Air-snow exchange of HNO₃ and NO_v at Summit, Greenland Dibb, J.E., R.W. Talbot, J.W. Munger, D.J. Jacob, and S.-M. Fan J. Geophys. Res., 103, 3475-3486, 1998 ## **Abstract** Ice core records of NO₃⁻ to polar glaciers could provide unrivaled information on past photochemical status and N cycling dynamics of the troposphere, if the ice core records could be inverted to yield concentrations of reactive N oxides in the atmosphere at past times. Limited previous investigations at Summit, Greenland, have suggested that this inversion may be difficult, since the levels of HNO₃ and aerosol-associated NO₃ over the snow are very low in comparison with those of NO₃ in the snow. In addition, it appears that some fraction of the NO₃⁻ in snow may be re-emitted to the atmosphere after deposition. Here we report on extensive measurements of HNO₃, including vertical gradients between 1.5m and 7 m above the snow, made during the summers of 1994 and 1995 at Summit. These HNO₃ data are compared with NO3⁻ concentrations in surface snow and the first measurements of the concentrations and fluxes of total reactive nitrogen oxides (NO_y) on a polar glacier. Our results confirm that HNO_3 concentrations are quite low (mean 0.5 nmol m⁻³) during the summer while NO₃⁻ is the dominant ion in snow. Daytime peaks in HNO₃ appear to be due at least partly to emissions from the snow, an assertion supported by gradients indicating a surface source for HNO₃ on many days. Observed short-term increases in NO₃ inventory in the snow can be too large to be readily attributed to deposition of HNO₃, suggesting that deposition of one or more other N oxides must be considered. We found that the apparent fluxes of HNO3 and NOv were in opposite directions during about half of the intervals when both were measured, with more cases of HNO3 leaving the snow, against a NO_v flux into the snow, than the reverse. The concentrations of NO_v are generally about 2 orders of magnitude greater than those of HNO₃, hence deposition of only a small non-HNO₃ fraction of this pool could dominate NO₃⁻ in snow, if the depositing species converted to NO₃⁻, either in the snowpack or upon melting for analysis.