
The GEOS-Chem Code: Recent Updates and Future Directions

Bob Yantosca GEOS-Chem Support Team 02 May 2011

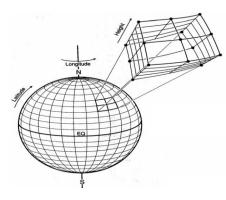
GEOS-Chem Support Team (GCST)

- Bob Yantosca, Matthew Cooper, (Michael Long in June 2011)
- GCST is responsible for fundamental G-C code development
 - Implementing new G-C developments into the "standard code"
 - Benchmarking of new G-C versions
 - Documentation, communication, and education (web, wiki, email, ...)
 - Assisting G-C users and developers with technical issues
- GCST provides vital link w/ NASA
 - Collaboration with NASA internal modeling programs
 - Development of supporting software
 - Sharing of feedback + best practices
- GCST looks to the G-C user community for initiative in:
 - Managing scientific content (esp. for offline, nested-grid simulations)
 - Coordinating research efforts with the relevant G-C working group(s)

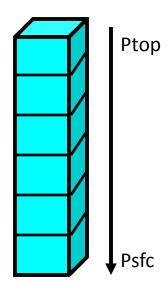
Version control and benchmarking

- G-C is a complex model and requires strict version control
 - GCST employs the *Git version control software* (free & open source)
 - Git facilitates merging & tracking of code from several developers
 - Come to the Thursday's model clinic for a Git tutorial!
- Benchmark simulations ensure the integrity of G-C
 - We perform 1-month benchmarks for every new G-C version.
 - 1-month benchmarks help to identify major problems or issues.
 - Each benchmark must be approved by Daniel Jacob before version release
 - We perform 1-year benchmarks for selected G-C versions
 - Benchmark output is compared against in-situ observations of several species such as O3, NOx, CO, hydrocarbons, aerosols, etc.
 - Jennifer Logan and the Aerosols Working Group examine and approve the output from the 1-year benchmark simulations

Version nomenclature


- Types of G-C versions:
 - Public releases: After several important updates have been added to G-C, we shall declare a public release. For each public release, we shall completely rewrite the G-C Manual and urge all users to upgrade.
 - Beta releases: In between public releases, we usually make one or more beta releases. These releases usually contain optional updates or fixes. We update the G-C Manual with addenda.
- Version numbering system: vX-YY-ZZ (e.g. v9-01-01)
 - X = major version #. Denotes major changes (e.g. new met fields)
 - YY = public release #. Changes w/ each new public release.
 - ZZ = beta release #. Changes w/ each new beta release.

Important G-C developments since IGC4

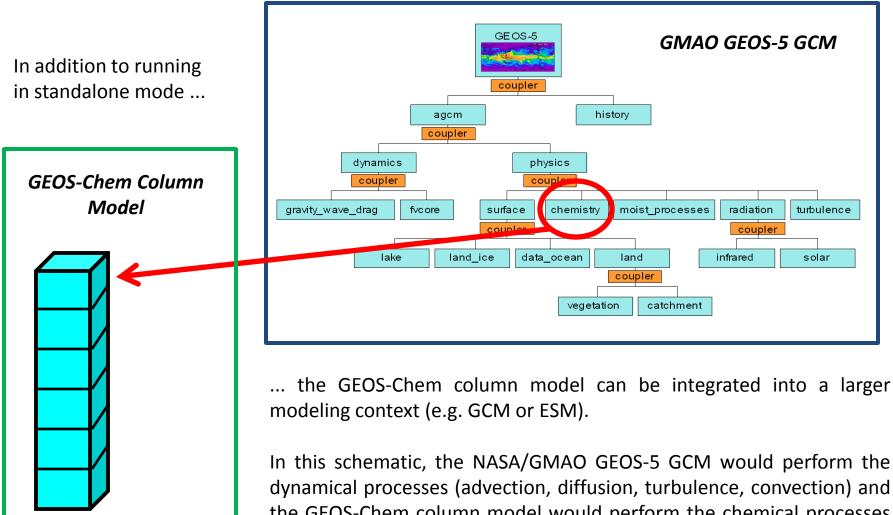

Version	Date	Туре	Features
v9-01-02	Spring 2011 (TBD)	Beta	APM microphysics (F. Yu & G. Luo, SUNY Albany); GFED3 biomass emissions (P. Kasibhatla, Duke); FAA/AEDT aircraft emissions (S. Barrett et al, MIT); RETRO anthropogenic VOC emissions (W. Reinhart, U. Minn.).
v9-01-01	10 Feb 2011	Public	Compatibility w/ MERRA met fields (GCST); New lightning NOx algorithms (L. Murray, Harvard).
v8-03-02	07 Sep 2010	Beta	Updated Hg simulation w/ Global Terrestrial Hg model (<i>N. Downey + Team Hg</i>); Updated CO2 simulation (<i>R. Nassar, Environment Canada</i>).
v8-03-01	04 May 2010	Public	ISORROPIA II ATE (T. Nenes, CMU and H. Pye, then Caltech, now EPA); TOMAS microphysics (P. Adams et al, CMU); SOA and photolysis updates (Aerosols Working Group).
v8-02-04	24 Feb 2010	Beta	LINOZ stratospheric O3 chemistry (<i>D. Jones et al, U. Toronto</i>); EPA/NEI2005 emissions (<i>A. van Donkelaar, Dalhousie</i>); MEGAN v2.1 biogenic emissions (<i>M. Barkley, then Edinburgh</i>).
v8-02-03	Oct 2009	Beta	KPP chemical solver <i>(A Sandu et al, VT);</i> ICOADS ship emissions <i>(A. van Donkelaar, Dalhousie);</i> New makefile structure <i>(GCST).</i>
v8-02-02	08 Jun 2009	Beta	Non-local PBL mixing scheme (J. Lin, then Harvard, now Peking U.); T. Bond BC & OC emissions (E. Leibensperger, Harvard).
v8-02-01	26 May 2009	Public	Updated chemical reaction rates (Oxidants & Chemistry Working Group); Dicarbonyls simulation (T-M Fu, Peking U.).

GEOS-Chem column model

Current GEOS-Chem

Columnized GEOS-Chem

The problem: Historical development of GEOS-Chem relied on a code structure that used 3D (lon, lat, alt) or 4D (lon, lat, alt, quantity) arrays. At ultra-fine horizontal resolution, the memory requirements of these large arrays can make global simulations impractical.


The solution: We have begun an innovative new project with NASA/GMAO to columnize GEOS-Chem. We shall restructure GEOS-Chem so that all relevant chemical processes (e.g. chemistry, emissions, deposition, etc.) will be applied to a single atmospheric column. Several individual columns can then be processed in parallel in order to gain computational advantage.

Advantages of columnization:

- 1. This approach shall facilitate the introduction of MPI parallelization and the Earth System Model Framework (ESMF) into GEOS-Chem. Goal: to run on 100's or 1000's of CPU's simultaneously.
 - 2. The columnized GEOS-Chem can be interfaced with existing data assimilation systems and Earth System Models (ESM's).
- 3. The columnized GEOS-Chem can be driven by other met data products

Vision: The columnized GEOS-Chem will become the standard GEOS-Chem model. GCST has already begun to integrate columnized routines into the current GEOS-Chem. This will allow the columnized routines to stay at the forefront of the science during the restructuriong process.

Integration of GEOS-Chem and GEOS-5

dynamical processes (advection, diffusion, turbulence, convection) and the GEOS-Chem column model would perform the chemical processes (emissions, chemistry, deposition). We are actively working toward this integration.