on the second toss:

E(X|H) = E(X|HH)p+ E(X|HT )q = 2p+ (2 + EX)q.

Solving for E(X), we have

E(X) =
1

p
+

1

p2
.

Sanity check : This gives E(X) = 6 when p = 1/2, in agreement with Example 9.1.9.

(c) Let X and Y be the number of flips until HH and until HT , respectively. By
(a), E(Y |p) = 1

p
+ 1

1−p . So E(Y ) = E(E(Y |p)) = E( 1
p
) + E( 1

1−p ). Likewise, by (b),

E(X) = E(E(X|p)) = E( 1
p
) + E( 1

p2
). By LOTUS,

E

(
1

p

)
=

Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0

pa−2(1− p)b−1dp =
Γ(a+ b)

Γ(a)Γ(b)

Γ(a− 1)Γ(b)

Γ(a+ b− 1)
=
a+ b− 1

a− 1
,

E

(
1

1− p

)
=

Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0

pa−1(1− p)b−2dp =
Γ(a+ b)

Γ(a)Γ(b)

Γ(a)Γ(b− 1)

Γ(a+ b− 1)
=
a+ b− 1

b− 1
,

E

(
1

p2

)
=

Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0

pa−3(1−p)b−1dp =
Γ(a+ b)

Γ(a)Γ(b)

Γ(a− 2)Γ(b)

Γ(a+ b− 2)
=

(a+ b− 1)(a+ b− 2)

(a− 1)(a− 2)
.

Thus,

E(Y ) =
a+ b− 1

a− 1
+
a+ b− 1

b− 1
,

E(X) =
a+ b− 1

a− 1
+

(a+ b− 1)(a+ b− 2)

(a− 1)(a− 2)
.

Conditional expectation given a random variable

13. s© Let X1, X2 be i.i.d., and let X̄ = 1
2
(X1 +X2) be the sample mean. In many statistics

problems, it is useful or important to obtain a conditional expectation given X̄. As an
example of this, find E(w1X1 +w2X2|X̄), where w1, w2 are constants with w1 +w2 = 1.

Solution: By symmetry E(X1|X̄) = E(X2|X̄) and by linearity and taking out what’s
known, E(X1|X̄)+E(X2|X̄) = E(X1+X2|X̄) = X1+X2. So E(X1|X̄) = E(X2|X̄) = X̄
(this was also derived in class). Thus,

E(w1X1 + w2X2|X̄) = w1E(X1|X̄) + w2E(X2|X̄) = w1X̄ + w2X̄ = X̄.

15. s© Consider a group of n roommate pairs at a college (so there are 2n students). Each
of these 2n students independently decides randomly whether to take a certain course,
with probability p of success (where “success” is defined as taking the course).

Let N be the number of students among these 2n who take the course, and let X be
the number of roommate pairs where both roommates in the pair take the course. Find
E(X) and E(X|N).

Solution: Create an indicator r.v. Ij for the jth roommate pair, equal to 1 if both
take the course. The expected value of such an indicator r.v. is p2, so E(X) = np2 by
symmetry and linearity. Similarly, E(X|N) = nE(I1|N). We have

E(I1|N) =
N

2n

N − 1

2n− 1
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since given that N of the 2n students take the course, the probability is N
2n

that any
particular student takes Stat 110 (the p no longer matters), and given that one particular
student in a roommate pair takes the course, the probability that the other roommate

does is N−1
2n−1

. Or write E(I1|N) =
(N2 )
(2n2 )

, since given N , the number of students in the

first roommate pair who are in the course is Hypergeometric! Thus,

E(X|N) = nE(I1|N) =
N(N − 1)

2

1

2n− 1
.

Historical note: an equivalent problem was first solved in the 1760s by Daniel Bernoulli, a
nephew of Jacob Bernoulli. (The Bernoulli distribution is named after Jacob Bernoulli.)

16. s© Show that E((Y −E(Y |X))2|X) = E(Y 2|X)− (E(Y |X))2, so these two expressions
for Var(Y |X) agree.

Solution: This is the conditional version of the fact that

Var(Y ) = E((Y − E(Y ))2) = E(Y 2)− (E(Y ))2,

and so must be true since conditional expectations are expectations, just as conditional
probabilities are probabilities. Algebraically, letting g(X) = E(Y |X) we have

E((Y−E(Y |X))2|X) = E(Y 2−2Y g(X)+g(X)2|X) = E(Y 2|X)−2E(Y g(X)|X)+E(g(X)2|X),

and E(Y g(X)|X) = g(X)E(Y |X) = g(X)2, E(g(X)2|X) = g(X)2 by taking out what’s
known, so the righthand side above simplifies to E(Y 2|X)− g(X)2.

22. s© Let X and Y be random variables with finite variances, and let W = Y − E(Y |X).
This is a residual : the difference between the true value of Y and the predicted value of
Y based on X.

(a) Compute E(W ) and E(W |X).

(b) Compute Var(W ), for the case that W |X ∼ N (0, X2) with X ∼ N (0, 1).

Solution:

(a) Adam’s law, taking out what’s known, and linearity give

E(W ) = EY − E(E(Y |X)) = EY − EY = 0,

E(W |X) = E(Y |X)− E(E(Y |X)|X) = E(Y |X)− E(Y |X) = 0.

(b) Eve’s Law gives

Var(W ) = Var(E(W |X)) + E(Var(W |X)) = Var(0) + E(X2) = 0 + 1 = 1.

23. s© One of two identical-looking coins is picked from a hat randomly, where one coin has
probability p1 of Heads and the other has probability p2 of Heads. Let X be the number
of Heads after flipping the chosen coin n times. Find the mean and variance of X.

Solution: The distribution of X is a mixture of two Binomials; this is not Binomial
unless p1 = p2. Let I be the indicator of having the p1 coin. Then

E(X) = E(X|I = 1)P (I = 1) + E(X|I = 0)P (I = 0) =
1

2
n(p1 + p2).

Alternatively, we can represent X as X = IX1 + (1 − I)X2 with Xj ∼ Bin(n, pj), and
I,X1, X2 independent. Then

E(X) = E(E(X|I)) = E(Inp1 + (1− I)np2) =
1

2
n(p1 + p2).
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For the variance, note that it is not valid to say “Var(X) = Var(X|I = 1)P (I =
1) + Var(X|I = 0)P (I = 0)”; an extreme example of this mistake would be claiming
that “Var(I) = 0 since Var(I|I = 1)P (I = 1) + Var(I|I = 0)P (I = 0) = 0”; of course,
Var(I) = 1

4
). Instead, we can use Eve’s Law:

Var(X) = E(Var(X|I)) + Var(E(X|I)),

where Var(X|I) = Inp1(1− p1) + (1− I)np2(1− p2) is np1(1− p1) with probability 1/2
and np2(1 − p2) with probability 1/2, and E(X|I) = Inp1 + (1 − I)np2 is np1 or np2
with probability 1

2
each, so

Var(X) =
1

2
(np1(1− p1) + np2(1− p2)) +

1

4
n2(p1 − p2)2.

27. s© We wish to estimate an unknown parameter θ, based on an r.v. X we will get to
observe. As in the Bayesian perspective, assume that X and θ have a joint distribution.
Let θ̂ be the estimator (which is a function of X). Then θ̂ is said to be unbiased if
E(θ̂|θ) = θ, and θ̂ is said to be the Bayes procedure if E(θ|X) = θ̂.

(a) Let θ̂ be unbiased. Find E(θ̂ − θ)2 (the average squared difference between the
estimator and the true value of θ), in terms of marginal moments of θ̂ and θ.

Hint: Condition on θ.

(b) Repeat (a), except in this part suppose that θ̂ is the Bayes procedure rather than
assuming that it is unbiased.

Hint: Condition on X.

(c) Show that it is impossible for θ̂ to be both the Bayes procedure and unbiased, except
in silly problems where we get to know θ perfectly by observing X.

Hint: If Y is a nonnegative r.v. with mean 0, then P (Y = 0) = 1.

Solution:

(a) Conditioning on θ, we have

E(θ̂ − θ)2 = E(E(θ̂2 − 2θ̂θ + θ2|θ))

= E(E(θ̂2|θ))− E(E(2θ̂θ|θ)) + E(E(θ2|θ))

= E(θ̂2)− 2E(θE(θ̂|θ)) + E(θ2)

= E(θ̂2)− 2E(θ2) + E(θ2)

= E(θ̂2)− E(θ2).

(b) By the same argument as for (a) except now conditioning on X, we have

E(θ̂ − θ)2 = E(E(θ̂2 − 2θ̂θ + θ2|X))

= E(E(θ̂2|X))− E(E(2θ̂θ|X)) + E(E(θ2|X))

= E(θ̂2)− 2E(θ̂2) + E(θ2)

= E(θ2)− E(θ̂2).

(c) Suppose that θ̂ is both the Bayes procedure and unbiased. By the above, we have
E(θ̂ − θ)2 = a and E(θ̂ − θ)2 = −a, where a = E(θ̂2)− E(θ2). But that implies a = 0,
which means that θ̂ = θ (with probability 1). That can only happen in the extreme
situation where the observed data reveal the true θ perfectly ; in practice, nature is much
more elusive and does not reveal its deepest secrets with such alacrity.
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30. s© Emails arrive one at a time in an inbox. Let Tn be the time at which the nth email
arrives (measured on a continuous scale from some starting point in time). Suppose that
the waiting times between emails are i.i.d. Expo(λ), i.e., T1, T2−T1, T3−T2, . . . are i.i.d.
Expo(λ).

Each email is non-spam with probability p, and spam with probability q = 1 − p (in-
dependently of the other emails and of the waiting times). Let X be the time at which
the first non-spam email arrives (so X is a continuous r.v., with X = T1 if the 1st email
is non-spam, X = T2 if the 1st email is spam but the 2nd one isn’t, etc.).

(a) Find the mean and variance of X.

(b) Find the MGF of X. What famous distribution does this imply that X has (be sure
to state its parameter values)?

Hint for both parts: Let N be the number of emails until the first non-spam (including
that one), and write X as a sum of N terms; then condition on N .

Solution:

(a) Write X = X1 +X2 + · · ·+XN , where Xj is the time from the (j − 1)th to the jth
email for j ≥ 2, and X1 = T1. Then N − 1 ∼ Geom(p), so

E(X) = E(E(X|N)) = E(N
1

λ
) =

1

pλ
.

And

Var(X) = E(Var(X|N)) + Var(E(X|N)) = E(N
1

λ2
) + Var(N

1

λ
),

which is
1

pλ2
+

1− p
p2λ2

=
1

p2λ2
.

(b) Again conditioning on N , the MGF is

E(etX) = E(E(etX1etX2 · · · etXN |N)) = E
(
E(etX1 |N)E(etX2 |N) . . . E(etXN |N)

)
= E(M1(t)N ),

where M1(t) is the MGF of X1 (which is λ
λ−t for t < λ). By LOTUS, this is

p

∞∑
n=1

M1(t)nqn−1 =
p

q

∞∑
n=1

(qM1(t))n =
p

q

qM1(t)

1− qM1(t)
=

pλ
λ−t

1− qλ
λ−t

=
pλ

pλ− t

for t < pλ (as we need qM1(t) < 1 for the series to converge). This is the Expo(pλ)
MGF, so X ∼ Expo(pλ).

33. s© Judit plays in a total of N ∼ Geom(s) chess tournaments in her career. Suppose that
in each tournament she has probability p of winning the tournament, independently.
Let T be the number of tournaments she wins in her career.

(a) Find the mean and variance of T .

(b) Find the MGF of T . What is the name of this distribution (with its parameters)?

Solution:

(a) We have T |N ∼ Bin(N, p). By Adam’s Law,

E(T ) = E(E(T |N)) = E(Np) = p(1− s)/s.
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By Eve’s Law,

Var(T ) = E(Var(T |N)) + Var(E(T |N))

= E(Np(1− p)) + Var(Np)

= p(1− p)(1− s)/s+ p2(1− s)/s2

=
p(1− s)(s+ (1− s)p)

s2
.

(b) Let Ij ∼ Bern(p) be the indicator of Judit winning the jth tournament. Then

E(etT ) = E(E(etT |N))

= E((pet + q)N )

= s

∞∑
n=0

(pet + 1− p)n(1− s)n

=
s

1− (1− s)(pet + 1− p) .

This is reminiscent of the Geometric MGF, which was derived in Example 6.4.3. If
T ∼ Geom(θ), we have θ = s

s+p(1−s) , as found by setting E(T ) = 1−θ
θ

or by finding

Var(T )/E(T ). Writing the MGF of T as

E(etT ) =
s

s+ (1− s)p− (1− s)pet =

s
s+(1−s)p

1− (1−s)p
s+(1−s)pe

t
,

we see that T ∼ Geom(θ), with θ = s
s+(1−s)p . Note that this is consistent with (a).

The distribution of T can also be obtained by a story proof. Imagine that just before
each tournament she may play in, Judit retires with probability s (if she retires, she
does not play in that or future tournaments). Her tournament history can be written as
a sequence of W (win), L (lose), R (retire), ending in the first R, where the probabilities
of W,L,R are (1 − s)p, (1 − s)(1 − p), s respectively. For calculating T , the losses can
be ignored: we want to count the number of W ’s before the R. The probability that a
result is R given that it is W or R is s

s+(1−s)p , so we again have

T ∼ Geom(
s

s+ (1− s)p ).

36. s© A certain stock has low volatility on some days and high volatility on other days.
Suppose that the probability of a low volatility day is p and of a high volatility day
is q = 1 − p, and that on low volatility days the percent change in the stock price is
N (0, σ2

1), while on high volatility days the percent change is N (0, σ2
2), with σ1 < σ2.

Let X be the percent change of the stock on a certain day. The distribution is said to
be a mixture of two Normal distributions, and a convenient way to represent X is as
X = I1X1+I2X2 where I1 is the indicator r.v. of having a low volatility day, I2 = 1−I1,
Xj ∼ N (0, σ2

j ), and I1, X1, X2 are independent.

(a) Find Var(X) in two ways: using Eve’s law, and by calculating Cov(I1X1 +
I2X2, I1X1 + I2X2) directly.

(b) Recall from Chapter 6 that the kurtosis of an r.v. Y with mean µ and standard
deviation σ is defined by

Kurt(Y ) =
E(Y − µ)4

σ4
− 3.

Find the kurtosis of X (in terms of p, q, σ2
1 , σ

2
2 , fully simplified). The result will show that
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even though the kurtosis of any Normal distribution is 0, the kurtosis of X is positive
and in fact can be very large depending on the parameter values.

Solution:

(a) By Eve’s Law,

Var(X) = E(Var(X|I1))+Var(E(X|I1)) = E(I21σ
2
1+(1−I1)2σ2

2)+Var(0) = pσ2
1+(1−p)σ2

2 ,

since I21 = I1, I
2
2 = I2. For the covariance method, expand

Var(X) = Cov(I1X1+I2X2, I1X1+I2X2) = Var(I1X1)+Var(I2X2)+2Cov(I1X1, I2X2).

Then Var(I1X1) = E(I21X
2
1 )− (E(I1X1))2 = E(I1)E(X2

1 ) = pVar(X1) since E(I1X1) =
E(I1)E(X1) = 0. Similarly, Var(I2X2) = (1− p)Var(X2). And

Cov(I1X1, I2X2) = E(I1I2X1X2)− E(I1X1)E(I2X2) = 0,

since I1I2 always equals 0. So again we have Var(X) = pσ2
1 + (1− p)σ2

2 .

(b) Note that (I1X1 + I2X2)4 = I1X
4
1 + I2X

4
2 since the cross terms disappear (because

I1I2 is always 0) and any positive power of an indicator r.v. is that indicator r.v.! So

E(X4) = E(I1X
4
1 + I2X

4
2 ) = 3pσ4

1 + 3qσ4
2 .

Alternatively, we can use E(X4) = E(X4|I1 = 1)p+E(X4|I1 = 0)q to find E(X4). The
mean of X is E(I1X1) + E(I2X2) = 0, so the kurtosis of X is

Kurt(X) =
3pσ4

1 + 3qσ4
2

(pσ2
1 + qσ2

2)2
− 3.

This becomes 0 if σ1 = σ2, since then we have a Normal distribution rather than a
mixture of two different Normal distributions. For σ1 < σ2, the kurtosis is positive since

pσ4
1 + qσ4

2 > (pσ2
1 + qσ2

2)2,

as can be seen by interpreting this as saying E(Y 2) > (EY )2, where Y is σ2
1 with

probability p and σ2
2 with probability q.

Mixed practice

43. s© Empirically, it is known that 49% of children born in the U.S. are girls (and 51% are
boys). Let N be the number of children who will be born in the U.S. in March of next
year, and assume that N is a Pois(λ) random variable, where λ is known. Assume that
births are independent (e.g., don’t worry about identical twins).

Let X be the number of girls who will be born in the U.S. in March of next year, and
let Y be the number of boys who will be born then.

(a) Find the joint distribution of X and Y . (Give the joint PMF.)

(b) Find E(N |X) and E(N2|X).

Solution:

(a) By the chicken-egg story, X and Y are independent with X ∼ Pois(0.49λ), Y ∼
Pois(0.51λ). The joint PMF is

P (X = i, Y = j) = (e−0.49λ(0.49λ)i/i!)(e−0.51λ(0.51λ)j/j!).

(b) Since X and Y are independent,

E(N |X) = E(X + Y |X) = X + E(Y |X) = X + EY = X + 0.51λ,

E(N2|X) = E(X2 + 2XY + Y 2|X) = X2 + 2XE(Y ) +E(Y 2) = (X + 0.51λ)2 + 0.51λ.
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44. s© Let X1, X2, X3 be independent with Xi ∼ Expo(λi) (so with possibly different rates).
Recall from Chapter 7 that

P (X1 < X2) =
λ1

λ1 + λ2
.

(a) Find E(X1 +X2 +X3|X1 > 1, X2 > 2, X3 > 3) in terms of λ1, λ2, λ3.

(b) Find P (X1 = min(X1, X2, X3)), the probability that the first of the three Exponen-
tials is the smallest.

Hint: Restate this in terms of X1 and min(X2, X3).

(c) For the case λ1 = λ2 = λ3 = 1, find the PDF of max(X1, X2, X3). Is this one of the
important distributions we have studied?

Solution:

(a) By linearity, independence, and the memoryless property, we get

E(X1|X1 > 1) + E(X2|X2 > 2) + E(X3|X3 > 3) = λ−1
1 + λ−1

2 + λ−1
3 + 6.

(b) The desired probability is P (X1 ≤ min(X2, X3)). Noting that min(X2, X3) ∼
Expo(λ2 + λ3) is independent of X1, we have

P (X1 ≤ min(X2, X3)) =
λ1

λ1 + λ2 + λ3
.

(c) Let M = max(X1, X2, X3). Using the order statistics results from class or by directly
computing the CDF and taking the derivative, for x > 0 we have

fM (x) = 3(1− e−x)2e−x.

This is not one of the important distributions we have studied. The form is reminiscent
of a Beta, but a Beta takes values between 0 and 1, while M can take any positive real
value (in fact, B ∼ Beta(1, 3) if we make the transformation B = e−M .)

45. s© A task is randomly assigned to one of two people (with probability 1/2 for each
person). If assigned to the first person, the task takes an Expo(λ1) length of time
to complete (measured in hours), while if assigned to the second person it takes an
Expo(λ2) length of time to complete (independent of how long the first person would
have taken). Let T be the time taken to complete the task.

(a) Find the mean and variance of T .

(b) Suppose instead that the task is assigned to both people, and let X be the time
taken to complete it (by whoever completes it first, with the two people working in-
dependently). It is observed that after 24 hours, the task has not yet been completed.
Conditional on this information, what is the expected value of X?

Solution: Write T = IX1 + (1 − I)X2, with I ∼ Bern(1/2), X1 ∼ Expo(λ1), X2 ∼
Expo(λ2) independent. Then

ET =
1

2
(λ−1

1 + λ−1
2 ),

Var(T ) = E(Var(T |I)) + Var(E(T |I))

= E(I2
1

λ2
1

+ (1− I)2
1

λ2
2

) + Var

(
I

λ1
+

1− I
λ2

)
= E(I

1

λ2
1

+ (1− I)
1

λ2
2

) + Var

(
I(

1

λ1
− 1

λ2
)

)
=

1

2
(

1

λ2
1

+
1

λ2
2

) +
1

4
(

1

λ1
− 1

λ2
)2.
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Sanity check : For λ1 = λ2, the two people have the same distribution so randomly
assigning the task to one of the two should be equivalent to just assigning it to the first
person (so the mean and variance should agree with those of an Expo(λ1) r.v.). It makes
sense that the mean is the average of the two means, as we can condition on whether
I = 1 (though the variance is greater than the average of the two variances, by Eve’s
Law). Also, the results should be (and are) the same if we swap λ1 and λ2.

(b) Here X = min(X1, X2) with X1 ∼ Expo(λ1), X2 ∼ Expo(λ2) independent. Then
X ∼ Expo(λ1 + λ2) (since P (X > x) = P (X1 > x)P (X2 > x) = e−(λ1+λ2)x, or by
results on order statistics). By the memoryless property,

E(X|X > 24) = 24 +
1

λ1 + λ2
.

Sanity check : The answer should be greater than 24 and should be very close to 24 if
λ1 or λ2 is very large. Considering a Poisson process also helps make this intuitive.

47. s© A certain genetic characteristic is of interest. It can be measured numerically. Let X1

and X2 be the values of the genetic characteristic for two twin boys. If they are identical
twins, then X1 = X2 and X1 has mean 0 and variance σ2; if they are fraternal twins,
then X1 and X2 have mean 0, variance σ2, and correlation ρ. The probability that the
twins are identical is 1/2. Find Cov(X1, X2) in terms of ρ, σ2.

Solution: Since the means are 0, Cov(X1, X2) = E(X1X2)− (EX1)(EX2) = E(X1X2).
Now condition on whether the twins are identical or fraternal:

E(X1X2) = E(X1X2|identical)
1

2
+E(X1X2|fraternal)

1

2
= E(X2

1 )
1

2
+ρσ2 1

2
=
σ2

2
(1+ρ).

48. s© The Mass Cash lottery randomly chooses 5 of the numbers from 1, 2, . . . , 35 each day
(without repetitions within the choice of 5 numbers). Suppose that we want to know
how long it will take until all numbers have been chosen. Let aj be the average number
of additional days needed if we are missing j numbers (so a0 = 0 and a35 is the average
number of days needed to collect all 35 numbers). Find a recursive formula for the aj .

Solution: Suppose we are missing j numbers (with 0 ≤ j ≤ 35), and let Tj be the
additional number of days needed to complete the collection. Condition on how many
“new” numbers appear the next day; call this N . This gives

E(Tj) =

5∑
n=0

E(Tj |N = n)P (N = n).

Note that N is Hypergeometric (imagine tagging the numbers that we don’t already
have in our collection)! Letting ak = 0 for k < 0, we have

aj = 1 +

5∑
n=0

aj−n
(
j
n

)(
35−j
5−n

)(
35
5

) .
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Inequalities

1. s© In a national survey, a random sample of people are chosen and asked whether they
support a certain policy. Assume that everyone in the population is equally likely to
be surveyed at each step, and that the sampling is with replacement (sampling without
replacement is typically more realistic, but with replacement will be a good approxima-
tion if the sample size is small compared to the population size). Let n be the sample
size, and let p̂ and p be the proportion of people who support the policy in the sample
and in the entire population, respectively. Show that for every c > 0,

P (|p̂− p| > c) ≤ 1

4nc2
.

Solution: We can write p̂ = X/n with X ∼ Bin(n, p). So E(p̂) = p,Var(p̂) = p(1− p)/n.
Then by Chebyshev’s inequality,

P (|p̂− p| > c) ≤ Var(p̂)

c2
=
p(1− p)
nc2

≤ 1

4nc2
,

where the last inequality is because p(1− p) is maximized at p = 1/2.

2. s© For i.i.d. r.v.s X1, . . . , Xn with mean µ and variance σ2, give a value of n (as a specific
number) that will ensure that there is at least a 99% chance that the sample mean will
be within 2 standard deviations of the true mean µ.

Solution: We have to find n such that

P (|Xn − µ| > 2σ) ≤ 0.01.

By Chebyshev’s inequality (in the form P (|Y − EY | > c) ≤ Var(Y )

c2
), we have

P (|Xn − µ| > 2σ) ≤ VarX̄n
(2σ)2

=
σ2

n

4σ2
=

1

4n
.

So the desired inequality holds if n ≥ 25.

3. s© Show that for any two positive r.v.s X and Y with neither a constant multiple of the
other,

E(X/Y )E(Y/X) > 1.

Solution: The r.v. W = Y/X is positive and non-constant, so Jensen’s inequality yields

E(X/Y ) = E(1/W ) > 1/E(W ) = 1/E(Y/X).

4. s© The famous arithmetic mean-geometric mean inequality says that for any positive
numbers a1, a2, . . . , an,

a1 + a2 + · · ·+ an
n

≥ (a1a2 · · · an)1/n.

91
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Show that this inequality follows from Jensen’s inequality, by considering E log(X) for
an r.v. X whose possible values are a1, . . . , an (you should specify the PMF of X; if you
want, you can assume that the aj are distinct (no repetitions), but be sure to say so if
you assume this).

Solution: Assume that the aj are distinct, and let X be a random variable which takes
values from a1, a2, ..., an with equal probability (the case of repeated aj ’s can be handled
similarly, letting the probability of X = aj be mj/n, where mj is the number of times aj
appears in the list a1, . . . , an). Jensen’s inequality gives E(logX) ≤ log(EX), since the
log function is concave. The left-hand side is 1

n

∑n
i=1 log ai, while the right hand-side is

log a1+a2+···+an
n

. So we have the following inequality:

log
a1 + a2 + · · ·+ an

n
≥ 1

n

n∑
i=1

log ai

Thus,
a1 + a2 + · · ·+ an

n
≥ e

1
n

∑n
i=1 log ai = e

log(a1···an)
n = (a1 · · · an)1/n.

5. s© Let X be a discrete r.v. whose distinct possible values are x0, x1, . . . , and let pk =
P (X = xk). The entropy of X is H(X) =

∑∞
k=0 pk log2(1/pk).

(a) Find H(X) for X ∼ Geom(p).

Hint: Use properties of logs, and interpret part of the sum as an expected value.

(b) Let X and Y be i.i.d. discrete r.v.s. Show that P (X = Y ) ≥ 2−H(X).

Hint: Consider E(log2(W )), where W is an r.v. taking value pk with probability pk.

Solution:

(a) We have

H(X) = −
∞∑
k=0

(pqk) log2(pqk)

= − log2(p)

∞∑
k=0

pqk − log2(q)

∞∑
k=0

kpqk

= − log2(p)− q

p
log2(q),

with q = 1− p, since the first series is the sum of a Geom(p) PMF and the second series
is the expected value of a Geom(p) r.v.

(b) Let W be as in the hint. By Jensen, E(log2(W )) ≤ log2(EW ). But

E(log2(W )) =
∑
k

pk log2(pk) = −H(X),

EW =
∑
k

p2k = P (X = Y ),

so −H(X) ≤ log2 P (X = Y ). Thus, P (X = Y ) ≥ 2−H(X).

Fill-in-the-blank inequalities

7. s© Let X and Y be i.i.d. positive r.v.s, and let c > 0. For each part below, fill in the
appropriate equality or inequality symbol: write = if the two sides are always equal,
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≤ if the left-hand side is less than or equal to the right-hand side (but they are not
necessarily equal), and similarly for ≥. If no relation holds in general, write ?.

(a) E(ln(X)) ln(E(X))

(b) E(X)
√
E(X2)

(c) E(sin2(X)) + E(cos2(X)) 1

(d) E(|X|)
√
E(X2)

(e) P (X > c) E(X3)

c3

(f) P (X ≤ Y ) P (X ≥ Y )

(g) E(XY )
√
E(X2)E(Y 2)

(h) P (X + Y > 10) P (X > 5 or Y > 5)

(i) E(min(X,Y )) min(EX,EY )

(j) E(X/Y ) EX
EY

(k) E(X2(X2 + 1)) E(X2(Y 2 + 1))

(l) E
(

X3

X3+Y 3

)
E( Y 3

X3+Y 3 )

Solution:

(a) E(ln(X)) ≤ ln(E(X)) (by Jensen: logs are concave)

(b) E(X) ≤
√
E(X2) (since Var(X) ≥ 0, or by Jensen)

(c) E(sin2(X)) + E(cos2(X)) = 1 (by linearity, trig identity)

(d) E(|X|) ≤
√
E(X2) (by (b) with |X| in place of X; here |X| = X anyway)

(e) P (X > c) ≤ E(X3)

c3
(by Markov, after cubing both sides of X > c)

(f) P (X ≤ Y ) = P (X ≥ Y ) (by symmetry, as X,Y are i.i.d.)

(g) E(XY ) ≤
√
E(X2)E(Y 2) (by Cauchy-Schwarz)

(h) P (X + Y > 10) ≤ P (X > 5 or Y > 5) (if X + Y > 10, then X > 5 or Y > 5)

(i) E(min(X,Y )) ≤ min(EX,EY ) (since min(X,Y ) ≤ X gives Emin(X,Y ) ≤ EX,
and similarly Emin(X,Y ) ≤ EY )

(j) E(X/Y ) ≥ EX
EY

(since E(X/Y ) = E(X)E( 1
Y

), with E( 1
Y

) ≥ 1
EY

by Jensen)

(k) E(X2(X2 + 1)) ≥ E(X2(Y 2 + 1)) (since E(X4) ≥ (EX2)2 = E(X2)E(Y 2) =
E(X2Y 2), because X2 and Y 2 are i.i.d. and independent implies uncorrelated)

(l) E( X3

X3+Y 3 ) = E( Y 3

X3+Y 3 ) (by symmetry!)

8. s© Write the most appropriate of ≤, ≥, =, or ? in the blank for each part (where “?”
means that no relation holds in general).

In (c) through (f), X and Y are i.i.d. (independent identically distributed) positive
random variables. Assume that the various expected values exist.

(a) (probability that a roll of 2 fair dice totals 9) (probability that a roll of 2 fair
dice totals 10)
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(b) (probability that at least 65% of 20 children born are girls) (probability that
at least 65% of 2000 children born are girls)

(c) E(
√
X)

√
E(X)

(d) E(sinX) sin(EX)

(e) P (X + Y > 4) P (X > 2)P (Y > 2)

(f) E
(
(X + Y )2

)
2E(X2) + 2(EX)2

Solution:

(a) (probability that a roll of 2 fair dice totals 9) ≥ (probability that a roll of 2 fair dice
totals 10)

The probability on the left is 4/36 and that on the right is 3/36 as there is only one
way for both dice to show 5’s.

(b) (probability that at least 65% of 20 children born are girls) ≥ (probability that at
least 65% of 2000 children born are girls)

With a large number of births, by LLN it becomes likely that the fraction that are girls
is close to 1/2.

(c) E(
√
X) ≤

√
E(X)

By Jensen’s inequality (or since Var(
√
X) ≥ 0).

(d) E(sinX) ? sin(EX)

The inequality can go in either direction. For example, let X be 0 or π with equal
probabilities. Then E(sinX) = 0, sin(EX) = 1. But if we let X be π/2 or 5π/2 with
equal probabilities, then E(sinX) = 1, sin(EX) = −1.

(e) P (X + Y > 4) ≥ P (X > 2)P (Y > 2)

The righthand side is P (X > 2, Y > 2) by independence. The ≥ then holds since the
event X > 2, Y > 2 is a subset of the event X + Y > 4.

(f) E
(
(X + Y )2

)
= 2E(X2) + 2(EX)2

The lefthand side is

E(X2) + E(Y 2) + 2E(XY ) = E(X2) + E(Y 2) + 2E(X)E(Y ) = 2E(X2) + 2(EX)2

since X and Y are i.i.d.

10. s© Let X and Y be positive random variables, not necessarily independent. Assume that
the various expected values below exist. Write the most appropriate of ≤, ≥, =, or ? in
the blank for each part (where “?” means that no relation holds in general).

(a) (E(XY ))2 E(X2)E(Y 2)

(b) P (|X + Y | > 2) 1
10
E((X + Y )4)

(c) E(ln(X + 3)) ln(E(X + 3))

(d) E(X2eX) E(X2)E(eX)

(e) P (X + Y = 2) P (X = 1)P (Y = 1)

(f) P (X + Y = 2) P ({X ≥ 1} ∪ {Y ≥ 1})

Solution:
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(a) (E(XY ))2 ≤ E(X2)E(Y 2) (by Cauchy-Schwarz)

(b) P (|X + Y | > 2) ≤ 1
10
E((X + Y )4) (by Markov’s inequality)

(c) E(ln(X + 3)) ≤ ln(E(X + 3)) (by Jensen)

(d) E(X2eX) ≥ E(X2)E(eX) (since X2 and eX are positively correlated)

(e) P (X + Y = 2) ? P (X = 1)P (Y = 1) (What if X,Y are independent? What if
X ∼ Bern(1/2) and Y = 1−X?)

(f) P (X+Y = 2) ≤ P ({X ≥ 1} ∪ {Y ≥ 1}) (the left event is a subset of the right event)

11. s© Let X and Y be positive random variables, not necessarily independent. Assume that
the various expected values below exist. Write the most appropriate of ≤, ≥, =, or ? in
the blank for each part (where “?” means that no relation holds in general).

(a) E(X3)
√
E(X2)E(X4)

(b) P (|X + Y | > 2) 1
16
E((X + Y )4)

(c) E(
√
X + 3)

√
E(X + 3)

(d) E(sin2(X)) + E(cos2(X)) 1

(e) E(Y |X + 3) E(Y |X)

(f) E(E(Y 2|X)) (EY )2

Solution:

(a) E(X3) ≤
√
E(X2)E(X4) (by Cauchy-Schwarz)

(b) P (|X + Y | > 2) ≤ 1
16
E((X + Y )4) (by Markov, taking 4th powers first)

(c) E(
√
X + 3) ≤

√
E(X + 3) (by Jensen with a concave function)

(d) E(sin2(X)) + E(cos2(X)) = 1 (by linearity)

(e) E(Y |X + 3) = E(Y |X) (since knowing X + 3 is equivalent to knowing X)

(f) E(E(Y 2|X)) ≥ (EY )2 (by Adam’s law and Jensen)

12. s© Let X and Y be positive random variables, not necessarily independent. Assume that
the various expressions below exist. Write the most appropriate of ≤, ≥, =, or ? in the
blank for each part (where “?” means that no relation holds in general).

(a) P (X + Y > 2) EX+EY
2

(b) P (X + Y > 3) P (X > 3)

(c) E(cos(X)) cos(EX)

(d) E(X1/3) (EX)1/3

(e) E(XY ) (EX)EY

(f) E (E(X|Y ) + E(Y |X)) EX + EY

Solution:

(a) P (X + Y > 2) ≤ EX+EY
2

(by Markov and linearity)

(b) P (X + Y > 3) ≥ P (X > 3) (since X > 3 implies X + Y > 3 since Y > 0)
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(c) E(cos(X))? cos(EX) (e.g., let W ∼ Bern(1/2) and X = aW + b for various a, b)

(d) E(X1/3) ≤ (EX)1/3 (by Jensen)

(e) E(XY )?(EX)EY (take X constant or Y constant as examples)

(f) E (E(X|Y ) + E(Y |X)) = EX + EY (by linearity and Adam’s law)

13. s© Let X and Y be i.i.d. positive random variables. Assume that the various expressions
below exist. Write the most appropriate of ≤, ≥, =, or ? in the blank for each part (where
“?” means that no relation holds in general).

(a) E(eX+Y ) e2E(X)

(b) E(X2eX)
√
E(X4)E(e2X)

(c) E(X|3X) E(X|2X)

(d) E(X7Y ) E(X7E(Y |X))

(e) E(X
Y

+ Y
X

) 2

(f) P (|X − Y | > 2) Var(X)
2

Solution:

(a) E(eX+Y ) ≥ e2E(X) (write E(eX+Y ) = E(eXeY ) = E(eX)E(eY ) = E(eX)E(eX)
using the fact that X,Y are i.i.d., and then apply Jensen)

(b) E(X2eX) ≤
√
E(X4)E(e2X) (by Cauchy-Schwarz)

(c) E(X|3X) = E(X|2X) (knowing 2X is equivalent to knowing 3X)

(d) E(X7Y ) = E(X7E(Y |X)) (by Adam’s law and taking out what’s known)

(e) E(X
Y

+ Y
X

) ≥ 2 (since E(X
Y

) = E(X)E( 1
Y

) ≥ EX
EY

= 1, and similarly E( Y
X

) ≥ 1)

(f) P (|X −Y | > 2) ≤ Var(X)
2

(by Chebyshev, applied to the r.v. W = X −Y , which has
variance 2Var(X): P (|W − E(W )| > 2) ≤ Var(W )/4 = Var(X)/2)

14. s© Let X and Y be i.i.d. Gamma( 1
2
, 1
2
), and let Z ∼ N (0, 1) (note that X and Z may be

dependent, and Y and Z may be dependent). For (a),(b),(c), write the most appropriate
of <, >, =, or ? in each blank; for (d),(e),(f), write the most appropriate of ≤, ≥, =,
or ? in each blank.

(a) P (X < Y ) 1/2

(b) P (X = Z2) 1

(c) P (Z ≥ 1
X4+Y 4+7

) 1

(d) E( X
X+Y

)E((X + Y )2) E(X2) + (E(X))2

(e) E(X2Z2)
√
E(X4)E(X2)

(f) E((X + 2Y )4) 34

Solution:

(a) P (X < Y ) = 1/2

This is since X and Y are i.i.d. continuous r.v.s.

(b) P (X = Z2) ? 1
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This is since the probability is 0 if X and Z are independent, but it is 1 if X and Z2

are the same r.v., which is possible since Z2 ∼ χ2
1, so Z2 ∼ Gamma( 1

2
, 1
2
).

(c) P (Z ≥ 1
X4+Y 4+7

) < 1

This is since Z may be negative, and 1
X4+Y 4+7

is positive.

(d) E( X
X+Y

)E((X + Y )2) = E(X2) + (E(X))2

By the bank–post office story, X/(X + Y ) and (X + Y )2 are independent (and thus
uncorrelated). So since X and Y are i.i.d., the lefthand side becomes

E(X(X + Y )) = E(X2 +XY ) = E(X2) + E(XY ) = E(X2) + (E(X))2.

(e) E(X2Z2) ≤
√
E(X4)E(X2)

By Cauchy-Schwarz, E(X2Z2) ≤
√
E(X4)E(Z4). And E(Z4) = E(X2) since X and

Z2 are χ2
1, or since E(Z4) = 3 (as shown in class) and E(X2) = Var(X) + (E(X))2 =

2 + 1 = 3.

(f) E((X + 2Y )4) ≥ 34

This is true by Jensen’s inequality, since E(X + 2Y ) = 1 + 2 = 3.

LLN and CLT

17. s© Let X1, X2, . . . be i.i.d. positive random variables with mean 2. Let Y1, Y2, . . . be
i.i.d. positive random variables with mean 3. Show that

X1 +X2 + · · ·+Xn
Y1 + Y2 + · · ·+ Yn

→ 2

3

with probability 1. Does it matter whether the Xi are independent of the Yj?

Solution: By the law of large numbers,

X1 +X2 + · · ·+Xn
n

→ 2

with probability 1 and
Y1 + Y2 + · · ·+ Yn

n
→ 3

with probability 1, as n→∞. Note that if two events A and B both have probability 1,
then the event A∩B also has probability 1. So with probability 1, both the convergence
involving the Xi and the convergence involving the Yj occur. Therefore,

X1 +X2 + · · ·+Xn
Y1 + Y2 + · · ·+ Yn

=
(X1 +X2 + · · ·+Xn)/n

(Y1 + Y2 + · · ·+ Yn)/n
→ 2

3
with probability 1

as n→∞. It was not necessary to assume that the Xi are independent of the Yj because
of the pointwise with probability 1 convergence.

18. s© Let U1, U2, . . . , U60 be i.i.d. Unif(0,1) and X = U1 + U2 + · · ·+ U60.

(a) Which important distribution is the distribution of X very close to? Specify what
the parameters are, and state which theorem justifies your choice.

(b) Give a simple but accurate approximation for P (X > 17). Justify briefly.

Solution:
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(a) By the central limit theorem, the distribution is approximately N (30, 5) since
E(X) = 30,Var(X) = 60/12 = 5.

(b) We have

P (X > 17) = 1− P (X ≤ 17) = 1− P
(
X − 30√

5
≤ −13√

5

)
≈ 1−Φ

(
−13√

5

)
= Φ

(
13√

5

)
.

Since 13/
√

5 > 5, and we already have Φ(3) ≈ 0.9985 by the 68-95-99.7% rule, the value
is extremely close to 1.

19. s© Let Vn ∼ χ2
n and Tn ∼ tn for all positive integers n.

(a) Find numbers an and bn such that an(Vn− bn) converges in distribution to N (0, 1).

(b) Show that T 2
n/(n+ T 2

n) has a Beta distribution (without using calculus).

Solution:

(a) By definition of χ2
n, we can take Vn = Z2

1 + · · · + Z2
n, where Zj ∼ N (0, 1) inde-

pendently. We have E(Z2
1 ) = 1 and E(Z4

1 ) = 3, so Var(Z2
1 ) = 2. By the CLT, if we

standardize Vn it will go to N (0, 1):

Z2
1 + · · ·+ Z2

n − n√
2n

→ N (0, 1) in distribution.

So we can take an = 1√
2n

, bn = n.

(b) We can take Tn = Z0/
√
Vn/n, with Z0 ∼ N (0, 1) independent of Vn. Then we have

T 2
n/(n+T 2

n) = Z2
0/(Z

2
0 +Vn), with Z2

0 ∼ Gamma(1/2, 1/2), Vn ∼ Gamma(n/2, 1/2). By
the bank–post office story, Z2

0/(Z
2
0 + Vn) ∼ Beta(1/2, n/2).

20. s© Let T1, T2, . . . be i.i.d. Student-t r.v.s with m ≥ 3 degrees of freedom. Find constants
an and bn (in terms of m and n) such that an(T1 + T2 + · · · + Tn − bn) converges to
N (0, 1) in distribution as n→∞.

Solution: First let us find the mean and variance of each Tj . Let T = Z√
V/m

with

Z ∼ N (0, 1) independent of V ∼ χ2
m. By LOTUS, for G ∼ Gamma(a, λ), E(Gr) is

λ−rΓ(a+ r)/Γ(a) for r > −a, and does not exist for r ≤ −a. So

E(T ) = E(Z)E(
1√
V/m

) = 0,

Var(T ) = E(T 2)− (ET )2 = mE(Z2)E

(
1

V

)
= m

(1/2)Γ(m/2− 1)

Γ(m/2)

=
mΓ(m/2− 1)

2Γ(m/2)

=
m/2

m/2− 1
=

m

m− 2
.

By the CLT, this is true for

bn = E(T1) + . . .+ E(Tn) = 0,

an =
1√

Var(T1) + · · ·+ Var(Tn)
=

√
m− 2

mn
.
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21. s© (a) Let Y = eX , with X ∼ Expo(3). Find the mean and variance of Y .

(b) For Y1, . . . , Yn i.i.d. with the same distribution as Y from (a), what is the approxi-
mate distribution of the sample mean Ȳn = 1

n

∑n
j=1 Yj when n is large?

Solution:

(a) By LOTUS,

E(Y ) =

∫ ∞
0

ex(3e−3x)dx =
3

2
,

E(Y 2) =

∫ ∞
0

e2x(3e−3x)dx = 3.

So E(Y ) = 3/2,Var(Y ) = 3− 9/4 = 3/4.

(b) By the CLT, Ȳn is approximately N ( 3
2
, 3
4n

) for large n.

22. s© (a) Explain why the Pois(n) distribution is approximately Normal if n is a large
positive integer (specifying what the parameters of the Normal are).

(b) Stirling’s formula is an amazingly accurate approximation for factorials:

n! ≈
√

2πn
(n
e

)n
,

where in fact the ratio of the two sides goes to 1 as n → ∞. Use (a) to give a
quick heuristic derivation of Stirling’s formula by using a Normal approximation to
the probability that a Pois(n) r.v. is n, with the continuity correction: first write
P (N = n) = P (n− 1

2
< N < n+ 1

2
), where N ∼ Pois(n).

Solution:

(a) Let Sn = X1 + · · · + Xn, with X1, X2, . . . i.i.d. ∼ Pois(1). Then Sn ∼ Pois(n) and
for n large, Sn is approximately N (n, n) by the CLT.

(b) Let N ∼ Pois(n) and X ∼ N (n, n). Then

P (N = n) ≈ P
(
n− 1

2
< X < n+

1

2

)
=

1√
2πn

∫ n+1/2

n−1/2

e
−(x−n)2

2n dx.

The integral is approximately 1 since the interval of integration has length 1 and for
large n the integrand is very close to 1 throughout the interval. So

e−nnn/n! ≈ (2πn)−1/2.

Rearranging this gives exactly Stirling’s formula.

23. s© (a) Consider i.i.d. Pois(λ) r.v.s X1, X2, . . . . The MGF of Xj is M(t) = eλ(e
t−1). Find

the MGF Mn(t) of the sample mean X̄n = 1
n

∑n
j=1Xj .

(b) Find the limit of Mn(t) as n → ∞. (You can do this with almost no calculation
using a relevant theorem; or you can use (a) and the fact that ex ≈ 1 + x if x is very
small.)

Solution:

(a) The MGF is

E(e
t
n
(X1+···+Xn)) =

(
E(e

t
n
X1)
)n

= enλ(e
t/n−1),

since the Xj are i.i.d. and E(e
t
n
X1) is the MGF of X1 evaluated at t/n.

(b) By the law of large numbers, X̄n → λ with probability 1. The MGF of the constant
λ (viewed as an r.v. that always equals λ) is etλ. Thus, Mn(t)→ etλ as n→∞.
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Mixed practice

31. s© Let X and Y be independent standard Normal r.v.s and let R2 = X2 + Y 2 (where
R > 0 is the distance from (X,Y ) to the origin).

(a) The distribution of R2 is an example of three of the important distributions we
have seen. State which three of these distributions R2 is an instance of, specifying the
parameter values.

(b) Find the PDF of R.

Hint: Start with the PDF fW (w) of W = R2.

(c) Find P (X > 2Y + 3) in terms of the standard Normal CDF Φ.

(d) Compute Cov(R2, X). Are R2 and X independent?

Solution:

(a) It is χ2
2, Expo(1/2), and Gamma(1,1/2).

(b) Since R =
√
W with fW (w) = 1

2
e−w/2, we have

fR(r) = fW (w)|dw/dr| = 1

2
e−w/22r = re−r

2/2, for r > 0.

(This is the Rayleigh distribution, which was seen in Example 5.1.7.)

(c) We have

P (X > 2Y + 3) = P (X − 2Y > 3) = 1− Φ

(
3√
5

)
since X − 2Y ∼ N (0, 5).

(d) They are not independent since knowing X gives information about R2, e.g., X2

being large implies that R2 is large. But R2 and X are uncorrelated:

Cov(R2, X) = Cov(X2+Y 2, X) = Cov(X2, X)+Cov(Y 2, X) = E(X3)−(EX2)(EX)+0 = 0.

32. s© Let Z1, . . . , Zn ∼ N (0, 1) be i.i.d.

(a) As a function of Z1, create an Expo(1) r.v. X (your answer can also involve the
standard Normal CDF Φ).

(b) Let Y = e−R, where R =
√
Z2

1 + · · ·+ Z2
n. Write down (but do not evaluate) an

integral for E(Y ).

(c) Let X1 = 3Z1 − 2Z2 and X2 = 4Z1 + 6Z2. Determine whether X1 and X2 are
independent (be sure to mention which results you’re using).

Solution:

(a) Use Z1 to get a Uniform and then the Uniform to get X: we have Φ(Z1) ∼ Unif(0, 1),
and we can then take X = − log(1−Φ(Z1)). By symmetry, we can also use − log(Φ(Z1)).

Sanity check : 0 < Φ(Z1) < 1, so − ln(Φ(Z1)) is well-defined and positive.

(b) Let W = Z2
1 + · · · + Z2

n ∼ χ2
n, so Y = e−

√
W . We will use LOTUS to write E(Y )

using the PDF of W (there are other possible ways to use LOTUS here, but this is
simplest since we get a single integral and we know the χ2

n PDF). This gives

E(Y ) =

∫ ∞
0

e−
√
w 1

2n/2Γ(n/2)
wn/2−1e−w/2dw.

(c) They are uncorrelated:

Cov(X1, X2) = 12Var(Z1) + 10Cov(Z1, Z2)− 12Var(Z2) = 0.
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Also, (X1, X2) is Multivariate Normal since any linear combination of X1, X2 can be
written as a linear combination of Z1, Z2 (and thus is Normal since the sum of two
independent Normals is Normal). So X1 and X2 are independent.

33. s© Let X1, X2, . . . be i.i.d. positive r.v.s. with mean µ, and let Wn = X1
X1+···+Xn

.

(a) Find E(Wn).

Hint: Consider X1
X1+···+Xn

+ X2
X1+···+Xn

+ · · ·+ Xn
X1+···+Xn

.

(b) What random variable does nWn converge to (with probability 1) as n→∞?

(c) For the case that Xj ∼ Expo(λ), find the distribution of Wn, preferably without
using calculus. (If it is one of the named distributions, state its name and specify the
parameters; otherwise, give the PDF.)

Solution:

(a) The expression in the hint equals 1, and by linearity and symmetry its expected
value is nE(Wn). So E(Wn) = 1/n.

Sanity check : in the case that the Xj are actually constants, X1
X1+···+Xn

reduces to 1
n

.
Also in the case Xj ∼ Expo(λ), Part (c) shows that the answer should reduce to the
mean of a Beta(1, n− 1) (which is 1

n
).

(b) By LLN, with probability 1 we have

nWn =
X1

(X1 + · · ·+Xn)/n
→ X1

µ
as n→∞.

Sanity check : the answer should be a random variable since it’s asked what random
variable nWn converges to. It should not depend on n since we let n→∞.

(c) Recall that X1 ∼ Gamma(1) and X2 + · · ·+Xn ∼ Gamma(n−1). By the connection
between Beta and Gamma (i.e., the bank–post office story), Wn ∼ Beta(1, n− 1).

Sanity check : The r.v. Wn clearly always takes values between 0 and 1, and the mean
should agree with the answer from (a).
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Markov property

1. s© Let X0, X1, X2, . . . be a Markov chain. Show that X0, X2, X4, X6, . . . is also a Markov
chain, and explain why this makes sense intuitively.

Solution: Let Yn = X2n; we need to show Y0, Y1, . . . is a Markov chain. By the def-
inition of a Markov chain, we know that X2n+1, X2n+2, . . . (“the future” if we define
the “present” to be time 2n) is conditionally independent of X0, X1, . . . , X2n−2, X2n−1

(“the past”), given X2n. So given Yn, we have that Yn+1, Yn+2, . . . is conditionally in-
dependent of Y0, Y1, . . . , Yn−1. Thus,

P (Yn+1 = y|Y0 = y0, . . . , Yn = yn) = P (Yn+1 = y|Yn = yn).

2. s© Let X0, X1, X2, . . . be an irreducible Markov chain with state space {1, 2, . . . ,M},
M ≥ 3, transition matrix Q = (qij), and stationary distribution s = (s1, . . . , sM ). Let
the initial state X0 follow the stationary distribution, i.e., P (X0 = i) = si.

(a) On average, how many of X0, X1, . . . , X9 equal 3? (In terms of s; simplify.)

(b) Let Yn = (Xn−1)(Xn−2). For M = 3, find an example of Q (the transition matrix
for the original chain X0, X1, . . . ) where Y0, Y1, . . . is Markov, and another example of
Q where Y0, Y1, . . . is not Markov. In your examples, make qii > 0 for at least one i and
make sure it is possible to get from any state to any other state eventually.

Solution:

(a) Since X0 has the stationary distribution, all of X0, X1, . . . have the stationary dis-
tribution. By indicator random variables, the expected value is 10s3.

(b) Note that Yn is 0 if Xn is 1 or 2, and Yn is 2 otherwise. So the Yn process can be

viewed as merging states 1 and 2 of the Xn-chain into one state. Knowing the history of
Yn’s means knowing when the Xn-chain is in state 3, without being able to distinguish
state 1 from state 2.

If q13 = q23, then Yn is Markov since given Yn, even knowing the past X0, . . . , Xn does
not affect the transition probabilities. But if q13 6= q23, then the Yn past history can
give useful information about Xn, affecting the transition probabilities. So one example
(not the only possible example!) is

Q1 =

 1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

 (Markov) Q2 =

 1
2

1
2

0
1
3

1
3

1
3

1 0 0

 (not Markov).

(c) The stationary distribution is uniform over all states:

s = (1/M, 1/M, . . . , 1/M).

This is because(
1/M 1/M . . . 1/M

)
Q =

1

M

(
1 1 . . . 1

)
Q =

(
1/M 1/M . . . 1/M

)
,

where the matrix multiplication was done by noting that multiplying a row vector of
1’s times Q gives the column sums of Q.

103
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Stationary distribution

4. s© Consider the Markov chain shown below, where 0 < p < 1 and the labels on the
arrows indicate transition probabilities.

1

p

21-p
1-p

p

(a) Write down the transition matrix Q for this chain.

(b) Find the stationary distribution of the chain.

(c) What is the limit of Qn as n→∞?

Solution:

(a) The transition matrix is

Q =

(
p 1− p

1− p p

)

(b) Because Q is symmetric, the stationary distribution for the chain is the uniform
distribution (1/2, 1/2).

(c) The limit of Qn as n → ∞ is the matrix with the limit distribution (1/2, 1/2) as

each row, i.e.,

(
1/2 1/2
1/2 1/2

)
.

5. s© Consider the Markov chain shown below, with state space {1, 2, 3, 4} and the labels
on the arrows indicate transition probabilities.

1 0.5

2

0.5 0.25

0.75

3 0.25

4

0.75 0.75

0.25

(a) Write down the transition matrix Q for this chain.

(b) Which states (if any) are recurrent? Which states (if any) are transient?

(c) Find two different stationary distributions for the chain.

Solution:

(a) The transition matrix is

Q =


0.5 0.5 0 0
0.25 0.75 0 0

0 0 0.25 0.75
0 0 0.75 0.25
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(b) All of the states are recurrent. Starting at state 1, the chain will go back and forth
between states 1 and 2 forever (sometimes lingering for a while). Similarly, for any
starting state, the probability is 1 of returning to that state.

(c) Solving

(a b)

(
0.5 0.5
0.25 0.75

)
= (a b)

(c d)

(
0.25 0.75
0.75 0.25

)
= (c d)

shows that (a, b) = (1/3, 2/3), and (c, d) = (1/2, 1/2) are stationary distributions on
the 1, 2 chain and on the 3, 4 chain respectively, viewed as separate chains. It follows
that (1/3, 2/3, 0, 0) and (0, 0, 1/2, 1/2) are both stationary for Q (as is any mixture
p(1/3, 2/3, 0, 0) + (1− p)(0, 0, 1/2, 1/2) with 0 ≤ p ≤ 1).

6. s© Daenerys has three dragons: Drogon, Rhaegal, and Viserion. Each dragon indepen-
dently explores the world in search of tasty morsels. Let Xn, Yn, Zn be the locations at
time n of Drogon, Rhaegal, Viserion respectively, where time is assumed to be discrete
and the number of possible locations is a finite number M . Their paths X0, X1, X2, . . . ;
Y0, Y1, Y2, . . . ; and Z0, Z1, Z2, . . . are independent Markov chains with the same station-
ary distribution s. Each dragon starts out at a random location generated according to
the stationary distribution.

(a) Let state 0 be home (so s0 is the stationary probability of the home state). Find
the expected number of times that Drogon is at home, up to time 24, i.e., the expected
number of how many of X0, X1, . . . , X24 are state 0 (in terms of s0).

(b) If we want to track all 3 dragons simultaneously, we need to consider the vector
of positions, (Xn, Yn, Zn). There are M3 possible values for this vector; assume that
each is assigned a number from 1 to M3, e.g., if M = 2 we could encode the states
(0, 0, 0), (0, 0, 1), (0, 1, 0), . . . , (1, 1, 1) as 1, 2, 3, . . . , 8 respectively. Let Wn be the num-
ber between 1 and M3 representing (Xn, Yn, Zn). Determine whether W0,W1, . . . is a
Markov chain.

(c) Given that all 3 dragons start at home at time 0, find the expected time it will take
for all 3 to be at home again at the same time.

Solution:

(a) By definition of stationarity, at each time Drogon has probability s0 of being at
home. By linearity, the desired expected value is 25s0.

(b) Yes, W0,W1, . . . is a Markov chain, since given the entire past history of the X,Y,
and Z chains, only the most recent information about the whereabouts of the dragons
should be used in predicting their vector of locations. To show this algebraically, let An
be the event {X0 = x0, . . . , Xn = xn}, Bn be the event {Y0 = y0, . . . , Yn = yn}, Cn be
the event {Z0 = z0, . . . , Zn = zn}, and Dn = An ∩Bn ∩ Cn. Then

P (Xn+1 = x, Yn+1 = y, Zn+1 = z|Dn)

= P (Xn+1 = x|Dn)P (Yn+1 = y|Xn+1 = x,Dn)P (Zn+1 = z|Xn+1 = x, Yn+1 = y,Dn)

= P (Xn+1 = x|An)P (Yn+1 = y|Bn)P (Zn+1 = z|Cn)

= P (Xn+1 = x|Xn = xn)P (Yn+1 = y|Yn = yn)P (Zn+1 = z|Zn = zn).

(c) The stationary probability for the W -chain of the state with Drogon, Rhaegal, Vis-
erion being at locations x, y, z is sxsysz, since if (Xn, Yn, Zn) is drawn from this distri-
bution, then marginally each dragon’s location is distributed according to its stationary
distribution, so

P (Xn+1 = x, Yn+1 = y, Zn+1 = z) = P (Xn+1 = x)P (Yn+1 = y)P (Zn+1 = z) = sxsysz.
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So the expected time for all 3 dragons to be home at the same time, given that they all
start at home, is 1/s30.

Reversibility

7. s© A Markov chain X0, X1, . . . with state space {−3,−2,−1, 0, 1, 2, 3} proceeds as fol-
lows. The chain starts at X0 = 0. If Xn is not an endpoint (−3 or 3), then Xn+1 is
Xn − 1 or Xn + 1, each with probability 1/2. Otherwise, the chain gets reflected off the
endpoint, i.e., from 3 it always goes to 2 and from −3 it always goes to −2. A diagram
of the chain is shown below.

-3 -2 -1 0 1 2 3

(a) Is |X0|, |X1|, |X2|, . . . also a Markov chain? Explain.

Hint: For both (a) and (b), think about whether the past and future are conditionally
independent given the present; don’t do calculations with a 7 by 7 transition matrix!

(b) Let sgn be the sign function: sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0, and
sgn(0) = 0. Is sgn(X0), sgn(X1), sgn(X2), . . . a Markov chain? Explain.

(c) Find the stationary distribution of the chain X0, X1, X2, . . . .

(d) Find a simple way to modify some of the transition probabilities qij for i ∈ {−3, 3}
to make the stationary distribution of the modified chain uniform over the states.

Solution:

(a) Yes, |X0|, |X1|, |X2|, . . . is also a Markov Chain. It can be viewed as the chain on
state space 0, 1, 2, 3 that moves left or right with equal probability, except that at 0 it
bounces back to 1 and at 3 it bounces back to 2. Given that |Xn| = k, we know that
Xn = k or Xn = −k, and being given information about Xn−1, Xn−2, . . . does not affect
the conditional distribution of |Xn+1|.

(b) No, this is not a Markov chain because knowing that the chain was at 0 recently
affects how far the chain can be from the origin. For example,

P (sgn(X2) = 1|sgn(X1) = 1) > P (sgn(X2) = 1|sgn(X1) = 1, sgn(X0) = 0)

since the conditioning information on the righthand side implies X1 = 1, whereas the
conditioning information on the lefthand side says exactly that X1 is 1, 2, or 3.

(c) Using the result about the stationary distribution of a random walk on an undi-
rected network, the stationary distribution is proportional to the degree sequence,
(1, 2, 2, 2, 2, 2, 1). Thus, the stationary distribution is 1

12
(1, 2, 2, 2, 2, 2, 1).

(d) The uniform distribution will be the stationary distribution if we modify the tran-
sition matrix to make it symmetric. Connecting state −3 to state 3 so that the states
are arranged in a circle gives the desired symmetry, as illustrated below.

8. s© Let G be an undirected network with nodes labeled 1, 2, . . . ,M (edges from a node
to itself are not allowed), where M ≥ 2 and random walk on this network is irreducible.
Let dj be the degree of node j for each j. Create a Markov chain on the state space
1, 2, . . . ,M , with transitions as follows. From state i, generate a proposal j by choosing
a uniformly random j such that there is an edge between i and j in G; then go to j
with probability min(di/dj , 1), and stay at i otherwise.
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-3
-2

-1

0

1
2

3

(a) Find the transition probability qij from i to j for this chain, for all states i, j.

(b) Find the stationary distribution of this chain.

Solution:

(a) First let i 6= j. If there is no {i, j} edge, then qij = 0. If there is an {i, j} edge, then

qij = (1/di) min(di/dj , 1) =

{
1/di if di ≥ dj ,
1/dj if di < dj

,

since the proposal to go to j must be made and then accepted. For i = j, we have
qii = 1−

∑
j 6=i qij since each row of the transition matrix must sum to 1.

(b) Note that qij = qji for all states i, j. This is clearly true if i = j or qij = 0, so assume
i 6= j and qij > 0. If di ≥ dj , then qij = 1/di and qji = (1/dj)(dj/di) = 1/di, while if
di < dj , then qij = (1/di)(di/dj) = 1/dj and qji = 1/dj .

Thus, the chain is reversible with respect to the uniform distribution over the states,
and the stationary distribution is uniform over the states, i.e., state j has stationary
probability 1/M for all j. (This is an example of the Metropolis algorithm, a Monte
Carlo method explored in Chapter 12.)

9. s© (a) Consider a Markov chain on the state space {1, 2, . . . , 7} with the states arranged
in a “circle” as shown below, and transitions given by moving one step clockwise or
counterclockwise with equal probabilities. For example, from state 6, the chain moves
to state 7 or state 5 with probability 1/2 each; from state 7, the chain moves to state 1
or state 6 with probability 1/2 each. The chain starts at state 1.

1

2

3

4

5

6

7

Find the stationary distribution of this chain.
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(b) Consider a new chain obtained by “unfolding the circle”. Now the states are arranged
as shown below. From state 1 the chain always goes to state 2, and from state 7 the
chain always goes to state 6. Find the new stationary distribution.

1 2 3 4 5 6 7

Solution:

(a) The symmetry of the chain suggests that the stationary distribution should be
uniform over all the states. To verify this, note that the reversibility condition is satisfied.
So the stationary distribution is (1/7, 1/7, . . . , 1/7).

(b) By the result about random walk on an undirected network, the stationary proba-
bilities are proportional to the degrees. So we just need to normalize (1, 2, 2, 2, 2, 2, 1),
obtaining (1/12, 1/6, 1/6, 1/6, 1/6, 1/6, 1/12).

10. s© Let Xn be the price of a certain stock at the start of the nth day, and assume that
X0, X1, X2, . . . follows a Markov chain with transition matrix Q. (Assume for simplicity
that the stock price can never go below 0 or above a certain upper bound, and that it
is always rounded to the nearest dollar.)

(a) A lazy investor only looks at the stock once a year, observing the values on days
0, 365, 2 · 365, 3 · 365, . . . . So the investor observes Y0, Y1, . . . , where Yn is the price after
n years (which is 365n days; you can ignore leap years). Is Y0, Y1, . . . also a Markov
chain? Explain why or why not; if so, what is its transition matrix?

(b) The stock price is always an integer between $0 and $28. From each day to the next,
the stock goes up or down by $1 or $2, all with equal probabilities (except for days when
the stock is at or near a boundary, i.e., at $0, $1, $27, or $28).

If the stock is at $0, it goes up to $1 or $2 on the next day (after receiving government
bailout money). If the stock is at $28, it goes down to $27 or $26 the next day. If the
stock is at $1, it either goes up to $2 or $3, or down to $0 (with equal probabilities);
similarly, if the stock is at $27 it either goes up to $28, or down to $26 or $25. Find the
stationary distribution of the chain.

Solution:

(a) Yes, it is a Markov chain: given the whole past history Y0, Y1, . . . , Yn, only the
most recent information Yn matters for predicting Yn+1, because X0, X1, . . . is Markov.
The transition matrix of Y0, Y1, . . . is Q365, since the kth power of Q gives the k-step
transition probabilities.

(b) This is an example of random walk on an undirected network, so we know the
stationary probability of each node is proportional to its degree. The degrees are
(2, 3, 4, 4, . . . , 4, 4, 3, 2), where there are 29 − 4 = 25 4’s. The sum of these degrees is
110 (coincidentally?). Thus, the stationary distribution is(

2

110
,

3

110
,

4

110
,

4

110
, . . . ,

4

110
,

4

110
,

3

110
,

2

110

)
,

with 25 4
110

’s.

11. s© In chess, the king can move one square at a time in any direction (horizontally,
vertically, or diagonally).

For example, in the diagram, from the current position the king can move to any of 8
possible squares. A king is wandering around on an otherwise empty 8× 8 chessboard,
where for each move all possibilities are equally likely. Find the stationary distribution
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of this chain (of course, don’t list out a vector of length 64 explicitly! Classify the 64
squares into types and say what the stationary probability is for a square of each type).

Solution: There are 4 corner squares, 24 edge squares, and 36 normal squares, where
by “edge” we mean a square in the first or last row or column, excluding the 4 corners,
and by “normal” we mean a square that’s not on the edge or in a corner. View the
chessboard as an undirected network, where there is an edge between two squares if the
king can walk from one to the other in one step.

The stationary probabilities are proportional to the degrees. Each corner square has
degree 3, each edge square has degree 5, and each normal square has degree 8. The total
degree is 420 = 3 · 4 + 24 · 5 + 36 · 8 (which is also twice the number of edges in the
network). Thus, the the stationary probability is 3

420
for a corner square, 5

420
for an edge

square, and 8
420

for a normal square.

13. s© Find the stationary distribution of the Markov chain shown below, without using
matrices. The number above each arrow is the corresponding transition probability.

1 21
1/2

31/2
1/4

5/12

41/3
1/6

7/12

51/4
1/8

7/8

Solution: We will show that this chain is reversible by solving for s (which will work out
nicely since this is a birth-death chain). Let qij be the transition probability from i to
j, and solve for s in terms of s1. Noting that qij = 2qji for j = i+ 1 (when 1 ≤ i ≤ 4),
we have that

s1q12 = s2q21 gives s2 = 2s1.

s2q23 = s3q32 gives s3 = 2s2 = 4s1.

s3q34 = s4q43 gives s4 = 2s3 = 8s1.

s4q45 = s5q54 gives s5 = 2s4 = 16s1.

The other reversibility equations are automatically satisfied since here qij = 0 unless
|i− j| ≤ 1. Normalizing, the stationary distribution is(

1

31
,

2

31
,

4

31
,

8

31
,

16

31

)
.

Sanity check : This chain “likes” going from left to right more than from right to left, so
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the stationary probabilities should be increasing from left to right. We also know that
sj =

∑
i siqij (since if the chain is in the stationary distribution at time n, then it is

also in the stationary distribution at time n + 1), so we can check, for example, that
s1 =

∑
i siqi1 = 1

2
s2.

Mixed practice

17. s© A cat and a mouse move independently back and forth between two rooms. At each
time step, the cat moves from the current room to the other room with probability 0.8.
Starting from room 1, the mouse moves to room 2 with probability 0.3 (and remains
otherwise). Starting from room 2, the mouse moves to room 1 with probability 0.6 (and
remains otherwise).

(a) Find the stationary distributions of the cat chain and of the mouse chain.

(b) Note that there are 4 possible (cat, mouse) states: both in room 1, cat in room
1 and mouse in room 2, cat in room 2 and mouse in room 1, and both in room 2.
Number these cases 1, 2, 3, 4, respectively, and let Zn be the number representing the
(cat, mouse) state at time n. Is Z0, Z1, Z2, . . . a Markov chain?

(c) Now suppose that the cat will eat the mouse if they are in the same room. We wish
to know the expected time (number of steps taken) until the cat eats the mouse for two
initial configurations: when the cat starts in room 1 and the mouse starts in room 2,
and vice versa. Set up a system of two linear equations in two unknowns whose solution
is the desired values.

Solution:

(a) The cat chain has transition matrix

Qcat =

(
2
10

8
10

8
10

2
10

)
.

The uniform distribution ( 1
2
, 1
2
) is stationary since the transition matrix is symmetric.

The mouse chain has transition matrix

Qmouse =

(
7
10

3
10

6
10

4
10

)
.

The stationary distribution is proportional to (x, y) with 7x+ 6y = 10x, 3x+ 4y = 10y.
This reduces to x = 2y. So the stationary distribution is ( 2

3
, 1
3
).

(b) Yes, it is a Markov chain. Given the current (cat, mouse) state, the past history of
where the cat and mouse were previously are irrelevant for computing the probabilities
of what the next state will be.

(c) Let a and b be the expected values for the two initial configurations, respectively.
Conditioning on the first move of the cat and the first move of the mouse, we have

a = (0.2)(0.6)︸ ︷︷ ︸
both in room 1

+ (0.8)(0.4)︸ ︷︷ ︸
both in room 2

+ (0.2)(0.4)(1 + a)︸ ︷︷ ︸
cat in room 1, mouse in room 2

+ (0.8)(0.6)(1 + b)︸ ︷︷ ︸
cat in room 2, mouse in room 1

,

b = (0.8)(0.7)︸ ︷︷ ︸
both in room 1

+ (0.2)(0.3)︸ ︷︷ ︸
both in room 2

+ (0.8)(0.3)(1 + a)︸ ︷︷ ︸
cat in room 1, mouse in room 2

+ (0.2)(0.7)(1 + b)︸ ︷︷ ︸
cat in room 2, mouse in room 1

.

(The solution to this system works out to a = 335/169, b = 290/169.)


