6<sup>th</sup> International GEOS-Chem Meeting May 08 2013

# Investigating the Sources of Nitrate in Antarctica using GEOS-Chem and its Adjoint



[NSF-ANT 0944537]

Hyung-Min Lee *University of Colorado, Boulder* 

Daven Henze, Becky Alexander, Lee Murray, Thomas Walker, Fabien Paulot, and Dylan Jones





# I. Background

# Difficult to relate sources to measurements $(NO_x \leftrightarrow HNO_3 + NO_3^-)$



#### **Suggested sources**

- Long-range transport
- Solar activity

- Stratospheric influence (PSCs, air mix)
- Post-depositional processes

### I. Background

#### **Annual Variation from Measurements**

#### (1) August peak (2) Maximum in Summer (Nov-Jan)



# **II. Model Specification**

#### Version

Adj-33f (fwd 8-03-02)

#### Resolution

Reduced GEOS-5 (4° x 5° x 47)

#### **Modifications**

Stratospheric chemistry [Murray, 2012] and adjoint [New!]

Sensitivity w.r.t. reaction rates [Paulot, 2012] [Walker, 2012]

# **III. Modeled Seasonality**









Maximum: Not captured

 $TNIT = HNO_3 + NO_3^{-1}$ 

# IV. Diagnosis with the Adjoint



-0.1 0.1

#### Minimum: **Acceptable**

# **Background concentration: Long-range transport**





August Peak:
Needs enhancement

# **Denitrification by PSC sedimentation**

(Polar Stratospheric Clouds)





# **Conclusion**

1

Minimum: Acceptable

**Long-range transport** from mid-latitude free troposphere

#### For better understanding Antarctic Nitrate

2

August Peak:
Needs enhancement

**PSC** sedimentation

[Considine et al., 2000] [Eastham et al., !]

3

Maximum: Not captured

**Post-depositional processes** 

[Zatko et al., 2012]

4

NO<sub>3</sub>-: Small and off season **Aerosol thermodynamics** 

[Capps et al., 2012]