Techniques for Synthesizing Polymer Particles

Jin-Woong Kim

May 31, 2007

Current techniques

- 1. Emulsion polymerization
- 2. Miniemulsion polymerization
- 3. Microemulsion polymerization
- 4. Precipitation polymerization
- 5. Dispersion polymerization
- 6. Suspension polymerizations
- 7. Seeded polymerization

Basic considerations

- A batch process
- Radical polymerization
- Monodispersity: <30%

(Macro) emulsion polymerization

Features

- Heterogeneous system
- Nucleation site: water (in micellar or homogeneous)
- ~ 20 nm ~ 1 μ m
- Monodisperse
- Polymerization time: fast
- High MW
- Surfactant-free is possible

Components

- Monomers
- Water
- Water-soluble initiator
- Surfactant

Reactors

Stage of emulsion polymerization

Interval I

- 2-15% conversion
- Radical capturing and # of particles increase (rate increase)
- As particle grow, more surfactants adsorb
- Surfactant concentration falls below CMC
- All the surfactant adsorb to the particles at the end of interval 1

Interval II

- # of particles remains constant
- Slight increase due to Trommsdorf effect
- Interval II ends when all the monomer droplets disappear

Interval III

- # of particles remains constant
- [M] decreases (rate decrease)

- Increasing surfactant
- Increasing # of particles

- Increasing initiator concentration
- Increasing # of particles

$$R_{\rm p} = k_{\rm p}[M]_{\rm p} N_{\rm p} \bar{n}/N_{\rm A}$$

$$DP = r_p/r_i = N kp [M] / R_i$$

 $N_p \propto [initiator]^{0.4} [emulsifier]^{0.6}$

Polymer particles

PS particles

Seeded emulsion polymerization

Features

- Heterogeneous system
- Nucleation site: water
- Bigger than seed particles
- Monodisperse
- Good for controlling morphologies

Components

- Seed polymer particles
- Monomers
- Water
- Water-soluble initiator
- Surfactant

Thermodynamic effect

PS PMMA

PS/PBMA composite particles

Penetration depth

PS/PBA composite particles

Entropy and Spreading coefficient effects

Complete engulfment $S_1 < 0$, $S_2 < 0$, $S_3 > 0$

Partial engulfment $S_1 < 0$, $S_2 < 0$, $S_3 < 0$

No engulfment $S_1 < 0$, $S_2 > 0$, $S_3 < 0$

Hydrophilicity of seed particles increases

 $S_i = \gamma_{jk} - (\gamma_{ij} + \gamma_{ik})$

Miniemulsion polymerization

Role of costabilizers

- Highly insoluble in water; hexadecane, cetyl alcohol, polymers...
- Retarding monomer diffusion from the smaller droplets to the larger
- Preventing Ostwald ripening

Features

- Heterogeneous system
- Droplet nucleation (no micelles in water)
- Initiation by radial entry (prepolymeric or oligomeric)
- Fairly monodisperse

Components

- Monomers
- Water
- Water-soluble initiator
- Surfactant and "costabilizer"

Emulsification

Mechanically emulsified

Macroemulsion and miniemulsion after 3 hours

Polymer particles

PS particles

SiO₂@PS particles

TiO₂@PS particles

Microemulsion polymerization

- Homogeneous; micelle
- Swollen micelles, less than 20 nm in diameter

Microemulsion polymerization

- Tacticity
- Knotting
- A high MW, more than 20 million **Dalton**

Polymerization

Cationic surfactants

DTAB

DDAB

DDAB

Initiation: I-I
$$\xrightarrow{k_{\text{d}}}$$
 2I°

Propagation: I + M \longrightarrow IM $\xrightarrow{k_{\text{p}}}$ IM_n°

Transfer: IM_n° + M $\xrightarrow{k_{\text{tr}}}$ IM_n + M°

Combination: IM_n° + IM_m° $\xrightarrow{k_{\text{t}}}$ IM_{n+m}I

Polymerization process

- Rapid polymerization
- 100% conversion
- Rate profile: parabolic
- Maximum rate ~40%

PMMA/PS nanoparticles

Precipitation polymerization

A basic composition

A nucleation and growth process

Properties of this technique

Fundamentals

- Homogeneous system
- Nucleation site is water
- A nucleation and growth
- Polymerization time: short (several hours)
- From hundreds of nanometers to 1 or 2 micrometers
- Very monodisperse
- Surfactant-free
- Crosslinking is possible

Components

- Monomers (water-soluble)
- Water
- Water-soluble initiator
- Surfactant (if need)

Designing microgel particles

Responsivity and sensitivity

Microgel characterization

High water content (90-99% v/v) a microgel is effectively all surface area

Phase transitions

Core-shell microgel particles

Dispersion polymerization

A dispersion polymerization process

Fundamentals

- Homogeneous system
- Nucleation site is media
- A nucleation and growth
- Polymerization time: long (more than 24 hours)
- From a micromerter to 15 micrometers
- Very monodisperse
- Stabilizer is needed
- Crosslinking is impossible

Components

- Monomers (medium-soluble)
- Alcohol
- Water-insoluble initiator
- Stabilizer; polymer (PVP, PAAc...)

Monodisperse polymer microparticles

Monodisperse PS particles

- PVP
- Ethanol medium

Poly (HEMA) microparticles

- Poly (St-b-BD) stabilizer
- 2-butanol/toluene media

Crosslinking in dispersion polymerization

Suspension polymerization

MMA droplets

Fundamentals

- A heterogeneous system
- Nucleation site is monomer phase (droplet)
- Polymerization time: long (more than 10 h)
- From 1 micrometer to thousands of micrometers
- Very polydisperse

PMMA particles

Wax/polymer composite particles

CN@PMMA microcapsules

$$H_3C$$
 CH_3
 CH_3

Cholesteryl nonanoate (CN)

Inorganic/polymer composite particles

Light blocking

W/O/W double emulsion polymerization

W/O/W double emulsions (Oil is the mixture of MMA and AIBN)

Hollow polymer particles

PMMA hollow particles

Dark pores in toluene

Ag NP in pores

Seeded swelling & polymerization

Fundamentals

- A heterogeneous system
- Nucleation site is monomer phase (droplet)
- A swelling and polymerization
- Polymerization time: long (more than 10 h)
- From tens of nanometers to thousands of micrometers
- Very monodisperse
- Stabilizer: PVA, PAAc...
- Crosslinking is possible

Components

- Seed particles
- Water
- Monomers (with initiator)
- Stabilizer

Swelling process

$$\Delta \bar{G} = RT \left[\ln \phi_1 + \left(1 - \frac{1}{j} \right) \phi_2 + \phi_2^2 \chi + \frac{2\bar{V}_1 \gamma}{rRT} \right]$$

Swelling and polymerization

Monomer swellings (after 30 sec and 2h)

PS particles

Composite particles

PS/PGMA composite particles

PS/PCMS composite particles

Porous particles

Porous PS particles

Resveratrol loaded particles

Conducting particles (PS/polyaniline)

Metal/polymer composite particles

Non-spherical particles

Controlling chemical anisotropy

"Combination of dispersion polymerization and seeded polymerization"