Bayesian Statistical Modeling of Spatial Error Correlations in Atmospheric Tracer Inverse Analysis

> Prasad Kasibhatla Chiranjit Mukherjee and Mike West Duke University

5th International GEOS-Chem Meeting May 3, 2011

Funding: NASA ACMAP and Carbon Cycle Science Program

Bayesian Atmospheric Tracer Inversion

Bayesian Inverse Analysis

Update prior knowledge of fluxes $[p(\mathbf{x}]$ based on measurements $[\mathbf{y}]$ to estimate posterior pdf $[p(\mathbf{x}|\mathbf{y})]$ – we are usually interested in moments (e.g. mean, variance-covariance) of this posterior distribution.

Linear problem (e.g. CO with prescribed OH)

 $y = Kx + \varepsilon$

where,

K is the Jacobian matrix derived from a CTM (K_{ij} is the contribution of a unit source at location/time = j to measurement at location/time = i).

Gaussian assumptions

 $\epsilon \sim N [0, S_{\epsilon}]; \mathbf{x} \sim N[\mathbf{x}_{prior}, S_{prior}],$ with known $S_{\epsilon}, \mathbf{x}_{prior}, S_{prior} \rightarrow$ the posterior pdf of interest is also Gaussian:

$$\begin{aligned} \mathbf{x} | \mathbf{y} &\sim \mathsf{N}[\mathbf{x}_{\text{post}}, \, \mathbf{S}_{\text{post}}], \\ \mathbf{x}_{\text{post}} &= \mathbf{x}_{\text{prior}} + (\mathbf{K}^{\mathsf{T}} \mathbf{S}_{\varepsilon}^{-1} \mathbf{K} + \mathbf{S}_{\text{prior}}^{-1})^{-1} \mathbf{K}^{\mathsf{T}} \mathbf{S}_{\varepsilon}^{-1} (\mathbf{y} - \mathbf{K} \mathbf{x}_{\text{prior}}) \\ \mathbf{S}_{\text{post}} &= (\mathbf{K}^{\mathsf{T}} \mathbf{S}_{\varepsilon}^{-1} \mathbf{K} + \mathbf{S}_{\text{prior}}^{-1})^{-1} \end{aligned}$$

Incorporating Spatial Observation Error Correlation Structure

Covariance Matrix with Unknown Parameters

We can consider \mathbf{S}_{ε} to be a function of unknown *structural parameters* $\boldsymbol{\theta}$ as $\varepsilon | \boldsymbol{\theta} \sim N[\mathbf{0}, \mathbf{S}_{\varepsilon}(\boldsymbol{\theta})] \rightarrow$ The estimation problem then involves estimating **x** as well as $\boldsymbol{\theta}$.

Inverse Analysis

 $\boldsymbol{\theta}$ can first be estimated using a maximum-likelihood approach, and $p(\mathbf{x}|\mathbf{y})$ can be approximated as $p(\mathbf{x}|\mathbf{y}, \boldsymbol{\theta}_{ML})$. Alternatively, $\boldsymbol{\theta}$ also be treated as a random variable with a prescribed prior distribution [$p(\boldsymbol{\theta})$] and a fully Bayesian approach can be used to estimate the moments of the joint pdf $p(\mathbf{x}, \boldsymbol{\theta}|\mathbf{y})$ based on a large sample generated from the joint pdf using MCMC.

Computational Burden

In either case, an iterative approach involving the calculation of $\mathbf{S}_{\varepsilon}^{-1}$ at each iteration is needed \rightarrow this is a computationally intensive step when the dimension of \mathbf{S}_{ε} is large.

Conditional Autoregressive (CAR) Spatial Models

CAR modeling

An alternative approach that involves conditional error modeling $\rightarrow S_{\epsilon}^{-1}$ is sparse and calculations involving S_{ϵ}^{-1} are not computationally intensive.

Spatial CAR Model

 $(\varepsilon_i | \varepsilon_j, j \neq i) \sim N[\Sigma (\rho w_{ij} / w_{i+}) \varepsilon_j, \tau_c^2 / w_{i+}],$ where,

 w_{ij} are elements of a proximity matrix $\boldsymbol{W},$ with w_{i+} = $\boldsymbol{\Sigma}_{j}$ $w_{ij},$ and

 ρ and τ_{c} are unknown parameters.

Under this specification, it can be shown that the joint distribution $p(\epsilon)$ is $\epsilon \sim N [0, U^{-1}]$, where,

 $\mathbf{U} = \tau_c^2 (\mathbf{D}_w - \rho \mathbf{W})$, with $\mathbf{D}_w = \text{diag}(w_{1+}, w_{2+}, ...)$

 \rightarrow U is sparse and calculations involving U are not computationally intensive

Statistical Computation

Posterior inferences from MCMC-generated large-sample of p(\mathbf{x} , ρ , $\tau \mid \mathbf{y}$)

Incorporating Non-Normal Priors

Positive fluxes

We are often interested in inverse estimates of emissions, which are positive by definition \rightarrow e.g. fluxes of CO, CO₂, etc. from vegetation fires, fossil-fuel combustion.

Specification of Prior Distribution

An alternative approach is to use a truncated normal distribution for the prior $\rightarrow x_i \sim N(x_{a,i}, S_{a,i}) \ l(x_i > t_i)$, where l(.) is the indicator function [l(.) is 1 when (.) is true and 0 when (.) is false].

Here, we choose $t_i = x_{prior,i}/4$, and choose $x_{a,i}$ and $S_{a,i}$, so that the mean of x_i is equal to $x_{prior,i}$ and the variance of x_i is equal to $S_{prior,i}$.

Computation

Sampling from the truncated normal distribution is straightforward to implement in the MCMC algorithm.

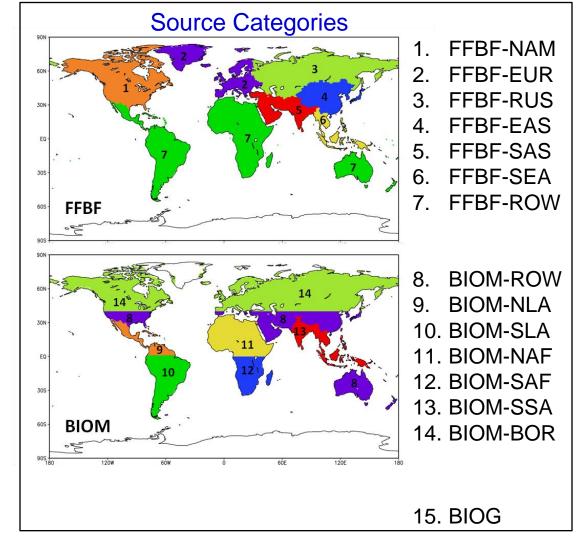
Synthetic Data Test

Synthetic Data Generation

- → Generate x_{true} for 15 source categories by sampling from truncated normal prior
- \rightarrow Generate ϵ by sampling from

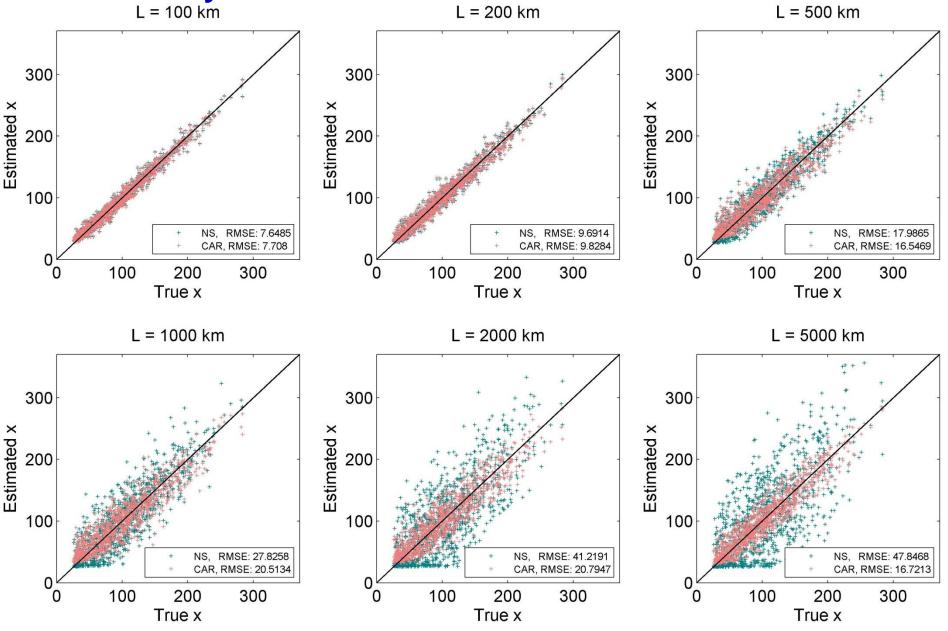
$$\begin{split} & \epsilon_{syn} \sim N \; (\textbf{0}, \, \textbf{S}_{\epsilon}) \\ & \text{with } S_{\epsilon} \left(i, j \right) = \sigma^2 \; exp(-d_{ij}/L), \\ & \text{and } \sigma = \; 20\% \; \text{of annual,} \\ & \text{global average prior model CO} \end{split}$$

- → Generate $y_{syn} = Kx_{true} + ε_{syn}$
- → Repeat for 6 different values of L (100, 200, 500, 1000, 2000, and 5000 km)
- → Repeat for 1000 synthetic datasets for each value of L
- →K from Arellano et al. (2004) for April – December 2000



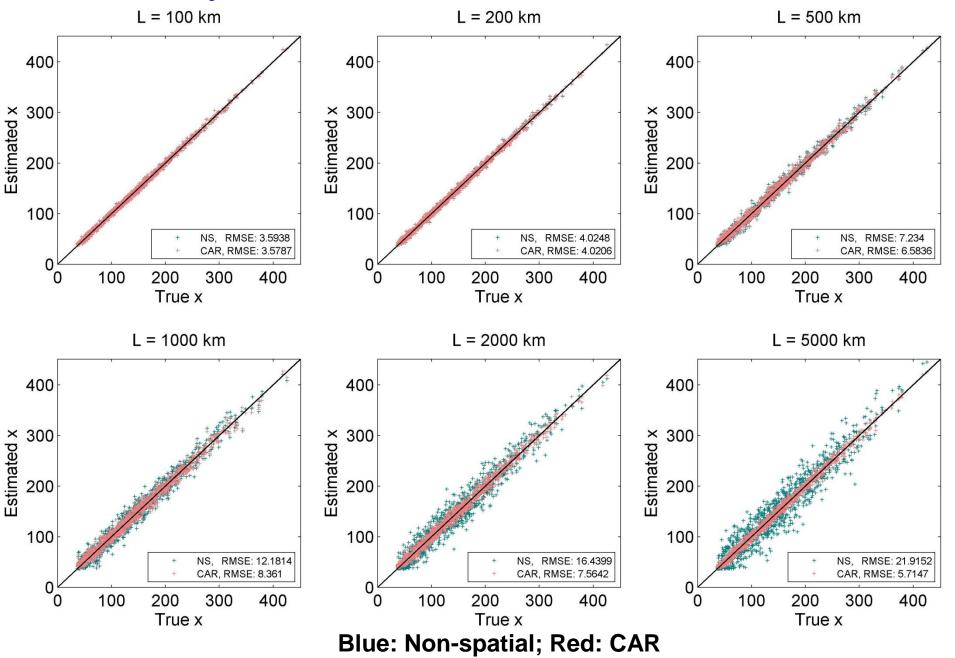
Compare inversion results from non-spatial and CAR models

Synthetic Inversion Results: FFBF-NAM

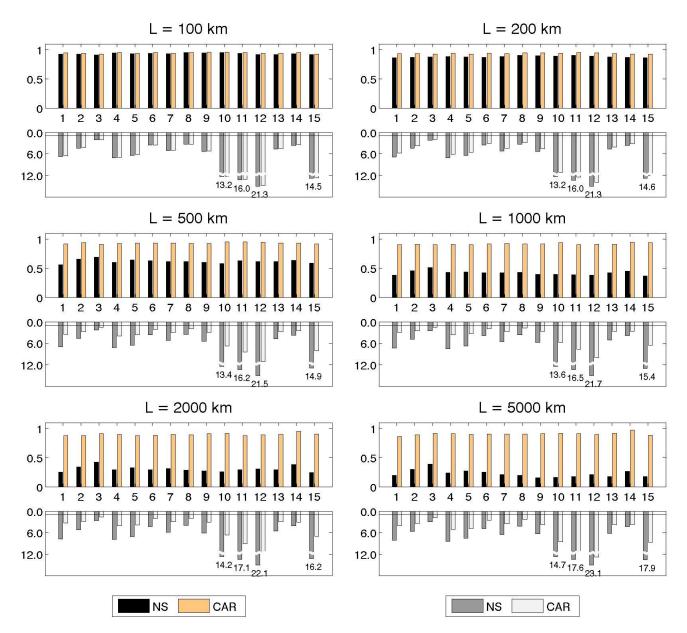


Blue: Non-spatial; Red: CAR

Synthetic Inversion Results: BIOM-SAF

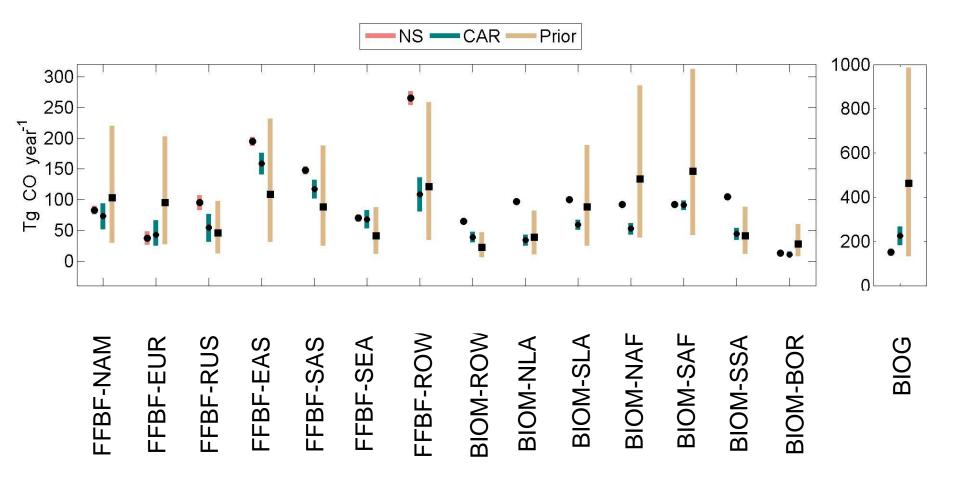


Synthetic Inversion Results Success Rates (top) and Learning Ratios (bottom)



Real MOPITT Data Inversion Results

Mean (symbols) and 95% credible intervals (lines)



Summary

- → Not accounting for spatial observation error correlations can lead to biased posterior source estimates.
- → CAR spatial modeling offers a flexible and computationally tractable approach to account for spatial error correlation structure in Bayesian atmospheric inverse modeling.

→ Future work	m	FLOPs	
Extend to multiple correlation length scales (e.g lat-dep. L)	10	70404728	
Extend to consider time correlations	100	704064128	
Integrate into an going EnKE work for grid apole inversions	1000	7040658128	
Integrate into on-going EnKF work for grid-scale inversions	10000	70406598128	