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ABSTRACT In addition to evidence for bipedality in
some fossil taxa, molar enamel thickness is among the
few characters distinguishing (thick-enameled) hominins
from the (thin-enameled) African apes. Despite the im-
portance of enamel thickness in taxonomic discussions
and a long history of scholarship, measurements of
enamel thickness are performed almost exclusively on
molars, with relatively few studies examining premolars
and anterior teeth. This focus on molars has limited the
scope of enamel thickness studies (i.e., there exist many
fossil hominin incisors, canines, and premolars). Increas-
ing the available sample of teeth from which to compare
enamel thickness measurements from the fossil record
could substantially increase our understanding of this
aspect of dental biology, and perhaps facilitate greater
taxonomic resolution of early hominin fossils. In this

Morphological characters distinguishing African apes
from modern humans are identifiable in nearly all aspects
of the postcranial skeleton, as well as their cranial and
dental anatomy, soft tissues, and genetic material (e.g.,
Andrews and Martin, 1987; Ruvolo, 1997; Gibbs et al.,
2002). Interpretation of the affinities of fossils is more dif-
ficult; the fossil record of the latest Miocene and earliest
Pliocene of Africa has yielded fossils with few characters
by which to assess their taxonomic placement relative to
African apes and later hominins (e.g., White et al., 1994).
Perhaps the most widely cited character complex diagnos-
tic of hominins is the locomotor skeleton, assessed via
indirect evidence of bipedality [e.g., a relatively anterior
placement of the foramen magnum in Sahelanthropus
tchadensis (Brunet et al., 2002)] or by more direct infer-
ences of the locomotor repertoire [e.g., femoral architec-
ture in Orrorin tugenensis (Senut et al., 2001)].

Postcranial and cranial remains are often fragmentary,
however, and occur with less frequency in the fossil record
than dental elements. Relying on these more numerous
dental remains, the relative thickness of molar enamel is
another source of taxonomic information frequently
employed in studies of early hominin fossils. Molar enamel
thickness has been described in the seminal diagnosis of
nearly every hominin taxon in recent years (White et al.,
1994; Brunet et al., 1995; Asfaw et al., 1999; Haile-Selas-
sie, 2001; Leakey et al., 2001; Senut et al., 2001; Brunet et
al., 2002), due in large part to the well-documented distinc-
tion of thin-enameled African apes from thick-enameled
hominins (e.g., Martin, 1983; Grine and Martin, 1988;
Kono, 2004). Moreover, enamel thickness has a long his-
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study, we report absolute and relative (size-scaled)
enamel thickness measurements for the complete denti-
tion of modern humans and chimpanzees. In accord
with previous studies of molars, chimpanzees show lower
relative enamel thickness at each tooth position, with
little overlap between the two taxa. A significant
trend of increasing enamel thickness from anterior to
posterior teeth is apparent in both humans and chim-
panzees, indicating that inter-taxon comparisons should
be limited to the same tooth position in order to compare
homologous structures. As nondestructive imaging tech-
niques become commonplace (facilitating the examina-
tion of increasing numbers of fossil specimens), studies
may maximize available samples by expanding beyond
molars. Am J Phys Anthropol 136:237-241, 2008.  ©2008
Wiley-Liss, Inc.

tory of scholarship among those concentrating on whether
particular fossils are attributable to Homininae (e.g.,
“Eoanthropus:” Miller, 1918; “Ramapithecus:” Kay, 1981).
Despite this long history and active study, nearly all inves-
tigations of enamel thickness have concentrated on molars,
with substantially less attention paid to premolars and the
anterior dentition. The utility of enamel thickness as a
taxonomic indicator in hominin paleontology may be
expanded if teeth other than molars are also found to dis-
tinguish African apes from hominins. Towards this end,
the goal of the present study is to assess whether anterior
teeth and/or premolars are as effective as molars at distin-
guishing chimpanzees from modern humans.

MATERIALS AND METHODS

A sample of recent human and chimpanzee teeth was
chosen from material previously prepared for studies of
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TABLE 1. Mean values of chimpanzee and human enamel thickness measurements

Total area of Area of Area of the Length of the
the crown coronal enamel enamel-dentine
n section (mm?) dentine (mm?) cap (mm?) junction (mm) AET (mm) RET
Maxillary teeth
Chimpanzee 11 2 77.24 62.80 14.44 29.55 0.49 6.17
Human I1 32 46.19 32.73 13.46 21.55 0.62 10.91
Chimpanzee 12 1 63.39 51.09 12.30 25.06 0.49 6.87
Human 12 31 38.94 26.78 12.16 19.04 0.64 12.51
Chimpanzee C 0 - - - - - -
Human C 22 59.29 40.28 19.02 20.96 0.91 14.43
Chimpanzee P3 1 52.24 40.22 12.01 20.46 0.59 9.26
Human P3 19 61.30 39.18 22.12 19.99 1.10 17.69
Chimpanzee P4 1 51.53 38.99 12.54 19.59 0.64 10.25
Human P4 26 60.91 38.01 22.90 20.01 1.14 18.55
Chimpanzee M1 6 54.65 41.44 13.22 20.21 0.66 10.33
Human M1 40 67.77 42.67 25.11 20.66 1.22 18.72
Chimpanzee M2 3 56.25 41.32 14.93 20.52 0.73 11.37
Human M2 29 72.60 43.70 28.89 20.61 1.40 21.40
Chimpanzee M3 3 51.88 37.08 14.80 19.25 0.77 12.82
Human M3 52 68.08 40.96 27.13 19.70 1.38 21.76
Mandibular teeth

Chimpanzee 11 7 62.78 50.88 11.90 25.62 0.46 6.53
Human I1 16 34.02 23.97 10.05 18.21 0.55 11.23
Chimpanzee 12 6 66.54 54.10 12.44 25.74 0.48 6.59
Human 12 12 38.89 27.49 11.40 19.23 0.59 11.28
Chimpanzee C 2 107.59 90.32 17.27 31.82 0.54 5.71
Human C 20 56.96 40.12 16.84 20.89 0.81 12.91
Chimpanzee P3 6 56.46 44.54 11.93 19.84 0.60 9.03
Human P3 17 51.25 33.16 18.08 17.85 1.01 17.78
Chimpanzee P4 7 49.07 36.20 12.87 18.79 0.68 11.40
Human P4 17 54.67 32.88 21.79 18.12 1.20 21.19
Chimpanzee M1 17 45.82 32.84 12.98 18.23 0.71 12.64
Human M1 58 62.47 40.51 21.95 20.37 1.08 17.02
Chimpanzee M2 9 49.90 35.30 14.61 19.14 0.76 12.91
Human M2 47 56.58 34.44 22.15 18.54 1.20 20.54
Chimpanzee M3 4 52.52 35.24 17.28 19.47 0.89 15.01
Human M3 45 56.23 33.36 22.86 18.32 1.25 21.72

AET, average enamel thickness; RET, relative enamel thickness.

incremental development (Dean et al., 1993; Reid et al.,
1998; Reid and Dean, 2006; Smith et al., 2007; Reid
et al.,, in press) and molar enamel thickness (Smith
et al., 2005, 2006a). Additional teeth were added from
African, Asian, and European human populations, as
well as a small number of chimpanzee anterior teeth
from populations detailed by Smith et al. (2007). A total
of 483 human teeth and 75 chimpanzee teeth were meas-
ured (see Table 1 for tooth-specific sample sizes). Smith
et al., (2006a) did not find consistent differences in molar
enamel thickness among human populations; thus
populations in this study were combined for each tooth
position, as the primary aim was to assess inter-taxon
differences.

Multiple preparative techniques were employed to gen-
erate labial-lingual sections of anterior teeth, and buc-
cal-lingual sections of premolars and molar mesial cusps;
these techniques are described in detail elsewhere (e.g.,
Reid et al., 1998; Smith et al., 2007). Differences in prep-
aration derived primarily from the type of saw used or
the embedding regime prior to sectioning; these differ-
ences do not impact the resultant plane of section used
for enamel thickness measurements. Sections of anterior
teeth and premolars were consistently prepared to cap-
ture the tips of the cusps and the maximum extension of
the cervical enamel. In some cases it is difficult to cap-
ture a true buccal-lingual section across both lower pre-
molar cusps due to tooth asymmetry, which may contrib-
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ute to greater variance within and between taxa at these
particular tooth positions.

Slight reconstructions of the outer enamel surface
were made prior to measurement in those sections show-
ing light to moderate wear (based on the profiles of
unworn teeth), or if a small amount of cervical enamel
was missing (based on the curvature and orientation of
the outer enamel surface relative to the enamel-dentine
junction). Sections with heavy wear, or with both cer-
vices missing, were not included in the analysis. Sections
that showed an oblique orientation (relative to a plane
passing though the respective dentine horn tips) were
also excluded. When multiple planes of section were
available for a single tooth, the one with the lowest rela-
tive enamel thickness (RET) [following Martin (1983);
see below] was chosen for this analysis.

Several variables were quantified on micrographs of
each section using a digitizing tablet interfaced with Sig-
maScan software (SPSS Science, Inc.). Following termi-
nology introduced by Martin (1983), these variables
include the total area of the tooth crown section (a), the
area of the enamel cap (c), the length of the enamel-den-
tine junction (e), and the area of the coronal dentine
enclosed by the enamel cap (b) (e.g., see Smith et al.,
2005: Fig. 1, p. 579). Following Martin (1983, 1985),
average enamel thickness (AET) is calculated as [c/e],
yielding the average straight-line distance (mm units),
or thickness, from the enamel-dentine junction to the
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Fig. 1. Box-and-whisker plots depicting RET in human and
chimpanzee dental arcades. Whiskers represent data ranges,
ends of boxes represent 75th and 25th percentiles, and solid
lines within boxes represent mean values. With the exception of

first and second mandibular molars, ranges of modern humans
and chimpanzees do not overlap.

outer enamel surface. RET is calculated as [100 X [c/el/
vb]; RET is a unitless measure in which AET is scaled
for size, yielding a measurement suitable for inter-taxon
comparisons. The Mann—Whitney U-test was employed
to test for inter-taxon differences in RET between equiv-
alent tooth positions in cases where sample sizes of that
tooth position were four or greater in each taxon. De-
spite marked differences in the shape of certain tooth
positions between humans and chimpanzees (e.g., can-
ines, lower P3), comparisons were intentionally made be-
tween spatially and developmental homologous elements.
The Jonckheere-Terpstra test was employed to test the
significance of intra-taxon trends in AET throughout the
dental row; maxillary and mandibular rows were tested
separately for each taxon.

RESULTS

Mean values of each variable, as well as the AET and
RET indices for each tooth position in both taxa are pre-
sented in Table 1 and Figures 1 and 2. Humans show
greater mean RET (and AET) at every tooth position;
this result is significant for each comparison where sam-
ple sizes for both taxa are greater than four (Table 2).
Moreover, with the exception of first and second mandib-
ular molars, there is no overlap between chimpanzee
and human RET values at any tooth position (see Fig.
1). A significant increasing trend in AET from anterior
to posterior teeth (central incisors to third molars) was
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Fig. 2. Box-and-whisker plots depicting AET in human and
chimpanzee dental arcades. Whiskers represent data ranges,
ends of boxes represent 75th and 25th percentiles, and solid
lines within boxes represent mean values. There is a significant
increasing trend in enamel thickness from anterior to posterior
teeth in maxillary and mandibular rows of both taxa, although
the mean value for the human mandibular fourth premolar is
greater than the lower first molar mean.

TABLE 2. Results of Mann-Whitney U tests for differences in
relative enamel thickness between chimpanzees and humans

Maxillary teeth Mandibular teeth

Z-Statistic P-value Z-Statistic P-value

I1 - - -3.74 0.001
12 - - -3.37 0.001
C _ _ _ _

P3 - - -3.57 0.001
P4 - — —-3.78 0.001
M1 -3.91 0.001 —5.78 0.001
M2 - - —4.67 0.001
M3 - — —-3.29 0.001

Tested for sample sizes of four or greater for each tooth type.

detected in the maxillary and mandibular dentitions of
both humans and chimpanzees (P < 0.001) (see Fig. 2).
An exception to this trend was found in human mandib-
ular P4 and M1; a post hoc Mann—Whitney U test
revealed that the P4 mean value is significantly greater
than the M1 mean value (Z = —3.101, P < 0.01).

DISCUSSION

The data presented here confirm that the difference in
human and chimpanzee RET previously identified in
molars (e.g., Martin, 1983; Kono, 2004; Smith et al.,
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2005, 2006a) is also apparent in the anterior dentition
and premolars. Despite a wide range of intra-taxon vari-
ation in enamel thickness (e.g., Schwartz and Dean,
2005; Smith et al., 2005, 2006a; Olejniczak et al., 2008),
humans and chimpanzees show markedly different
degrees of enamel thickness (see Fig. 1). Sample sizes of
chimpanzee teeth in our study are smaller than those of
homologous human teeth, and enamel thickness ranges
of humans and chimpanzees may show some overlap
with expanded samples. Nonetheless, highly significant
differences are apparent for all tooth positions tested,
and expanded samples are not likely to mitigate signifi-
cant differences in the location of the mean values
for each group (despite the introduction of some inter-
species overlap). It is likely that these inter-taxon differ-
ences in enamel thickness reflect disparate dietary
adaptations. Thinner enamel in chimpanzees may be ad-
vantageous for a diet rich in soft fruits, while thicker
enamel in humans facilitates omnivory or hard-object
feeding (e.g., Andrews and Martin, 1991) and greater
resistance to abrasion (e.g., Kono, 2004). Thick enamel in
recent humans also likely reflects the retention of thick
enamel found in fossil hominins (Grine and Martin,
1988; Andrews and Martin, 1991).

Recent studies of molar enamel thickness have demon-
strated that many taxa, including modern humans and
chimpanzees, show an anterior-to-posterior trend of
increasing enamel thickness at different tooth positions
(e.g., Macho and Berner, 1993; Grine, 2005; Smith et al.,
2005, 2006a). The data presented here demonstrate that
increasing enamel thickness distally along the molar row
is part of a greater, overall trend of increasing AET from
the central incisor to the third molar in both chimpan-
zees and modern humans (see Fig. 2). Experimental data
are lacking for nonhuman primates, but some research-
ers have hypothesized that an anterior-to-posterior
increase in enamel thickness may be related to differen-
tial bite forces along the tooth row (e.g., Macho and
Berner, 1993, 1994), while others have suggested that
enamel thickness is greater in posterior human molars
because of a reduction of the size of the dentine compo-
nent of the molar crown distally (Grine, 2005). Although
further consideration of the biomechanics of enamel
thickness distribution within the dental arcade is outside
the scope of this report, it is notable that the trends
found here support previous studies showing that the
position of teeth within the jaw should be taken into con-
sideration when making intra- and inter-taxon enamel
thickness comparisons (e.g., Macho and Berner, 1993;
Smith et al., 2005).

The data reported in this study expand the utility of
enamel thickness in studies of early hominin diagnoses
by demonstrating that each tooth position provides dif-
ferentiation between African apes and humans. Given
that the number of unworn or lightly worn molars in the
human fossil record is small, the data presented here
increase the scope of enamel thickness studies by provid-
ing comparative data for additional tooth positions.
Recent advances in medical imaging techniques have
demonstrated that enamel thickness may also be mea-
sured accurately via microtomography (Tafforeau, 2004;
Olejniczak and Grine, 2006); these nondestructive tech-
niques are expanding the number of molars available for
studies of hominin enamel thickness (e.g., Brunet et al.,
2005; Smith et al., 2006b; Olejniczak et al., in press).
The data presented above demonstrate that dental speci-
mens other than molars may also be included in these
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studies, potentially expanding available samples and
providing additional insight into the dental biology of
hominin taxa.
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