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Abstract

We investigate the present-day sensitivity of fine dust levels in the US Southwest to regional drought
conditions and use the observed relationships to assess future changes in fine dust levels and
associated health impacts under climate change. Empirical Orthogonal Function analysis reveals that
the most dominant mode of fine dust interannual variability for each season consists of a pattern of
large-scale co-variability across the Southwest. This mode is strongly correlated to the Standardized
Precipitation-Evapotranspiration Index (SPEI) accumulated over 1-6 months in local and
surrounding regions spanning the major North American deserts. Across the seasons, a unit decrease
in the 2 month SPEI averaged over the US Southwest and northern Mexico is significantly associated
with increases in Southwest fine dust of 0.22-0.43 ug m™3. We apply these sensitivities to statistically
downscaled meteorological output from 22 climate models following two Representative
Concentration Pathways (RCPs), and project future increases in seasonal mean fine dust of
0.04-0.10 ugm~> (5%—-8%) under RCP2.6 and 0.15-0.55 g m~> (26%—46%) under RCP8.5 relative
to the present-day (2076—2095 vs. 1996-2015). Combined with the same projections of future
population and baseline incidence rates, annual premature mortality attributable to fine dust
exposure could increase by 140 (24%) deaths under RCP2.6 and 750 (130%) deaths under RCP8.5
for adults aged >30 years, and annual hospitalizations due to cardiovascular and respiratory illnesses
could increase by 170 (59%) admissions under RCP2.6 and 860 (300%) admissions under RCP8.5 for
adults aged >65 years in the Southwest relative to the present-day. Our results highlight a climate
penalty that has important socioeconomic and policy implications for the US Southwest but is not yet
widely recognized.

Introduction Sonoran) have been identified as major dust sources

for the Southwest [2-5]. Changes in dust activity in

Fine mineral dust, defined here as soil-derived particu-
late matter smaller than 2.5 gm aerodynamic diameter
(PM, 5), is a significant component of PM, s air pol-
lution and visibility reduction in the southwestern
US due to abundant wind-erodible dryland surfaces.
At peak concentrations in the spring, fine dust can
contribute up to 50% to total PM, 5 [1]. The south-
ern Great Plains, the Colorado Plateau, and the
North American Deserts (Chihuahuan, Mojave, and

the Southwest over the recent and historical past have
been associated with hydroclimate variability and
human land disturbance [6-9]. A robust result across
climate models is a shift toward warmer and drier con-
ditions in southwestern North America in response
to strong greenhouse gas forcing, most likely due to
general drying of the subtropics and poleward expan-
sion of subtropical dry zones [10-13]. Indeed, multiple
studies estimate severe drought conditions for the

© 2018 The Author(s). Published by IOP Publishing Ltd


https://doi.org/10.1088/1748-9326/aabf20
https://orcid.org/0000-0001-8724-5411
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/aabf20&domain=pdf&date_stamp=2016-03-30
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
mailto:pachakulwisut@gwu.edu
https://doi.org/10.1088/1748-9326/aabf20

10P Publishing

Environ. Res. Lett. 13 (2018) 054025

Southwest towards the end of this century due to
climate change [10, 14-16]. However, the extent to
which such increases in aridity could impact airborne
levels of dust has not been quantified, but would
significantly contribute to improving our understand-
ing of the climate impacts on PM, s in the United
States [17].

Model studies that have previously investigated
the future response of global atmospheric dust to cli-
mate change yielded contradictory results, leading to
a ‘low confidence’ of such projections according to
the IPCC ARS5 classification [18]. For example, Wood-
ward et al found a tripling of the global dust loading
in 2100 relative to present-day due to large increases
in bare soil [19], whereas Mahowald et al found a
60% decrease under a doubled-CO, concentration
scenario due to the effect of CO, fertilization on veg-
etation [20]. These discrepancies are in large part due
to uncertainties in the response of vegetation cover to
greenhouse gas forcing [21], and to challenges in cap-
turing dust mobilization and transport in 3D dynamical
models [22]. For example, accurate representation
of sub-grid surface winds and of surface roughness,
soil moisture, and soil composition are important
in simulating dust fluxes but remain a challenge to
achieve in models [23-25].

The linkages between PM, 5 exposure and adverse
human health effects, ranging from cardiovascular
and pulmonary illnesses to premature mortality, are
well-documented by numerous epidemiological stud-
ies [26—30]. Fann et al estimated that US PM, 5 levelsin
2005 led to 130 000 premature deaths nationwide that
year [31]. Although the potency and health outcomes
of specific PM, s components remain poorly differ-
entiated [32, 33], evidence suggests that soil-derived
particles contribute to the adverse health effects of
PM, 5 [34, 35]. For example, Crooks et al found that
dust storms in the United States were associated with
an increase of ~3% in daily non-accidental mortal-
ity over a lag period of 0-5 days between 1993 and
2005 [36]. Meng and Lu reported that dust events
in China led to an increased relative risk of hospi-
talization for respiratory and cardiovascular diseases
by ~1% [37]. In an in vitro toxicology study, Ver-
anth et al found that dust collected from certain sites
in the western US induced cellular respiratory injury
[38]. Silica, which makes up ~60% of windblown
dust from desert regions [39], is known to cause
chronic lung inflammation and fibrosis, lung cancer,
and systemic autoimmune diseases [40, 41].

Despite these concerns, few studies have exam-
ined the impacts on air quality and public health
of the projected hydroclimate changes in the south-
western United States. Wang et al estimated that due
to changes in local drought severity alone, March—
October levels of surface PM, s, including fine dust,
could increase by 1%-16% in the US in 2100
compared to the 2000s under three different Repre-
sentative Concentration Pathways (RCP2.6, RCP4.5,
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and RCP8.5) [42]. These authors also found that
four models participating in the Atmospheric Chem-
istry and Climate Model Intercomparison Project
(ACCMIP) failed to reproduce observed responses
of atmospheric PM, 5 to drought occurrences in the
present-day. Conversely, Pu and Ginoux [43] esti-
mated that the springtime frequency of extreme dust
events in the Southwest would decrease by ~2% in the
future (2051-2100) under RCP8.5 compared to histor-
ical levels (1861-2005), driven by reductions in surface
bareness and wind speeds.

In a previous study, we found that fine dust inter-
annual variability across the western US during the
spring months of 2002-2015 display large-scale spa-
tiotemporal behaviors associated with fluctuations in
regional hydroclimate and trans-Pacific transport of
Asian dust, which are in turn partially influenced by
the El Nifio-Southern Oscillation (ENSO) and Pacific
Decadal Oscillation (PDO) [9]. In this study, we explore
the sensitivity to drought conditions in all seasons
and use the observed relationships to estimate future
changes in fine dust during the late-21st century,
using statistically downscaled meteorological output
from 22 models participating in the Coupled Model
Intercomparison Project Phase 5 (CMIP5) following
RCP2.6 (low-emissions) and RCP8.5 (high-emissions)
scenarios. This approach, in which observed rela-
tionships of dust and drought are applied to future
climate projections, is not dependent on the ability of
any given climate model to capture the relevant dust
processes and provides an observational foundation
for rapid assessment of future dust activity under a
range of climate change scenarios. Our approach is
similar to previous studies that have explored future
changes in surface ozone [42, 43], total PM, 5 [44—
46], and wildfire activity [47] in the United States.
We focus solely on the effects of droughts because the
general warming and drying of southwestern North
America under future climate change appears to be a
robust response across climate models, whereas large
uncertainties remain in the projections of other poten-
tial controlling factors such as vegetation cover [21],
ENSO and PDO [48], and surface wind fields [24].
Together with projections of future population and
baseline incidence rates, and results from epidemio-
logical studies of health risks due to PM, 5 exposure,
we also estimate the excess premature mortality
and morbidity associated with the projected changes
in annual mean fine dust.

Data and methods

We provide here a brief overview of data and
methods used; detailed descriptions are provided
in the supplementary information available at
stacks.iop.org/ERL/13/054025/mmedia. Throughout
this study, we use p < 0.05 as the threshold for statistical
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Figure 1. Relationships between detrended and deseasonalized monthly mean fine dust, the 2 month Standardized Precipitation-
Evapotranspiration Index (SPEI02), and 500 mb geopotential heights for different seasons from 2000-2015. Top row panels: The 1st
EOF (EOF1) loadings of standardized anomalies of fine dust concentrations measured at IMPROVE sites located in the southwestern
United States (31°—41°N, 115°~103°W). The percentage of total variance explained by each EOF1 is displayed inset. Middle row
panels: The heterogeneous correlation maps between the time series of the principal components of the 1st EOF mode (PC1) and
SPEI02 anomalies. SPEI02 is representative of soil moisture. Black boxes outline the domain used to calculate regional mean SPEI02 in
subsequent analyses. Bottom row panels: The heterogeneous correlation maps between PC1 and 500 mb geopotential height anomalies.
In the middle- and bottom-row panels, only those grid cells with statistically significant correlations (p < 0.05) are shown.

significance. We define 1996-2015 as our present-day
period, and 2076-2095 as the future.

We rely on ground-based measurements from
the Interagency Monitoring of Protected Visual Envi-
ronments (IMPROVE) network to calculate surface
fine dust concentrations in the southwestern US
(defined here as 31°-41°N, 115°~103°W; spanning
Arizona, Colorado, New Mexico, and Utah) [49]. We
use the iron content of PM, s as a fine dust proxy, fol-
lowing the approach first proposed by Hand et al [7]
and subsequently updated by Achakulwisut et al [9],
to calculate monthly mean fine dust concentrations.
The locations of the 35 selected sites are shown in
figure 1. Due to the relative lack of IMPROVE data
before 2000, the present-day period over which we
quantify the relationships between dust and drought
is restricted to 2000-2015.

We first examine the dominant spatial pat-
terns of fine dust interannual variability across the
US Southwest and its correlations to drought and
other meteorological variables over western North
America (15°-50°N, 125°-85°W) using Empirical
Orthogonal Function (EOF) analysis. We use the
gridded 0.5° % 0.5° global monthly mean Standard-

ized Precipitation-Evapotranspiration Index (SPEIL,
v2.5) from the Spanish National Research Council
as a drought proxy [50, 51]. The SPEI uses gridded
0.5° X 0.5° precipitation and potential evapotranspi-
ration values from the Climatic Research Unit of
the University of East Anglia (CRU TS dataset
version 3.24.01) to determine the water balance,
which can be aggregated over different timescales to
monitor drought conditions in different hydrologic
sub-systems, compared to a reference period of 1950—
2010. The gridded CRU TS dataset is constructed
from monthly observations at meteorological stations
across global land areas (~440 of which are located in
western North America) [52]. Drought classification
based on the SPEI is shown in table S1. We consider
SPEI values calculated over 1, 2, 3, 6, 12, 24, and
48 months. We chose the SPEI over other common
drought indices, the self-calibrating Palmer Drought
Severity Index (SC-PDSI) and the Standardized Pre-
cipitation Index (SPI), because the SC-PDSI lacks a
multi-timescale feature and the SPI only considers
the effects of precipitation, which may underesti-
mate the risk of future droughts in the southwestern
United States [15]. In addition, we use surface tem-
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perature, precipitation, potential evaporation, relative
humidity, wind speed, vegetation, and 500 mb geopo-
tential heights from the North American Regional
Reanalysis (NARR) [53].

Next, we quantify the sensitivity of the anoma-
lies in seasonal mean fine dust averaged over the
Southwest domain to seasonal mean two month SPEI
(SPEI02) anomalies averaged over regions display-
ing the strongest correlations using simple linear
regression. To assess whether the linear sensitiv-
ities are statistically different from zero, a 95%
confidence interval for the regression coefficients
are calculated using the two-tailed Student’s #-test
and by bootstrap resampling with 10000 repli-
cates and the bias-corrected and accelerated (BCa)
confidence interval method [54].

To calculate future changes in drought conditions,
we use meteorological output from an ensemble of 22
CMIP5 climate models (table S2) following the his-
torical and two future scenarios, RCP2.6 and RCP8.5
[55]. These RCPs represent the lower and upper lim-
its of the projected radiative forcing values by 2100
used in the Fifth Assessment Report of the Inter-
governmental Panel on Climate Change. RCP2.6 is
characterized by a ‘peak-and-decline’ mitigation sce-
nario, whereas RCP8.5 is characterized by increasing
greenhouse gas emissions over time [56]. In order to
capture regional-scale hydroclimate impacts, we use
the gridded 12 x 12 km temperature and precipitation
from the bias-corrected and spatially-disaggregated
CMIP5 Climate and Hydrology Projections (BCSD5),
as the coarse-grid CMIP5 models cannot reproduce
the mean and standard deviation of monthly mean
surface temperature and total precipitation averaged
over the Southwest for 1996-2015 (figure S1) [57].
We use the R package ‘SPEI’ (version 1.7) to cal-
culate SPEI from the monthly mean daily maximum
and minimum temperature and total precipitation,
using 1950-2010 as the reference period as in the
SPEI global database, and the Modified-Hargreaves
equation to model potential evapotranspiration (PET)
[51]. The widely used FAO Penman-Monteith PET
equation requires additional variables not available
from the BCSD5 archive, and Droogers and Allen
[58] demonstrated that the Modified-Hargreaves
is a robust alternative.

Since there is presently insufficient information
to determine the specific health effects of fine dust
exposure [32, 33], we approximate the health bur-
den due to the projected changes in fine dust using
well-documented results from epidemiological studies
based on total PM, 5. Estimating premature mortality
and morbidity attributable to PM, 5 exposure requires
knowledge of Concentration-Response (C-R) Func-
tions, which are empirically derived from cohort studies
and are typically based on a log-linear relationship
between relative risk (RR) and pollutant concentration
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[31, 59, 60]:

AM, =y, X (1—e PP x P, (1)

where 1 denotes the all-cause or cause-specific health
endpoint, AM is the excess or avoided mortality or
morbidity, y, is the baseline incidence rate, f is the
C-R coefficient relating a one-unit change in PM, 5
to the change in a given health endpoint, Ax is the
change in PM, 5 concentration, and P is the exposed
population. Annual mean concentration is the standard
metric for assessing health effects from chronic PM, s
exposure. In this study, Ax is defined as the change
in annual mean fine dust in 20762095 under RCP2.6
or RCP8.5 relative to 1996-2015. In order to evaluate
the health impacts due to future changes in fine dust
alone and by the combined effects of future changes
in fine dust, population, and baseline incidence rates,
we calculate AM using two different assumptions for
each RCP scenario: (1) holding population and base-
line incidence rates at the present-day level; and (2)
using 2095 population and baseline incidence rates.
We also estimate the premature mortality and mor-
bidity due to present-day levels of annual mean fine
dust relative to zero concentrations as a benchmark
against which future excess mortality or morbidity can
be compared. The 95% confidence intervals reported
are derived using low, central, and high estimates for
each RR value. The health endpoints assessed in this
study are (1) total all-cause mortality and two sub-
groups (cardiopulmonary disease and lung cancer),
and (2) hospitalizations due to cardiovascular and res-
piratory disorders. Table S3 summarizes the health
endpoints, epidemiological studies, and risk estimates
used in this study. Final present-day and future baseline
incidence rates are shown in table S4. Final population
estimates are shown in table S5.

Results

Present-day sensitivity of fine dust to regional hydro-
climate on interannual timescales

EOF analysis reveals that from 2000-2015, the most
dominant mode of variability (EOF1) in monthly mean
fine dust anomalies for each of the four seasons cap-
tures 40%—53% of the total interannual variance and
consists of a pattern of in-phase co-variability across
almost all of the 35 IMPROVE monitoring sites in
Arizona, Colorado, New Mexico, and Utah (figure 1,
top row). This pattern is indicative of large-scale influ-
ence by controlling factors and/or source emissions.
The principal component time series associated with
each EOF1 (PC1) is significantly negatively correlated,
to varying extents, to the 1, 2, 3, 6, and 12 month
SPEI in local and surrounding areas spanning north-
ern Mexico, southern California, and southern Great
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Plains. These areas partially encompass the Great Basin,
Mohave, Sonoran, and Chihuahuan Deserts. The cor-
relation maps between fine dust PC1 and SPEI02 are
shown in figure 1 (middle Row); figure S2 displays
the same for SPEI calculated on the other timescales.
Less extensive negative correlations are found for the
24 month SPEI for all seasons except DJF; 48 month
SPEI shows correlations with fine dust for JJA only (not
shown). Short time scales of the SPEI (1-6 months)
are mainly related to soil water content, medium time
scales to reservoir storage, and longer time-scales to
groundwater storage [61, 62].

In addition, for all seasons, PC1 is significantly
positively correlated to anomalies in the 500 mb
geopotential heights positioned over the west coast
of California and northern Mexico (figure 1, bottom
row). These results indicate that years with higher-than-
average fine dust concentrations across the Southwest
are associated with regional drought conditions, which
in turn are driven by large-scale anticyclonic atmo-
spheric circulations in the mid-troposphere that can
block or reduce moisture transport from the Pacific
Ocean and/or the Gulf of Mexico. Our results are
consistent with previous findings that have found
associations between droughts in western North Amer-
ica and persistent blocking highs, which influence
temperature, precipitation, and storm tracks [63—65].
In addition, Pu and Ginoux [66] found that sum-
mertime dusty days in the central Great Plains are
associated with a westward extension of the North
Atlantic subtropical high that intensifies surface wind
speed and creates anomalous subsidence. While PC1
displays significant and extensive correlations with
SPEI and other hydroclimate variables (precipita-
tion, potential evaporation, and relative humidity;
Figure S3), we find no significant correlations with
surface vegetation or wind speed.

To summarize, we find that during each season,
fine dust anomalies co-vary across almost all sites
in the Southwest domain and that these anomalies
show spatially extensive correlations with 1-6 month
SPEI anomalies. These findings allow us to derive
linear sensitivities of fine dust to drought conditions
using regional and seasonal averages. Because SPEI02
displays the most spatially extensive and strongest
correlations across all seasons, we focus on SPEI02
in subsequent analyses. The SPEI accumulated over
short timescales (1-6 months) is often used as a
proxy for soil moisture [62, 67]. Comparing SPEI02
to a record of 2000-2014 monthly mean soil mois-
ture measured at two sites located in Arizona and
New Mexico from the Soil Climate Analysis Net-
work (SCAN), we find significant correlations between
SPEI0O2 and observed soil moisture at 5, 10, and 20
cm depths (r = 0.4-0.59; figure S4). The domains
over which the strongest correlations between PC1
and SPEI02 are observed for different seasons are all
within the region of 25°—41°N and 117°-102°W, and
spans the US Southwest and northern Mexico (here-
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Table 1. Sensitivity of seasonal mean fine dust (FD) to SPEI02
anomalies. Fine dust anomalies are averaged over the Southwest
domain (units of g m~3); SPEI02 anomalies are averaged over
different domains within 25°—41°N and 117°-102°W for each season
(see figure 1). The 95% confidence interval (CI) of the slope value is
calculated by bootstrap resampling.

Season Linear Regression fit 95% CI of slope R?

DJF FD = —0.22 x SPEI02 -0.12, =0.33 0.71
MAM FD = —0.43 X SPE102—-0.01 —0.28, —0.61 0.67
JJA FD = —0.39 x SPEI02 —0.18, =0.76 0.39
SON FD = —0.24 x SPEI02 —0.13, =0.35 0.55

after ‘SWM’; outlined by black boxes in figure 1, middle
row). Using simple linear regression, we find that a
unit decrease in SPEIO02 is significantly associated with
increases of 0.22-0.43 ygm™> in seasonal mean fine
dust, depending on the season. These regression fits
capture 39%-71% of the interannual variability in sea-
sonal mean fine dust anomalies (table 1 and figure
S5).

Multi-model ensemble projections of fine dust
changes associated with drought conditions in the
late-21st century

In the present-day, seasonal mean SPEI02 averaged
over the SWM domainare —0.12 (DJF), —0.15 (MAM),
—0.05 (JJA), and 0.09 (SON). Under RCP2.6, the pro-
jected multi-model mean decreases are —0.21 (DJF),
—0.18 (MAM), —0.26 (JJA), and —0.17 (SON), with
5-8 models predicting significant decreases, depending
on the season. Under RCP8.5, the projected multi-
model mean decreases are —0.67 (DJF), —1.15 (MAM),
—1.41 (JJA), and —0.87 (SON), with 17-22 mod-
els predicting significant decrease, depending on the
season. These estimates indicate that the spring and
summer seasons will experience long-term, anomalous
‘moderately dry’ conditions according to the drought
classification of SPEI values (table S1). For all sea-
sons under both RCP scenarios, the multi-model mean
changes in SPEI02 are significantly different from zero
(figure S6). We find that future changes in the land sur-
face water balance in southwestern regions are mainly
driven by changes in surface temperature rather than
precipitation (figures S7-S8), which is consistent with
previous studies [15, 68].

We project future drought-driven changes in
seasonal mean fine dust assuming that the empirically-
derived linear relationships between Southwest fine
dust and SWM SPEI02 in the present-day remain the
same in the future. Results are shown in figure 2 and
table 2. Depending on the season, we estimate increases
in Southwest fine dust of 0.04-0.10 ugm™> under
RCP2.6 and 0.15-0.55 gugm~3 under RCP8.5. For all
seasons under both RCP scenarios, the multi-model
mean changes in fine dust are significantly different
from zero. For both scenarios, the largest increases
occur in spring and summer during which Southwest
fine dust concentrations are highest in the present-day.
Compared to present-day observed fine dust concen-
trations, these values represent relative increases of
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5%—8% for RCP2.6 and 26%—46% for RCP8.5 across
the four seasons.

Estimates of public health impacts due to projected
changes in fine dust

From the projected seasonal mean changes in fine
dust, we calculate annual mean changes of 0.07 ug m™3
under RCP2.6 and 0.35 ug m™> under RCP8.5. Table
3 shows the number of excess premature mortality
(all-cause, cardiopulmonary, and lung cancer) and
morbidity (cardiovascular and respiratory) due to
the projected changes in annual mean fine dust for
the US Southwest population per year. In Estimate
#1, for which the population and baseline incidence
rates are held at present-day values, the predicted
excess all-cause premature mortality rates for adults
aged >30 years are 39 (95% CI: 26-51) deaths y~!
under RCP2.6 and 200 (140-270) deaths y_1 under
RCP8.5. Cardiopulmonary-related deaths constitute
a large fraction of all-cause premature mortality. In
terms of total excess hospitalization rates due to car-
diovascular and respiratory illnesses for adults aged
>65 years, we predict 20 (12—26) admissions y~!
under RCP2.6 and 100 (64-140) admissions y~!
under RCP8.5.

In Estimate #2, we consider the combined effects
of future changes in fine dust, population, and base-
line incidence rates. The resulting excess all-cause
premature mortality rates are 140 (96-190) deaths
y~! under RCP2.6 and 750 (500-980) deaths y~!
under RCP8.5. The excess hospitalization rates are
170 (110-140) admissions y~! under RCP2.6 and 860
(550—1200) admissions y~! under RCP8.5. The larger
excess in estimate #2 for all health endpoints are pri-
marily driven by projected increases in population
and baseline incidence rates. Age-standardized baseline
incidence rates are projected to increase by 170%-—
230%, primarily driven by increases in the fraction
of the total population of older age groups (tables
§5-57). The US Southwest population is projected
to increase by 180% for adults aged >30 years and
by 380% for adults aged >65 years. Compared to
present-day observed fine dust concentrations, the
annual mean values increase by 7% under RCP2.6 and
by 34% under RCP8.5 (table 2).

In all instances, the magnitude of excess prema-
ture mortality or morbidity is ~5 times greater under
RCP8.5 relative to RCP2.6. For context, table 3 also
provides estimates of the premature mortality and
morbidity due to present-day levels of annual mean
fine dust relative to zero concentrations. Compared
to the present-day, projected changes in fine dust
alone could lead to annual all-cause mortality and total
morbidity to each increase by ~7% under RCP2.6
and ~30% under RCP8.5. Combined with future
growths in population and baseline incidence rates,
the annual all-cause premature mortality attributable
to fine dust could potentially increase by ~20%
under RCP2.6 and ~130% under RCP8.5, and annual
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morbidity could increase by ~60% under RCP2.6 and
~300% under RCP8.5.

Discussion and conclusions

This study quantifies the impacts of hydroclimate
changes on airborne fine dust pollution and pub-
lic health risks in the US Southwest during the
late-21st century (2076-2095) under two climate
change regimes. We demonstrate that the 2000-2015
interannual variability of monthly mean fine dust con-
centrations across the southwestern United States is
influenced by drought conditions in local and sur-
rounding areas, including large regions of the four
North American deserts. Based on empirically-derived
relationships between fine dust and the 2 month
Standardized Precipitation Evapotranspiration Index
(SPEI02) anomalies, we project future drought-driven
increases in seasonal mean fine dust of 0.04-0.1 yg m™>
(5%—-8%) under RCP2.6 and 0.15-0.55 ug m™3 (26%—
46%) under RCP8.5. The largest absolute increases
coincide with the seasons during which fine dust
concentrations are highest in the present-day (spring
and summer). Taking future population and base-
line incidence rates into account, these increases in
fine dust could lead to 140 (24%, RCP2.6) or 750
(130%, RCP8.5) excess all-cause premature deaths
each year for adults aged >30 years in the Southwest,
and 170 (59%, RCP2.6) or 860 (300%, RCP8.5) excess
hospital admissions due to cardiovascular and respi-
ratory illnesses each year for adults aged >65 years,
relative to the present-day. Our results further sug-
gest that the incidence of dust-borne diseases such
as Valley Fever could also increase in the US South-
west. Despite the spread of model projections in future
changes in precipitation, averaging results across the
CMIP5 ensemble reveals a robust increase in tem-
perature and subsequent decrease in soil moisture
in response to increasing greenhouse gases, giving us
confidence in our main results.

The negative correlations between fine dust and
SPEIO2 observed in this study are consistent with
numerous wind tunnel experiments and observational
studies that have examined the effects of soil mois-
ture on wind erosion, demonstrating that the threshold
wind speed increases with soil moisture [69-71]. More-
over, the drying of surface water bodies has been
linked to increased dust emissions in many locations
globally [72, 73]. Many local-scale studies in the US
Southwest have reported the influence of antecedent
precipitation, temperature, and/or soil moisture on
wind erosion through controlling vegetation cover
and soil stability [74-77]. These physical mecha-
nisms linking soil moisture to dust emissions give
us confidence in assuming that this relationship will
remain valid in the future.

Using observed correlations between present-day
PM, 5 and local drought severity (derived from the 1
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Figure 2. Projected changes in future (2076-2095) seasonal mean fine dust averaged over the Southwest relative to the present day
(1996-2015) under RCP2.6 and RCP8.5 scenarios due to changes in the drought index, SPEI02. Different colored symbols denote
results from different CMIP5 models, and the thick horizontal black lines show the multi-model means. The multi-model mean values
for each season and scenario are all statistically significant, as determined by a Student’s t-test (p < 0.05).

Table 2. Present-day (2000-2015) observations of and ensemble projections of future (2076-2095) changes in seasonal and annual mean fine
dust (FD) concentrations averaged over the US Southwest. Values in parentheses show percentage increases relative to present-day values.

Season Present-day FD (ug m3)2 AFD (ug m~3) RCP2.6" AFD (ug m~3) RCP8.5°
DJF 0.56 +0.17 0.04 +0.05 (7%) 0.15+0.09 (27%)
MAM 1.51 +0.30 0.08 +£0.10 (5%) 0.49+0.13 (32%)
JJA 1.19+0.22 0.10+0.11 (8%) 0.55+0.21 (46%)
SON 0.80 +0.18 0.04 +0.05 (5%) 0.21+0.10 (26%)
Annual 1.02+0.22 0.07 £0.04 (7%) 0.35+0.07 (34%)

? Values are shown as + o, where is the long-term average and o is the corresponding standard deviation.
b Values are shown as the multi-model mean changes in =+ the standard deviation of the ensemble projections. These changes are calculated
from changes in modeled SPEI02 values in the future relative to the present-day.

Table 3. Estimates of present-day (1996-2015) and future (2076-2095) premature mortality and morbidity per year due to annual mean fine
dust concentrations in the southwest United States. The present-day burden is quantified relative to zero concentrations. The future excess
burdens are due to projected changes in annual mean fine dust under RCP2.6 and RCP8.5 scenarios relative to the present-day and are
calculated using two different assumptions. For estimate #1, we hold population and baseline incidence rates at present-day levels; for estimate
#2, we use 2095 population and baseline incidence rates. The values shown are multi-model mean estimates with 95% confidence intervals in
parenthesis, with the uncertainties due to the relative risks. All numbers are rounded to two significant figures.

Health endpoint  Present-day Estimate #1 of excess burden Estimate #2 of excess burden
burden
RCP2.6 RCP8.5 RCP2.6 RCP8.5
Premature mortality All-cause 590 39 200 140 750
(Adults aged >30 (400-780) (26-51) (140-270) (96-190) (500-980)
years, y~!)
Cardiopulmonary 480 31 160 130 660
(370-580) (25-38) (130-200) (98-150) (510-800)
Lung Cancer 69 5 24 14 71
(31-110) (2-7) (11-37) (6-21) (32-110)
Hospital Admissions All cardiovascular 160 11 56 94 490
(Adults aged >65 (110-210) (7-14) (38-74) (65-120) (340-650)
years, y!)
All respiratory 130 9 45 71 370
(74-180) (5-12) (26-63) (41-100) (210-520)

month SPEI), Wang et al [42] estimated an increase
of 0.25ugm=3 (RCP2.6) and 1.0 ugm™ (RCPS8.5)
in total PM, 5 levels during March—October in the
western United States in 2100 relative to 2000 due
to the effects of droughts alone. Our work extends
the study of Wang et al by: (1) focusing solely

on fine dust in the Southwest; (2) considering the
effects of water balance deficits on different timescales
and thus in different hydrologic sub-systems; (3)
considering not just local but also regional-scale influ-
ences of droughts; and (4) quantifying the potential
health impacts of drought-driven changes in fine
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dust for the US Southwest population. Our results
are consistent with those of Wang et al and further
demonstrate that fine dust is strongly sensitive to local
and regional drought conditions in various hydrologic
sub-systems, especially to soil moisture. Using model
output from the ACCMIP ensemble and projections
of future population and baseline mortality rates,
Silva et al [78] estimated that in the US, PM, 5-related
premature mortality attributable to climate change
under RCP8.5 will increase by 19400 deathsy~! in
2100 relative to 2000, with the majority of increases
occurring over the eastern United States. Our results
and those of Wang et al who showed that some of
the ACCMIP models cannot capture the observed
responses of PM,s to drought, suggest that cli-
mate change penalties on soil-derived PM, 5 may be
underestimated in such projections derived from the
ACCMIP ensemble.

Our results appear to differ with those from the
recent study by Pu and Ginoux [43], who estimated
changes in 2051-2100 seasonal dust event frequen-
cies in the US, using a multiple linear regression
model and projected changes of precipitation, sur-
face bareness, and surface wind speed from 16 CMIP5
models (13 of which are also used in this study)
under RCP8.5. The authors projected no change in
JJA and SON dust event frequency over their western
US domain, and a 2% decrease in DJF and MAM pri-
marily driven by reductions in surface bareness in the
future. There are several possible reasons for the dis-
crepancies in our results. First, we focus on fine dust
concentrations (derived from ground-based measure-
ments), while Pu and Ginoux studied extreme dust
events (derived from satellite observations). Second,
we focus on the effects of droughts alone, as we
do not find significant correlations between seasonal
mean fine dust anomalies and surface wind speed
or vegetation on interannual timescales. Third, Pu
and Ginoux considered only local changes in con-
trolling factors, while we consider the influence of
soil moisture across a large region, including north-
ern Mexico. Fourth, unlike these authors, we use the
bias-corrected and spatially-disaggregated CMIP5 Cli-
mate and Hydrology Projections, as the coarse-grid
CMIP5 models cannot reproduce the mean and stan-
dard deviation of monthly mean surface temperature
and total precipitation averaged over the Southwest
for 1996-2015 (figure S1). Finally, the reliance of Pu
and Ginoux on surface bareness as an explanatory
variable in their regression model meant that only a
small fraction of grid cells in their western US domain
could be included in their analysis. This scant spatial
coverage arose because surface bareness was derived
from sparse measurements of remotely-sensed leaf area
index. In contrast, our study domain spans Arizona,
New Mexico, and much of Colorado and Utah.

There are several limitations and caveats in this
study. First, long-term and spatially extensive mea-
surements of soil-derived PM, 5 are not available, so
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here we use PM, 5-Iron as a fine dust proxy. Second, it
remains unclear how the ENSO and PDO—known to
affect hydroclimate in southwestern North America—
will respond under future climate change [48, 79,
80]. Third, we have not considered the climate feed-
back effect of dust aerosols, which could potentially
lead to increased precipitation from the summertime
southwestern North American monsoon [81]. Fourth,
we approximate the future health impacts of fine dust
using results from epidemiological studies based on
total PM, s and for the range of present-day con-
centrations. The relative risks of premature mortality
due to fine dust exposure may be even greater under
lower concentrations of anthropogenic PM, 5 emis-
sions in the future [82]. In addition, our reliance on
annual mean concentrations may not fully capture the
health impacts from extreme dust events, though it
remains inconclusive whether the frequency and/or
intensity of such events will increase in the future.

Previous observational studies investigating the cli-
mate impacts on dust activity in the western US have
focused on grid-specific changes in meteorology [42,
43]. Our results demonstrate the importance of also
considering regional changes, especially over active
dust source regions. Additionally, our findings high-
light the need to better constrain both the potential
climate change penalty due to dust emissions and the
specific health impacts of acute and chronic expo-
sure to fine dust in the southwestern United States
and other populated arid regions vulnerable to climate
change. Despite several uncertainties and limitations,
our results suggest that future droughts driven by cli-
mate change could lead to enhanced fine dust levels,
posing a potentially substantial public health burden
in the US Southwest, especially under the worst-case
climate change scenario.
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