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üVariational minimization may require many iterations (=forward+adjoint integrations) to 
converge Ącomputationally expensive. 

üIn practice variational minimization is often stopped before full convergenceĄhow to 
rigorously interpret the approximated posterior solution? 

üNeed for a better representation of posterior information: 

ĄPosterior errors (variances, posterior sampling). 

ĄObservational constraints (averaging kernel matrix). 

üNeed for efficient algorithms to tune the prior (B) and observation (R) error covariance 
matricesĄusually arbitrarily prescribed and highly uncertain! 

üAtmospheric source inversion problems are usually very ill-conditionedĄonly a small 
set of spatiotemporal patterns are effectively constrainedĄwho are they? 

 

Current Limitations of High-Dimensional 
Inversions 

These limitations can be addressed by solving the 
inverse problem in the right (small dimensional) space 

Ąoptimal projection 



Optimal Projection 
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Randomized SVD 

Iterative method (e.g., Lanczos) 

Walltime 

= 1 forward+1 adjoint 

ü SVD is performed using a parallel randomized algorithm 
(Halko et al., 2011). 

ü Walltime saving: N iterations (e.g., BFGS, CG/Lanczos) Ą 
N parallel forward and adjoint integrations (~1 iteration). 

Efficient: 
ü Optimization. 
ü Posterior error 

variances  & sampling. 
ü Information content 

(averaging kernels). 
ü Error tuning. 
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Bousserez and Henze (in revision, QJRMS) 
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Observational	
constraints

Information content 
analysis: 

üSingular vectors in flux 
space represent 
independently 
constrained patterns. 

üSingular vectors in 
observation space 
represent associated 
observational patterns. 

üSingular values quantify 
observational 
constraints. 

GOSAT monthly methane inversion 



BFGS minimization  
(пл ƛǘŜǊŀǘƛƻƴǎҒпу ƘƻǳǊǎύ 

Optimization and posterior sampling: 
üBFGS requires 40 iterationsė40 sequential forward and adjoint runs (walltime~ 2 days). 
üRandomization requires 50 samplesė 50 forward and adjoint runs in parallel (walltime~ 72 mins). 
üPosterior sampling using square-root of posterior error covariance  matrix allows one to compute any posterior 

statistics at no additional cost. 
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GOSAT monthly methane inversion 



Importance of higher rank approximations 
 

Standard BFGS (40 iterations) 

üStandard BFGS was stopped when cost function decrease rate < 1%.  
üResults show that including more modes (using 100 ensembles) produces significant differences in 

posterior fluxes (especially over eastern US and central Africa). 
üOptimal projection using randomized SVD approach allows one to compute many more critical modes. 

120 hours 

Scaling Factor 

Randomized SVD (40 ensembles) Randomized SVD (100 ensembles) 

5 hours 5 hours 

Scaling Factor Scaling Factor 

N2O monthly methane inversion YŜƭƭŜȅ ²ŜƭƭǎΩ ǿƻǊƪ 

72x46x24 = 79,488 

Rank 40 

Information content  
(singular values of preconditioned Hessian) 



Error Tuning Method 

üRescale prior error covariance:                              . 

üSolve for sb based on properties of posterior statistics of projected inverse 
problem. 

üCriteria for optimal projection: 

Computationally efficient: singular vectors ui and values ⱦi are 
unchanged when sb variesĄonly one randomized SVD calculation! 

üIn standard error tuning approaches an iterative algorithm is used, which requires one converged 
inversion (xa) per iterationĄcan be very expensive. 

üThe projected problem allows us to efficiently solve for sb without recomputing the SVD for each 
inversion (xa). 

Posterior solution 

Degree of Freedom for Signal (DOF) 

Desroziers and Ivanov (2001) 



convergence at rank 40 true flux increment 
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initial increment (scaling factor=0.5): 
underestimation ~60% 
corrected increment (scaling factor=1.2): 
overestimation~10% 

Impact of rank of projection on tuning method 
Impact of prior error correction  
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Truth  

üMinimum rank of projection to obtain convergence scales with DOF of the inversionĄno need to 
compute all modes! 

üTuning of the prior error covariance provides significant improvement in the posterior solution. 

GOSAT methane inversion pseudo-experiment 



Conclusion 

Optimal projection with randomized SVD method has many applications: 

üFast optimization (walltime saving ~ 1-2 order magnitude). 

üInformation content analysisĄposterior diagnostics. 
üNon-linear inversion & data assimilation (e.g., ozone data assimilation): 

ÁOptimal model reduction for Markov Chain Monte Carlo (MCMC) Ą 
posterior sampling. 

ÁNew Randomized Incremental Optimal Technique (RIOT) for 
incremental 4D-VarĄalready implemented in WRF-DA, could be used 
with GEOS-Chem when tangent linear (TL) becomes available. 

Reference: Bousserez and Henze (in review for QJRMS, available on arXiv.org) 


