
Lecture 2: The Navier-Stokes Equations

September 9, 2015

1 Goal

In this lecture we present the Navier-Stokes equations (NSE) of continuum fluid
mechanics.

The traditional approach is to derive teh NSE by applying Newton’s law to
a finite volume of fluid. This, together with condition of mass conservation, i.e.
change of mass per unit time equal mass flux in minus mass flux out, delivers the
NSE in conservative form, also known as Eulerian form, as it refers to the mass-
momentum balance as drawn by an observer at rest. The other approach, known
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as Lagrangian, corresponds to the picture taken by a co-moving observer (go-
with-the flow). Both approaches have merits and pitfalls, but the conservative
form is generally more popular, especially for incompressible flows The Navier-
Stokes equations are non-linear vector equations, hence they can be written in
many different equivalent ways, the simplest one being the cartesian notation.
Other common forms are cylindrical (axial-symmetric flows) or spherical (radial
flows). In non-cartesian coordinates the differential operators become more
cumbersome due to metric terms (inertial forces). For geometries of real-life
complexity (cars, airplanes, ...) no global coordinate system can be used, and
one resorts to non-coordinate based representations, such as finite-volumes and
finite-elements.

2 Eulerian formulation: mass-momentum con-
servation

The general statement is very simple:
Change per unit time = Flux-in - Flux-out
The relevant quantities are mass-momentum-energy.
The mass in a cube of volume V = ∆x∆y∆z is M = ρV and the flux across

the six faces of the cube has the form Ji = ρuiAi, where Ai = ∆xj∆xk, with
i, j, k = x, y, z.

The mass balance dM/dt = 0 applied to the cube of fluid in the limit of zero
volume delivers the continutity equation:

∂tρ+ ∂i(ρui) = 0 (1)

The same argument applied to the momentum in the cube of fluid, Pi = Mui,
and taking into account the forces acting on the surfaces, deliver the Navier-
Stokes equations.

∂tρui + ∂j(ρuiuj + Pδij) = ∂jσij + Fi (2)

where P is the pressure, σij is the stress tensor and Fi the external force per
unit volume.

Note that these forces are of two types: i) contact forces, due to the pres-
sure/stress exerted by abutting faces of neighbor cubes, ii) volume forces, due
to external fields, say gravity or electric fields for the case of charged fluids.
The flux of momentum is a second order tensor, which makes the book-keeping
more cumbersome, because there are several contributions to the momentum
budget, namely: i) Inertial terms due to the motion of the fluid across the faces
of cube, ii) pressure terms due to the component of the contact force normal to
the surface it acts upon, iii) stress-terms, due to the tangential component of
the force.

To be noted that the latter two require independent inputs, namely an equa-
tion of state for the pressure as a function of density and temperature, as well
as a constitutive equation for the stress σij as a function of the strain ∇iuj .

2



P = P (ρ, T ) (3)

σij = µ(∂iuj + ∂jui) + λ(∂kuk)δij (4)

where µ is the dynamic shear viscosity and λ associates with the bulk viscosity.
Also to be noted that the latter does NOT conserve the total energy of the

fluid (kinetic=mechanical+thermal plus potential). These are dissipative terms
which emerge from Newtonian mechanics as a result of an approximation

3 Lagrangian formulation

Go-with-the flow, Lagrangian form using the material derivative. The materials
derivative runs along the material lines of the flow.

Dui
Dt
≡ ∂tui + uj∂jui (5)

In a co-moving frame (ui = 0) it reduces to the standard time derivative,
which is a major simplification.

Dρ

Dt
= −ρ∂iui (6)

Dui
Dt

= −(∂iP )/ρ+ (∂jσij)/ρ (7)

Each blob represents a multitude of molecules: a cc of air contains of the
order of 1021 molecules (Loschmidt number). This formulation, which is the
closest to Newtonian dynamics, is well suited to compressible flows with large
deformations (say combustion enegines)

4 General features and family of flows

The NSE are: multi-dimensional, time-dependent, vectorial, non-linear and of-
ten live in complex geometries (car, airplanes, buildings ...). They are charac-
terized by three main type of forces: Inertial, Pressure, Dissipation. The ratio
between these three forces defines the main regimes of fluid flows, characterized
by two main dimensionless parameters.

Mach (squared) = Inertia/Pressure;
Reynolds = Inertia/Dissipation
To be reminded that the ratio Ma/Re delivers the Knudsen number, which

owes to be very small (less that some percent) if fluid dynamics is to apply at
all.

Low/High Mach characterize Incompressible/Compressible flows. Low/High
Reynolds characterize Laminar/Turbulent flows Flows at zero Mach are called
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Stokes flows, a useful idealization for creeping flows in porous media and many
biological applications.

Flows with zero dissipation are called inviscid, a useful idealization for high-
Reynolds flows.

5 Compressible/Incompressible

Compressible fluids, typically gases, are characterized by a non-zero divergence
of the velocity, i.e the volume occupied by a given amount of mass changes
in space and time, so that density is alive. Recall that the divergence of the
velocity field describes the change in volume of an element transported by the
fluid. Positive(negative) divergence indicates expansion (compression). Zero
divergence means that the volume is conserved (shape may change, even dra-
matically, though). Compressible flows support sound and shock waves.

Sound waves usually carry small perturbations, shock waves carry the large
ones, i.e. major density changes across very thin (molecular size) layers.

Incompressiblity is tantamount to infinite sound speed: unphysical but near-
true for many fluids which undergo very small changes in density upon huge
changes in pressure, parts per thousands or less. Water is a good example and
so are most liquids.

Ma→ 0

Since the information travels at infinite speed, they encode action at dis-
tance, which is a tough constraint on numerical methods. Indeed incompressible
flows require computational fluid techniques on their own.

6 Viscid/Inviscid

Inviscid fluids have strictly zero viscosity,

ν = 0 (8)

hence they do not dissipate (also called perfect fluids).
The NSE with zero viscosity are called Euler equations.
This is a (very useful) idealization, which describes accurately flows away

from boundaries. Near boundaries, however, the approximation breaks down,
because strong gradients couple even to vanishingly small viscosity and generate
dissipation. Dissipation concentrates in thin regions called ”boundary layers”,
often below mm for macroscopic flows in the scale of meters. However, neglecting
these layers would be a deadly mistake because all energy is dissipated there.
Thus the limit

ν → 0

must be kept very distinct from the strictly inviscid condition ν = 0.
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7 Laminar/Turbulent

The Reynolds number measures Inertia/Dissipation. It is typically a large num-
ber, easily in the order of millions for ordinary macroscopic bodies. Example:
U = 30 m/s, L = 1 m, ν ∼ 10−5 m2/s, gives Re ∼ 30×1×105 = 3106. Why? It
is the ratio between the macroscopic size L and the molecular mean free path,
as best appreciated via the Von Karman relation

Re =
Ma

Kn

When the flow is very slow (creeping flows) the NSE are called Stokes equa-
tions:

Re→ 0

Very relevant to biological flows, say cells in blood, bacteria in water... Zero-
Reynolds does not necessarily imply slow flows because the non-linearity can
be suppressed (depleted) by mere geometrical symmetries, like in Coeutte or
Poiseuille flows.

The opposite limit to fully developed turbulence, i.e.

Re→∞

.
Turbulent flows are ubiquituous and represent one of the most challenging

problems of classical physics and engineering

8 Steady/Unsteady

Unsteady flows show inherent time-dependence (local oscilations), typically
driven by the presence of obstacles or external forces. Spontaneous transitions
occurr once the system is approaching an instability. Vortex shedding is the
precursor of turbulence. Unsteadiness is measured by the Strouhal number, ba-
sically the period of the spontaneous oscillations versus the transit time of the
flow across the obstacles.

St ∼ ∂tu

u∇u
Typical Strouhal numbers are usually well below 1, indicating that inertia

usually prevails on autonomous oscillations.

9 Newtonian/Non Newtonian

This refers to the relation between appled stress σij and resulting strain Dij ≡
∂iuj . Linear proportionality characterizes Newtonian fluids.
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10 Ideal/Nonideal

When the equation of state is not proprtional to the density (potential energy
contribution)

Ideal:

P = nRT = ρv2T

Non-Ideal
Typical van-der Waals, short-range repulsuon, long range attraction:

(P − a/V 2)(V − b) = nRT

11 Some simple flows

Incompressible flows: Couette flow (constant shear) and Poiseuille flow (linear
shear).

12 Boundary Conditions

Boundary conditions select the solutions compatible with the environmental
constraints. They depend both on the environment and the inherent nature/regime
of the flow. In actual practice, they are the most critical factor in the develop-
ment of robust and efficient CFD methods.

Among others:

• Solid walls: no-slip velocity

• Inlets: imposed density (pressure) and velocity

• Outlets: imposed density(pressure) and zero normal gradient

• Symmetry Planes: zero normal gradient

13 Summary

Summarizing, the Navier-Stokes equations of continuum fluid mechanics are
”simply” Newton’s law ma = F as applied to a small volume of fluid. Despite
their elementary physical meaning, they prove exceedingly difficult to solve, as
they assemble three nigthmares of computational physics: strong non-linearity,
complex geometry, fully three-dimensional, time-dependent configurations.
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14 Exercises

1. Prove the equivalence between Lagrangian and Eulerian formulations

2. Derive the equations for incompressible flows from the general NSE’s.
Hint: Use the identities ∇ · (ρ~u) = ~u · ∇ρ + ρ∇ · ~u and ∇ · (ρ~u~u) =
~u · ∇(ρ~u) + ρ~u · ∇~u

3. Prove the von Karman relation.
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