A Guide to Comparisons of Star Formation Simulations with Observations

1107.2827v1.pdf3.88 MB


Abstract. We review an approach to observation-theory comparisons we call \Taste-Testing."
In this approach, synthetic observations are made of numerical simulations, and then both real
and synthetic observations are \tasted" (compared) using a variety of statistical tests. We rst
lay out arguments for bringing theory to observational space rather than observations to theory
space. Next, we explain that generating synthetic observations is only a step along the way to
the quantitative, statistical, taste tests that oer the most insight. We oer a set of examples
focused on polarimetry, scattering and emission by dust, and spectral-line mapping in starforming
regions. We conclude with a discussion of the connection between statistical tests used
to date and the physics we seek to understand. In particular, we suggest that the \lognormal"
nature of molecular clouds can be created by the interaction of many random processes, as can
the lognormal nature of the IMF, so that the fact that both the \Clump Mass Function" (CMF)
and IMF appear lognormal does not necessarily imply a direct relationship between them.