Crowding follows the binding of relative position and orientation


Greenwood JA, Bex PJ, Dakin SC. Crowding follows the binding of relative position and orientation. Journal of vision. 2012;12.


Crowding—the deleterious influence of clutter on object recognition—disrupts the identification of visual features as diverse as orientation, motion, and color. It is unclear whether this occurs via independent feature-specific crowding processes (preceding the feature binding process) or via a singular (late) mechanism tuned for combined features. To examine the relationship between feature binding and crowding, we measured interactions between the crowding of relative position and orientation. Stimuli were a target cross and two flanker crosses (each composed of two near-orthogonal lines), 15 degrees in the periphery. Observers judged either the orientation (clockwise/counterclockwise) of the near-horizontal target line, its position (up/down relative to the stimulus center), or both. For single-feature judgments, crowding affected position and orientation similarly: thresholds were elevated and responses biased in a manner suggesting that the target appeared more like the flankers. These effects were tuned for orientation, with near-orthogonal elements producing little crowding. This tuning allowed us to separate the predictions of independent (feature specific) and combined (singular) models: for an independent model, reduced crowding for one feature has no effect on crowding for other features, whereas a combined process affects either all features or none. When observers made conjoint judgments, a reduction of orientation crowding (by increasing target–flanker orientation differences) increased the rate of correct responses for both position and orientation, as predicted by our combined model. In contrast, our independent model incorrectly predicted a high rate of position errors, since the probability of positional crowding would be unaffected by changes in orientation. Thus, at least for these features, crowding is a singular process that affects bound position and orientation values in an all-or-none fashion.

Last updated on 04/26/2013