visualization

WorldWide Telescope

WorldWide Telescope is a "Universe Information System" created by Microsoft Research that our group helps to develop and deploy.  In the Seamless Astronomy program, we use WWT as an excellent all-sky, smoothly zoom-able data visualizer, as well as a key link to full VAO functionality.

Seamless Colloquium: Linking Visualization & Understanding in Astronomy

Location: 

Phillips Auditorium, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street

In 1610, when Galileo pointed his small telescope at Jupiter, he drew sketches to record what he saw. After just a few nights of observing, he understood his sketches to be showing moons orbiting Jupiter. It was the visualization of Galileo’s observations that led to his understanding of a clearly Sun-centered solar system, and to the revolution this understanding then caused.

Goodman AA. Principles of High-Dimensional Data Visualization in Astronomy. Astronomische Nachrichten [Internet]. 2012;333(5-6):505-514. Astrobites commentary on this articleAbstract
sets, though, interactive exploratory data visualization can give far more insight than an approach where data processing and statistical analysis are followed, rather than accompanied, by visualization. This paper attempts to charts a course toward “linked view” systems, where multiple views of high-dimensional data sets update live as a researcher selects, highlights, or otherwise manipulates, one of several open views. For example, imagine a researcher looking at a 3D volume visualization of simulated or observed data, and simultaneously viewing statistical displays of the data set’s properties (such as an x-y plot of temperature vs. velocity, or a histogram of vorticities). Then, imagine that when the researcher selects an interesting group of points in any one of these displays, that the same points become a highlighted subset in all other open displays. Selections can be graphical or algorithmic, and they can be combined, and saved. For tabular (ASCII) data, this kind of analysis has long been possible, even though it has been under-used in Astronomy. The bigger issue for Astronomy and several other “high-dimensional” fields is the need systems that allow full integration of images and data cubes within a linked-view environment. The paper concludes its history and analysis of the present situation with suggestions that look toward cooperatively-developed open-source modular software as a way to create an evolving, flexible, high-dimensional, linked-view visualization environment useful in astrophysical research.