Human and animal wastes: Implications for atmospheric \(\text{N}_2\text{O}\) and \(\text{NO}_x\)

Michael B. McElroy and Yuxuan X. Wang

Department of Earth and Planetary Sciences, Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA

Received 10 December 2004; revised 4 February 2005; accepted 16 February 2005; published 15 April 2005.

[1] More than 220 Tg N are processed annually through the global agriculture/animal/human food chain. It is suggested that aerobic denitrification, reduction of nitrite formed in the first stage of nitrification, is an important source not only of global \(\text{N}_2\text{O}\) but also of \(\text{NO}_x\). A simple top-down method indicates a globally averaged yield of 2% for \(\text{N}_2\text{O}\) emitted as a consequence of human disturbances to the global nitrogen cycle. This yield can account not only for the contemporary budget of atmospheric \(\text{N}_2\text{O}\) but also for trends observed over the past 1000 years. The associated microbial source of \(\text{NO}_x\) is estimated assuming a \(\text{NO}_x/\text{N}_2\text{O}\) ratio of 3, consistent with results from a variety of laboratory and field studies. This source is significant, particularly for large developing countries such as China and India for which its contribution is comparable to that from fossil fuel.

1. Introduction

[2] World population is now 6.4 billion, projected to rise to more than 8 billion over the next 25 years [United Nations, 2003]. As we shall show, our species is responsible for mobilization of more than 220 TgN yr\(^{-1}\) today of which approximately 25 TgN yr\(^{-1}\) are ingested directly by humans with 120 TgN yr\(^{-1}\) processed by domestic animals and an additional 82 TgN yr\(^{-1}\) introduced to the environment in the form of chemical fertilizer. The inexorable rise in the abundance of atmospheric \(\text{N}_2\text{O}\) attests to the importance of the human influence on the global nitrogen cycle. We shall argue that bacterially mediated oxidation of ammonium processed through the agriculture/animal/human food chain is a major source not only of global \(\text{N}_2\text{O}\) but also of \(\text{NO}_x\). The \(\text{NO}_x\) source is particularly significant for developing countries, comparable in magnitude to the source from fossil fuel combustion for China and India.

[3] This \(\text{NO}_x\) source, we shall argue, is large enough to resolve the discrepancy between bottom-up estimates for emissions of \(\text{NO}_x\) from China reported by Streets et al. [2003] and values derived on the basis of inverse, top-down, methods by Wang et al. [2004a]. Streets et al. [2003] using the bottom-up approach, calculated a source of \(\text{NO}_x\) in 2000 for China of 3.3 TgN yr\(^{-1}\), contributed mainly by combustion of fossil and biofuels. Wang et al. [2004a] used a nested grid version of a global chemical transport model to analyze observations of CO and \(\text{NO}_x\) from a series of aircraft missions conducted over the western Pacific during the spring of 2001 [Jacob et al., 2003], in conjunction with ground based measurements from two stations in China, Hong Kong [Wang et al., 2003], and Lin An [Wang et al., 2004b]. Employing an optimal estimation inverse model, they concluded that emissions of CO and \(\text{NO}_x\) were underestimated in the Streets et al. [2003] inventory by 75% and 189%, respectively, for Central China [Wang et al., 2004a]. The discrepancy for CO has since been attributed to neglect of specific industrial sources in the original Streets et al. inventory (D. G. Streets et al., Revisiting China’s CO emissions after TRACE-P: Synthesis of inventories, atmospheric modeling, and observations, manuscript in preparation, 2005). The discrepancy for \(\text{NO}_x\), however, cannot be resolved by any reasonable adjustment of combustion sources given constraints imposed by simultaneous measurements of CO and \(\text{NO}_x\).

[4] A brief review of in situ and laboratory studies of microbial processes contributing to emissions of \(\text{N}_2\text{O}\) and \(\text{NO}_x\) is presented in section 2. Emissions of \(\text{N}_2\text{O}\) and \(\text{NO}_x\) associated with the agriculture/animal/human food chain are evaluated in section 3. We show that we can account for the contemporary rise in the abundance of atmospheric \(\text{N}_2\text{O}\) if 2% of nitrogen involved in this chain is converted to \(\text{N}_2\text{O}\). Assuming a yield of 6% for conversion of N to \(\text{NO}_x\), consistent with the laboratory and field data, we show that we can resolve the discrepancy between top-down and bottom-up estimates for emissions of \(\text{NO}_x\) from China highlighted by Wang et al. [2004a]. Trends in \(\text{N}_2\text{O}\) observed over the past 1000 years are discussed in section 4. Assuming a yield for conversion of N to \(\text{N}_2\text{O}\) identical to that adopted for the analysis of the contemporary budget, we show that we can account also for the long-term rise in
N₂O observed over the past 300 years. This lends support to the validity of the simple approach adopted here. Summary remarks are presented in section 5.

2. Microbial Processes

[5] N₂O and NOx (mainly NO) are produced both by nitrification and denitrification. The weight of the evidence suggests that nitrification dominates emissions of N₂O both for natural and perturbed environments. Elkins et al. [1978], using measurements of dissolved N₂O and O₂, inferred a yield of 0.3% N for N₂O (mol N-N₂O per mol N-NH₄⁺) produced by nitrification in the ocean under conditions where O₂ was close to equilibrium with the atmosphere. A similar yield was observed under high flow, high O₂, conditions in 1978 for a region of the Potomac River receiving large concentrations of N as NH₄⁺ from the sewage treatment plant at Blue Plains [McElroy et al., 1978]. In 1977, when flow rates were significantly lower and levels of O₂ notably depressed, the yield of N₂O was much higher, approaching 5% [McElroy et al., 1978]. The increase in production of N₂O by nitrifying organisms at low O₂ inferred from the Potomac data was confirmed subsequently by laboratory studies involving pure cultures of marine nitrifying bacteria. Goreau et al. [1980] measured a yield of N₂O of 0.3% at high O₂, rising to 10% when the concentration of O₂ was reduced to 0.5%. Lipschultz et al. [1981], studying cultures of the soil bacterium N. europaea, found evidence for production of not only N₂O but also NO during nitrification. Sources of both N₂O and NO increased at lower levels of O₂ with the ratio NO to N₂O (mol N to mol N) rising from 1.15 ± 0.15 to 5.1 ± 3 as the concentration of O₂ was reduced from 21% to 0.5% (v/v). Denitrification (reduction of NO₃⁻) can also contribute to production of N₂O. Net release to the atmosphere by this process is most likely minor, however, limited by the fact that denitrification can represent both a source and sink for N₂O. Elkins et al. [1978] observed high concentrations of N₂O in waters on the periphery of the anoxic zone associated with the major upwelling system in the eastern tropical Pacific off the coast of Peru. The concentration of N₂O was observed to drop to zero in the core of the anoxic zone. The principle end product of denitrification is N₂ rather than N₂O. Under conditions where N₂O may be produced by denitrification, it can also be consumed and net release to the atmosphere is most likely small in this case compared with the source from nitrification.

[6] The first stage of nitrification involves oxidation of NH₄⁺ to NO₂⁻ with NH₂OH formed as an intermediate. Remde and Conrad [1990] and Anderson et al. [1993] showed that N₂O and NO are produced by reduction of NO₂⁻ rather than as intermediates in the oxidation of either NH₄⁺ or NH₂OH, a process referred to as aerobic denitrification (or nitrifier denitrification) [Colliver and Stephenson, 2000; Wragge et al., 2001]. Bock et al. [1995], studying batch cultures of N. europaea and N. eutropha, demonstrated that both isolates use NH₄⁺ as an electron donor and that either O₂ or NO₂⁻ may be employed as an electron acceptor. The importance of NO₂⁻ in this context was shown to increase with reduction in O₂, providing a ready explanation for the enhanced yields of N₂O and NO observed at low levels of O₂ [Goreau et al., 1980; Lipschultz et al., 1981]. The ratio of NO to N₂O (mole N/mole N) is typically greater than 1 for aerobic denitrification and increases with decreasing levels of O₂, ranging from 1.15 to as high as 100 [Lipschultz et al., 1981; Remde and Conrad, 1990; Anderson and Levine, 1986; Kester et al., 1997].

3. Top-Down Budget of N₂O and NOx

[7] The concentration of atmospheric N₂O has risen over the past several centuries from about 270 ppb to 314 ppb [Butler et al., 1998]. Photolytic processes in the stratosphere provide the major sink for N₂O and the loss rate, corresponding to a lifetime of about 120 years, can be defined with considerable confidence [Volk et al., 1997]. Assuming a steady state balance of production and loss of N₂O in the pre-anthropogenic environment since the last interglacial period, as suggested by the ice core measurements [Sowers, 2001], the pre-anthropogenic source is estimated at 10.9 Tg N yr⁻¹.

[8] Accounting for the observed contemporary increase in the abundance of atmospheric N₂O (3.9 ± 0.9 Tg N yr⁻¹) [Butler et al., 1998] and the enhanced rate for removal at the higher concentrations of the gas prevailing today (12.7 Tg N yr⁻¹), we conclude that the global source of N₂O has risen now to a level of 16.6 Tg N yr⁻¹, an increase in emissions over the pre-anthropogenic background by as much as 52% or 5.7 Tg N yr⁻¹. A relatively small fraction of the additional N₂O can be attributed to industrial processes, about 1.3 ± 0.5 Tg N yr⁻¹ [Intergovernmental Panel on Climate Change (IPCC), 2001]. The balance, 4.4 Tg N yr⁻¹, is due most likely to bacterially mediated processes associated with disposal of N mobilized through the agriculture/animal/human food chain.

[9] The IPCC [1997] [see also Mosier et al., 1998] presented a detailed empirical methodology that could be employed to estimate agricultural emissions of N₂O. Their approach distinguishes between direct (induced by N input) and indirect (caused by leaching and running off of N) emissions of N₂O and suggests “default” yields for N₂O associated with various types of N inputs (e.g., synthesis fertilizer versus animal manures) and different animal waste management systems (e.g., anaerobic lagoon versus pasture range). Alternatively, process-oriented agroecosystems models driven by various basic environmental factors (such as temperature, soil moisture, pH, etc.) have been employed to simulate the nitrogen cycle and generate yield data [Li et al., 1992; Schmid et al., 2001]. The discrepancy between the two approaches [Li et al., 1996, 2001; Schmid et al., 2001] raises questions as to whether emission factors are known to a precision adequate to justify the level of complexity implicit in either method. Current understanding of aerobic denitrification suggests an important sensitivity of yields of N₂O and NO to environmental conditions, specifically to levels of ambient O₂. Yields are small for distributed wastes and large for concentrated wastes. Other variables and soil characteristics must also play an important role in determining the yield [Hall et al., 1996]. To circumvent lack of yield data for most of the world, we opt
Table 1. Sources of Nitrogen in the Agriculture/Animal/Human Food Chain for Year 2001 and Associated Emissions of N₂O and NOₓ\(^a\)

<table>
<thead>
<tr>
<th>Nitrogen Sources,(^b) TgN/yr</th>
<th>Chemical Fertilizer</th>
<th>Human Wastes</th>
<th>Animal Wastes</th>
<th>Total Nitrogen</th>
<th>Biological Sources of N₂O</th>
<th>Biological Sources of NOₓ, TgN/yr</th>
<th>Industrial Sources of NOₓ, TgN/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>82.3</td>
<td>24.6</td>
<td>119.5</td>
<td>226.4</td>
<td>4.53</td>
<td>2107.10</td>
<td>13.58</td>
</tr>
<tr>
<td>China</td>
<td>22.4</td>
<td>5.1</td>
<td>20</td>
<td>47.5</td>
<td>0.95</td>
<td>441.89</td>
<td>2.85</td>
</tr>
<tr>
<td>India</td>
<td>11.3</td>
<td>4</td>
<td>17.2</td>
<td>32.5</td>
<td>0.65</td>
<td>302.34</td>
<td>1.95</td>
</tr>
<tr>
<td>United States</td>
<td>10.9</td>
<td>1.4</td>
<td>9.9</td>
<td>22.2</td>
<td>0.44</td>
<td>204.66</td>
<td>1.33</td>
</tr>
<tr>
<td>European Union</td>
<td>9.1</td>
<td>1.9</td>
<td>11.2</td>
<td>22.2</td>
<td>0.44</td>
<td>204.66</td>
<td>1.33</td>
</tr>
<tr>
<td>Russia</td>
<td>1.1</td>
<td>0.7</td>
<td>2.3</td>
<td>4.1</td>
<td>0.08</td>
<td>37.21</td>
<td>0.25</td>
</tr>
<tr>
<td>Australia</td>
<td>1.1</td>
<td>0.1</td>
<td>4.2</td>
<td>5.4</td>
<td>0.11</td>
<td>51.17</td>
<td>0.32</td>
</tr>
<tr>
<td>Brazil</td>
<td>1.6</td>
<td>0.7</td>
<td>9.7</td>
<td>12</td>
<td>0.24</td>
<td>111.63</td>
<td>0.72</td>
</tr>
<tr>
<td>Indonesia</td>
<td>2</td>
<td>0.9</td>
<td>1.6</td>
<td>4.4</td>
<td>0.09</td>
<td>41.86</td>
<td>0.26</td>
</tr>
</tbody>
</table>

\(^a\)Industrial sources of NOₓ associated largely with transportation and power generation are shown for comparison. The industrial sources of NOₓ are taken from Intergovernmental Panel on Climate Change [2001], U.S. EPA [2004], Pacific Northwest National Laboratory Center for Energy Efficiency (National inventory of energy-related emissions of greenhouse gases in Russia, 2004, available at http://www.cenef.ru/info/Climate/natinventory.pdf), Streets et al. [2003], and Gugel and Ritter [2002]. Additional emissions of NOₓ are associated with seasonal burning of biomass, and this source may be particularly important for India, Russia, Brazil, and Indonesia.

\(^b\)The quantity of N processed annually through human and animal wastes is evaluated as the product of populations [FAO, 2004] and per capita excretion rate for N [IPCC, 1997]. Application rates of chemical fertilizer were taken from FAO [2004]. Refer to the text (section 3) for a detailed description of the data sources.

Table 2. Animal Populations and Corresponding Sources of Nitrogen for China, India, the United States, and the European Union in 2001\(^a\)

<table>
<thead>
<tr>
<th>Regions</th>
<th>Population/N Source</th>
<th>Cattle</th>
<th>Pig</th>
<th>Sheep and Goat</th>
<th>Poultry</th>
<th>Others</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>Population</td>
<td>128</td>
<td>450</td>
<td>280</td>
<td>4611</td>
<td>22</td>
<td>5491</td>
</tr>
<tr>
<td></td>
<td>N sources</td>
<td>5.8</td>
<td>7.2</td>
<td>3.4</td>
<td>2.8</td>
<td>0.9</td>
<td>20.0</td>
</tr>
<tr>
<td>India</td>
<td>Population</td>
<td>314</td>
<td>17</td>
<td>182</td>
<td>743</td>
<td>3</td>
<td>1259</td>
</tr>
<tr>
<td></td>
<td>N sources</td>
<td>14.1</td>
<td>0.3</td>
<td>2.2</td>
<td>0.4</td>
<td>0.1</td>
<td>17.2</td>
</tr>
<tr>
<td>United States</td>
<td>Population</td>
<td>97</td>
<td>59</td>
<td>8</td>
<td>1993</td>
<td>5</td>
<td>2162</td>
</tr>
<tr>
<td></td>
<td>N sources</td>
<td>7.3</td>
<td>1.2</td>
<td>0.1</td>
<td>1.2</td>
<td>0.1</td>
<td>9.9</td>
</tr>
<tr>
<td>European Union</td>
<td>Population</td>
<td>82</td>
<td>122</td>
<td>115</td>
<td>1191</td>
<td>3</td>
<td>1513</td>
</tr>
<tr>
<td></td>
<td>N sources</td>
<td>6.2</td>
<td>2.4</td>
<td>1.8</td>
<td>0.7</td>
<td>0.1</td>
<td>11.2</td>
</tr>
</tbody>
</table>

\(^a\)Units are millions for population and TgN yr⁻¹ for N sources.
Sherlock et al., 2002; Chang et al., 1998; Velthof et al., 2003), although the specific value adopted for this analysis is clearly not required by these data. As we shall see, this simple approach implies a source of 0.44 TgN-N2O yr\(^{-1}\) for the United States, slightly larger than the value estimated following the IPCC methodology by the U.S. Environmental Protection Agency (U.S. EPA) [2004] for direct emissions associated with the application of commercial and organic fertilizer to fields in the United States (0.33 TgN-N2O yr\(^{-1}\)) but less than the value reported for the overall contribution of U.S. agriculture to emissions of N2O (0.65 TgN-N2O yr\(^{-1}\)). The composite EPA result accounts not only for emissions prompted directly by the application of fertilizers to agricultural systems but also for emissions stimulated more indirectly by influences such as the cultivation of legumes, the disposal of crop residues and leachate from agriculture.

The influence of environmental and management factors on N2O and NO emissions from agricultural soils. Measurement data were log-transformed in their analysis to reduce the effect of extreme values and data from grazing systems were excluded due to lack of information on the N inputs from animal excreta. Their study suggested that the manure to agricultural soils, range from 4 to 21 TgN/yr [IPCC, 2001]. Combustion of fossil fuel was responsible for emission of 2794 Tg CO2 for China, 1072 Tg CO2 for India, 5606 Tg CO2 for the United States, and 3392 Tg CO2 for the EU in 2000 [Marland et al., 2003]. The results in Table 1 imply therefore that radiative forcing attributed to CO2 should be enhanced by 16%, 28%, 4%, and 6% for China, India, the United States, and the EU, respectively, to allow for the additional contribution from N2O.

The biological source of NOx from the agriculture/animal/human food chain is especially significant for developing countries, comparable in magnitude to the source from fossil fuel combustion for China and India. It is less important for developed regions such as the United States where contributions from fossil fuel combustion dominate. However, as efforts are made to reduce NOx emissions from combustion processes (including biomass burning) to mitigate problems associated with acid rain and ozone pollution, the biological source of NOx will inevitably grow in relative importance. Accounting for sources of NOx associated with combustion of fossil fuels, aggregated emissions of NOx from the United States and the EU in 2000–2001 amount to 7.4 TgN yr\(^{-1}\) and 4.3 TgN yr\(^{-1}\), which may be compared with emissions from China and India (including combustion sources) for which we compute values of 6 TgN yr\(^{-1}\) and 3.7 TgN yr\(^{-1}\), respectively.

Estimates for the associated emissions of N2O and NOx are included in Table 1. For N2O, we adopted the yield of 2% inferred from consideration of the global budget, as discussed above. For NOx we assumed a yield of 6% (i.e., NO/NO2 ratio of 3) consistent with the laboratory studies cited earlier for low oxygen conditions, in accord also with results from a variety of field studies [Clough et al., 2003; Shepherd et al., 1991; Slentm and Seiler, 1984; Gasche and Papen, 1999]. This choice was made on the grounds that O2 concentrations are likely to be low in environments receiving large inputs of concentrated animal waste and fertilizers and that they are likely also to be depressed under conditions applying to disposal of human waste in the developing world. Specifically, the yield of 6% for NOx is large enough to resolve the discrepancy between bottom-up estimates for emissions of NOx from Central China reported by Streets et al. [2003] and values derived using inverse, top-down, methods by Wang et al. [2004a]. The missing source of NOx identified by Wang et al. [2004a] for Central China was estimated at 1.1 TgN yr\(^{-1}\). Central China, as identified in their study, accounts for 30% of the Chinese population and approximately 30% of the country’s domestic animals. Using the yield of 6% for NOx, we would attribute a source of 0.9 TgN yr\(^{-1}\) to the agriculture/animal/human food chain in Central China, offering a plausible resolution to the discrepancy highlighted by Wang et al. [2004a].
NOx. Whether applied to agricultural lands or left “as is” on fields, animal wastes are susceptible to microbial processes with potential for production of important quantities of both NOx and N2O. Davidson and Kingerlee [1997], on the basis of a careful review of over 60 then-available papers reporting field measurements of soil NOx emissions, estimated a global source of 21 Tg N/yr for NOx emitted from soils. Their estimate suggested that tropical savanna was the largest contributor to this global budget, responsible for a source of 7.5 Tg N/yr as compared to their estimate of 5.4 Tg N/yr from cultivated land. Field measurements adopted in their study suggested large variation in fertility and hence NOx emissions within the savanna biome. It is not clear whether organic wastes from animals have contributed to fertility for this biome.

Galloway et al. [2004] constructed the global N budget for 1860 and the early 1990s. Their analysis did not evaluate the N mobilized by human and domestic animals as this N is not newly created by human activities. They estimated that agricultural soils were responsible for a global NOx source of 2.6 Tg N in 1993 with zero contribution from animal and human wastes.

4. Trends in N2O Emissions

Trends in N processed through the global agriculture/animal/human food chain will be evaluated here and used to reconstruct trends for N2O over the past 1000 years. Although agricultural practices began as early as 10,000 yr B.P., the sparse spatial scale of early agriculture implies that its impact on atmospheric N2O should be minimal. As we pointed out earlier, the yield of N2O is large for concentrated wastes resulting from settled communities of humans and animals with sufficient density. Therefore we do not think the conclusions reached by Ruddiman [2003] on a much earlier impact of agriculture on CO2 and CH4 will apply to N2O. The global source of N mobilized through the food chain between 1961 and 2001 was estimated directly using per capita annual excretion rates for humans and animals as described above adopting FAO databases [FAO, 2004] for human and animal populations and fertilizer use. For the period prior to 1961, not covered by the FAO databases, we adopted estimates of human population and fertilizer use for selected years as reported by the United Nations (UN) (The world at six billion, Table 1: World population from, 1999, available at http://www.un.org/esa/population/publications/sixbillion/sixbilpart1.pdf) and the International Fertilizer Industry Association (Production and international trade statistics, 2004, available at http://www.fertilizer.org/ifa/statistics/indicators/pocket_annexes.asp). Regional estimates of animal populations for the period 1850 to 1961 are taken from Mitchell [2003a, 2003b, 2003c]. Data were extrapolated linearly for years not covered by the sources listed above. Annual average per-capita excretion rates for humans were selected for different time intervals as follows: 3 kg N before 1800, 3.5 kg N between 1800 and 1900, and 4 kg N after 1900. These values were chosen somewhat arbitrarily to reflect the

![Figure 1. Amount of N processed through the agriculture/animal/human food chain for the periods (a) 1000–1850 and (b) 1850–2001.](image-url)
impact of the Industrial Revolution on worldwide human welfare. Excretion rates for different types of animals were scaled accordingly for the three time intervals. Lacking historical data on populations of different animal types for the period prior to 1850, animal wastes were evaluated indirectly by scaling contributions from humans as described below. Direct evaluations of animal wastes for the period 1850–1900 indicate that the scaling factor (i.e., the ratio of N in animal wastes to those in human wastes) has been relatively stable, ranging from 6.5 to 7.5. We assume that the scaling factor for the period prior to 1850 is close to the lower bound of this range. Accordingly, we adopt a scaling factor of 6 for the period prior to 1850.

Figure 1 presents a summary of the contributions to N processed through the global agriculture/animal/human food chain as estimated here for the past 1000 years. Chemical fertilizer was significant only after 1920. The source of N mobilized by the global food chain increases from 6.5 TgN/yr in 1000 to 31 TgN/yr in 1850, rising to 227 TgN/yr in 2001. Our analysis here does not include the contribution from the cultivation of legumes. The increase over the past 100 years is close to exponential. Associated emissions of N2O for the past 1000 years were estimated using the yield of 2% for N2O inferred from the contemporary global budget. Anthropogenic emissions of N2O increase from less than 0.5 TgN/yr before 1850 to 4.5 TgN/yr in 2001.

Estimates of emissions were adopted to calculate concentrations of atmospheric N2O using a one-box atmospheric model [Kroeze et al., 1999].

\[\frac{dC}{dt} = \frac{S}{4.8} - \frac{C}{\tau}, \]

where C defines the concentration of N2O (ppb), t is time (years), S defines emissions (Tg N/yr; 4.8 Tg N = 1 ppbv N2O), and \(\tau \) represents the lifetime for N2O (years), fixed here at 120 years. Emissions (S) allow for both natural and anthropogenic sources of N2O. We assumed a time-independent natural source of 10.9 TgN yr\(^{-1}\) for N2O (see section 3). The industrial source of N2O reflects contributions from adipic acid and nitric acid production, fossil fuel fired power plants, and mobile combustion, adding up to about 1.3 TgN yr\(^{-1}\) in 2000. The trend in the industrial source with time was assumed to be the same as that for fertilizer. Results are relatively insensitive to this assumption.

Concentrations of N2O calculated using the one-box model are compared with observations in Figure 2. The concentration of N2O was set equal to 265 ppbv in 1000, as suggested by ice core measurements [Sowers et al., 2003]. Concentrations simulated for the entire period are in good agreement with observed trends, offering support for the simple approach adopted here to estimate the source of N2O associated with the agriculture/animal/human food chain.

5. Concluding Remarks

The agriculture/animal/human food chain processed approximately 227 Tg N in 2001, with over 50% contributed by animals. We assumed that reduction of nitrite by nitrifying organisms under low oxygen conditions provided the dominant anthropogenic source of N2O. We presented a simple, global, top-down model which implied a global average yield of 2% for N2O produced from N processed through the global food chain. We showed that this simple model can account not only for the contemporary budget of atmospheric N2O but also for trends observed over the past 1000 years.
[21] Microbial reduction of NO2 is responsible also for an important source of NOx. We assumed a yield of 6% for NOx formed by this path, 3 times larger than that inferred for N2O, consistent with both laboratory and in situ field observations under low oxygen conditions. The yield for NOx was selected specifically to resolve the discrepancy between “bottom-up” and “top-down” estimates for the source of NOx over Central China, as highlighted by Wang et al. (2004a).

[22] It is clear that further work will be required to refine our understanding of global sources of N2O and NOx. The yield for NOx adopted here was selected specifically to account for observations taken in and near China over the March–April time frame in 2001. Rates for nitrification might be expected to increase with temperature. The response of N2O and NOx production to a change in temperature is however less clear. As indicated above, the yield of N2O and NOx from nitrification is expected to depend on the relative abundances of NO2 and O2 for the medium in which decomposition is taking place. It is difficult to predict how this ratio should vary with temperature. Further work, both in the laboratory and field, should help clarify this issue.

[23] There can be little doubt, however, that emissions of N2O and NOx are significant both regionally and globally and that they may be expected to increase in the future. Humans have evolved from relatively passive participants on the stage of life to a position of dominance in the global nitrogen cycle, as is the case also for the carbon cycle and arguably further for S and P. It is unlikely that our influence will soon be diminished.

[24] Acknowledgments. This research was supported by the V. Kann Rasmussen Foundation and the Henry Luce Foundation, as part of the China Project of the Harvard University Centre for the Environment. It was also supported by the National Science Foundation, grant ATM-0236561.

References

National Research Council Committee on Nitrate Accumulation (1972), *Accumulation of Nitrate*, Natl. Acad. of Sci., Washington, D. C.

Sowers, T., R. B. Alley, and J. Juvonen (2003), Ice core records of atmospheric N$_2$O covering the last 106,000 years, *Science*, 301, 945–948.

M. B. McElroy and Y. X. Wang, Department of Earth and Planetary Sciences, Division of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Pierce Hall, Cambridge, MA 02138, USA.

(mbm@io.harvard.edu)
Figure 2. Comparison between observed (red symbols) and simulated (black line) atmospheric concentrations of N$_2$O for the period 1000–2001. Observations are taken from ice core measurements from GISP II [Sowers et al., 2003], Eurocore and GRIP [Flückiger et al., 2000], the Climate Monitoring and Diagnostics Laboratory (CMDL), and composite data set from Hansen et al. [1998].