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Appendix  
 
Section S1:  
 
Fire emission inventories 
 
FINN aggregates 1-km MODIS active fire detections and produces a daily emission estimate given 
these detections and MODIS retrieved land cover (Wiedinmyer et al., 2011). GFED4.1s relies 
primarily on monthly MODIS MCD64A1 500-m burned area maps, derived from observed 
changes in surface reflectance, to generate emission estimates. The dataset then adds 1-km active 
fire information to incorporate the influence of small fires that may have not been accounted for 
by the burned area product (Randerson et al., 2012). GFED4.1s derives a daily emission estimate 
by applying the ratio of daily to total monthly active fire counts in each grid cell.  GFAS also 
aggregates the 1-km MODIS FRP and uses emission factors similar to those in GFED4.1s. To 
account for FRP obscured by sub-grid clouds and other interferences, GFAS assumes that an 
obscured FRP pixel is equivalent in value to its adjacent non-obscured pixel, as long as they are 
not over a body of water (Kaiser et al., 2012). GFAS further uses a Kalman filtering method of 
data assimilation, in which the optimal estimate of FRP for a given day is a weighted average of 
the optimal FRP estimate from the previous day and the FRP estimate for the current day (Kaiser 
et al., 2012). Like GFAS, QFED uses information from adjacent pixels to estimate obscured 
thermal anomalies; QFED also relies on FRP estimates from the previous day. However, the QFED 
algorithm weights adjacent pixel information via the error covariance between pixels, and it allows 
the estimate of the previous day’s FRP to decay according to a characteristic timescale derived for 
each land type (Darmenov and da Silva, 2015). GFAS, QFED, and FINN are available in near real 
time, whereas GFED4.1s requires several months of processing before public release. We include 
another inventory, called GFED+Agriculture, where increase the GFED4.1s emission factors 
associated with agricultural burning by a factor of three. The factor of three scaling is based on the 
laboratory findings of Oanh et al. (2010), who found that the particulate matter emissions of rice 
straw approximately tripled when the straw was piled instead of spread evenly on the ground. In 
reality, we expect a mixture of partial and whole field burning (Vadrevu et al., 2008), so the GFED 
+ Agriculture emissions represent a high derived upper bound on agricultural burning in the region. 
 
Section S2: 
 
STILT model 
 
STILT traces an ensemble of theoretical particles or air-mass trajectories from a receptor site 
backwards in time and computes the sensitivity of PM2.5 concentration at the receptor to emissions 
in the surrounding region. The resulting flux footprint reveals those regions where emissions likely 
influenced PM2.5 at the receptor. We simulate daily footprints of the sensitivities of Delhi pollution 
to fire emissions upwind by sending 500 simultaneous air-mass trajectories backwards in time for 
5 days. We choose 500 ensembles in order to account for random turbulence air-masses 
experience, especially in the boundary layer (Lin et al., 2003). We choose five days as this 
timeframe should allow an air mass to traverse the approximately 800 km between Delhi and the 
farthest upwind burning regions even under the weak wind conditions prevalent at this time of 
year, which is often less than 5 m s-1 according to GDAS. 
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Liu et al. (2018) performed a back-trajectory analysis using the Hybrid Single Particle Lagrangian 
Integrated Trajectory Model (HYSPLIT; Stein et al., 2015) to create an airshed region upwind of 
Delhi. The boundaries of this airshed determined a region where agricultural fire emissions could 
potentially influence downwind air pollution in Delhi. Through the use of STILT, we make this 
relationship more explicit by quantifying explicitly how much those upwind emissions contribute 
to a particular downwind pollution observation.  In other words, each STILT footprint can be 
coupled to an emissions inventory in order to simulate surface PM2.5 concentrations. The footprint 
for the ith receptor location and time can be expressed as a vector ki = (∂ystilt,i /∂x)T, where x is a 
vector of upwind emissions from the previous 5 days (units of µmol m-2 s-1), and ystilt,i is the 
modeled PM2.5 enhancement due to those emissions. If we couple this footprint to an emissions 
estimate (e.g., FINN, QFED, etc.) from the previous 5 days, we can simulate surface PM2.5 

enhancement from fires using the relation ystilt,i = ki • x. These simulated surface concentrations 
can then be compared to the observed network average of PM2.5 observations. 
 
GEOS-Chem 
 
GEOS-Chem is here driven by assimilated meteorological data from the Goddard Earth Observing 
System (GEOS-5) at the NASA Global Modeling Assimilation Office (GMAO). The aerosol 
simulation in GEOS-Chem includes sulfate, nitrate, ammonium, dust, and black and organic 
carbon (Kim et al., 2015), and many previous studies have examined PM2.5 pollution in Asia using 
GEOS-Chem (e.g., Wang et al., 2013; Mu and Liao, 2014; Geng et al., 2015). Here we utilize the 
emission inventory for Model Inter-Comparison Study for Asia (MIX) for anthropogenic aerosol 
precursor emissions (Li et al., 2015). We follow Bond et al. (2007) for anthropogenic emissions 
of primary black and organic carbon. For this study, we perform nested grid simulations for the 
2012 burning season at 0.50° x 0.67° resolution over most of eastern Asia, with lateral boundary 
conditions provided by a global simulation at 2.0° x 2.5° horizontal resolution. 
 
Section S3: 
 
Statistical modeling 
 
Our statistical prediction of surface PM2.5 from fires takes the form: 
 

𝑦"#$%#,$ = 𝐡)	•	𝐰 
 
where hi is a 1xd vector consisting of meteorological parameters and the STILT- driven PM2.5 
prediction (ystilt,i), and w is a dx1 vector of coefficient weights that represent the relative importance 
of each predictor in hi to the prediction of PM2.5. The optimal value of these weights is solved for 
empirically. For example, if we aggregate all daily observed network-averaged surface 
observations above the anthropogenic baseline (yobs), the traditional ordinary least square setup 
determines the optimal value of coefficient weights (w) by the following relation: 
 

𝐰∗ = (𝐇/𝐇)12𝐇/𝐲45" 
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where H is an nxd matrix and n is the number of observations. Each column of H represents the 
time series of daily mean values of a particular predictor. To avoid overfitting in solving for w*, 
we follow the method of the least absolute shrinkage and selection operator (LASSO; Tibshirani, 
1996), which reduces the magnitude of the coefficients of correlated predictors and those 
predictors offering little information. Here the optimal coefficients are determined through the 
following algorithm: 
 

𝐰∗ = min
𝐰	9	ℝ;

𝐇𝐰 − 𝒚45" >
> + 𝜆 𝐰 2  

 
In the above equation, the first term on the right-hand side of the equation penalizes mismatch 
between model and observations using the square loss function, hence the “2” subscript. The 
second term of the equation regularizes the fit (i.e., reduces overfitting) by penalizing the 
magnitude of w via the absolute loss, also known as the L1 norm, hence the “1” subscript. The 
algorithm is optimized over a grid of λ values (to control the degree of regularization), using three-
fold cross validation. This method randomly separates the data into three sets and fits the statistical 
model on two of these sets, and then these fitted coefficients are applied to the remaining set (called 
the validation set), yielding the root mean squared error (RMSE) between the prediction (ystat) for 
that set and the observations (yobs). This process is repeated three times, and the value of λ that 
provides the best RMSE on the reserved validation sets is retained. In addition to ystilt, the array of 
local meteorological variables at Delhi used as predictors include wind speed and wind direction 
from the surface to the boundary layer and from the boundary layer to 500 hPa, as well as boundary 
layer height, precipitation, surface temperature, and surface pressure. All variables are taken from 
the Integrated Global Radiosonde Archive (Durre et al., 2006) and the Global Historical 
Climatology Network (Menne et al., 2012). IGRA estimates boundary layer heights over the 
Safdarjung airport (28.58°N, 77.2°E) using the parcel method, which locates the altitude where 
virtual potential temperature is equivalent to surface virtual potential temperature (Seibert et al., 
2000). 
 
Section S4:  
 
Two step data cleaning procedure 
 
First, we compare daily averaged CPCB PM2.5 with corresponding MODIS AOD for each site 
during the burning season, using all available observations during 2012-2016. Then we select only 
those sites whose correlation with the AOD timeseries exceeds R=0.5 and is statistically 
significant (p < 0.05). The purpose of this step is to consider only those sites whose variability 
corresponds to regionally influenced pollution. Hence, if a surface site’s daily averaged PM2.5 
correlates reasonably with the coarser 1° MODIS Deep Blue AOD retrieval, we assume that site 
to be sensitive to pollution from regional sources. Next, for each CPCB site that meets this 
correlation criterion, we calculate the mean absolute difference of daily-averaged PM2.5 at that site 
compared to the network average of daily-averaged PM2.5 at the other sites in the network. We 
also compute the standard deviation of that difference across the five years. This step produces a 
metric revealing how much daily PM2.5 at each site tends to deviate from PM2.5 at the other sites 
on average. We find that these deviations are distributed normally, so that for any given day, if the 
absolute difference in PM2.5 at a particular site deviates more than ±2.5 standard deviations from 
the mean absolute difference associated with that site, we exclude that PM2.5 observation from the 
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network average for that day. Thus for any given day, we remove from consideration those sites 
that either experience instrument malfunction and/or appear to be heavily influenced by strong 
local sources. For each station, we could alternatively consider removing observations that deviate 
too much from that station’s mean PM2.5 concentration during the post-monsoon burning season. 
However, we did not follow this approach because surface PM2.5 varies widely during large fire 
episodes. For example, the Mandir Marg CPCB site recorded daily-averaged surface PM2.5 
concentrations ranging between 120 – 692 µg m-3 during Nov. 1-15, 2016. The higher PM2.5 
enhancements could erroneously be marked as outliers from local sources and/or instrument 
malfunction, when in fact all sites experienced large fluctuations in PM2.5 during this time. 
Therefore, we wish to consider outliers as a function of the network average of monitors, as we 
expect all surface monitors to jointly respond to the regional signal of fire emissions and transport. 
 
Section S5: 
 
Baseline methods 
 
Method 1: This method relies on the daily variability of the GFAS fire emissions. We choose 
GFAS due to its assimilation properties which account for some missing or obscured fire pixels. 
For each fire season, we analyze the time series of these emissions summed over all grid cells in 
the burning regions upwind of Delhi. We specify low-fire days as those days when total fire 
emissions fall below a specified threshold at the low end of the frequency distribution for that 
season – e.g., below the 10th percentile. On days when fire emissions fall below that threshold, we 
assume that Punjab and Haryana are not burning significantly. If emissions remain below the 
threshold during the next N days, we tag the observation for that Nth day as representative of the 
baseline. The baseline is then the average of all tagged days during the fire season. We vary N 
between 1-5 and the emission percentile threshold between 10-30% to check the robustness of our 
baseline estimate. We assume that N represents the transport time for smoke from fires to ventilate 
out of the IGP.  
 
Method 2: In this method, we take advantage of STILT sensitivity estimates. For each day of the 
fire season, STILT provides gridded sensitivities to upwind emissions for each observation in 
Delhi. If the map of sensitivity overlaps with cells containing fire emissions, the model predicts a 
pollution enhancement due to fire downwind in Delhi in the subsequent days. To compute the 
anthropogenic baseline, we count the number of fire emitting pixels for a particular day. We then 
count the number of those fire pixels that overlap with the STILT sensitivity map. If the ratio of 
overlapping pixels to total fire pixels is sufficiently low (e.g., less than a threshold of 0.1) on a 
given day, we assume that the urban pollution for that day has little influence from fires. We collect 
each of these non-fire days during each fire season and take their average as the baseline. We vary 
the ratio threshold between 0.1-0.7 to assess the sensitivity of this method to its underlying 
assumptions. 
 
Method 3: For this method, we compute the weekly block average of PM2.5 within the city for each 
week (Sunday through Saturday) of the burning season. We then average the M lowest weekly 
averages to determine the baseline. We vary M between 1-4 to check the sensitivity of this method 
to this parameter. 
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Section S6 
 
Diwali 
 
Though Diwali lasts a week, most firecrackers are lit on the first night of the festival (Singh et al., 
2010). Without controlling for other factors, Singh et al. (2010) found PM10 concentrations to 
increase by a factor of 2-6 before and after Diwali in Delhi during 2002-2007, and found the effect 
to be strongest at night. In Figure 6, Nov. 3rd total PM2.5 is observed to be especially high (338 µg 
m-3); however, the STILT model simulations predict a small, near-zero PM2.5 enhancement and 
the observed AOD is also relatively low. Thus an alternative explanation for the observed/modeled 
PM2.5 mismatch on Nov. 3rd could instead be the effects of Diwali, which may not be captured in 
fire emission inventories and the coarser AOD product. Diwali generally occurs during the post-
monsoon season, though not always during peak agricultural burning. In Figure S4, we show the 
post-monsoon time series of observed and modeled PM2.5 for 2012 and 2014-2016. In 2012, Diwali 
occurred a week after peak burning and peak observed PM2.5. In 2016, Diwali occurred a week 
before peak burning and peak observed PM2.5. Though potentially a factor in 2013, the 
incongruous timing of post-monsoon burning and Diwali during the other seasons implies that 
observed PM2.5 results from Figure 5 and Table 2 may sometimes be influenced, but are not driven 
principally by Diwali. 
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Supplementary Figures 
 

 
 
Figure S1: Distribution of Central Pollution Control Board (CPCB), India Spend, and U.S. 
Embassy PM2.5 monitoring sites located in and around the Delhi. Solid lines represent districts 
within the National Capital Territory of Delhi.  
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Figure S2. Daily-averaged PM2.5 observations for CPCB (pink), U.S. Embassy (purple), and India 
Spend (blue) for 2016. Shading for the CPCB and India Spend curves represent one standard 
deviation from the network-averaged PM2.5. The U.S. Embassy observations correlate well with 
the CPCB network average (R = 0.92), and the India Spend observations correlate well with the 
CPCB network (R = 0.91).  
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Figure S3: Frequency of PM2.5 daily observations in Delhi derived from a GEOS-Chem simulation 
performed at 0.5° x 0.667° horizontal resolution during the burning season of 2012 (Oct 17. – Nov. 
30). The dashed vertical line represents the mean of the distribution. 
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Figure S4. Standardized regression coefficients (µg m-3 standard deviation-1) fit to daily PM2.5 
enhancements, derived from three different baseline methods. See text for description of these 
methods. The first term, labeled “1, STILT PM2.5 simulation,” represents simulated PM2.5 using 
one of the four fire emission inventories – GFED + Agriculture, which assumes 100% agricultural 
landcover and emission factors increased by a factor 3; QFED; FINN; and GFAS.  
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Figure S5: Time series of observed and modeled PM2.5 during the 2012, 2014-2016 post-monsoon 
burning seasons. The blue envelopes represent the observed total PM2.5 and the PM2.5 enhancement 
derived by subtracting the daily PM2.5 by the mean PM2.5 of the lowest week during the season. 
Each colored line represents a model simulation with a different fire emission inventory. The black 
dots are the MODIS AOD retrievals during the burning season. The dashed vertical lines represent 
the first day of the Diwali festival. For 2012, we add two additional lines GEOS-Chem + 
GFED4.1s which represents GEOS-Chem PM2.5 from both anthropogenic and fire sources and 
GEOS-Chem which represents PM2.5 from anthropogenic sources alone. 
 
 
 
 


