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Abstract

World population growth, industrialization, energy demand, and environmental goals are presently
driving rapid global change in emissions with complex consequences for climate, air quality, and
ecosystems. As North America strives to reduce its pollutant emissions to meet air quality standards,
rising global emissions may increase background pollutant concentrations and offset some of the gains.
Climate change can have important impacts on air quality, and in turn, air pollutants are recognized to
be major climate forcing agents. Policies to mitigate climate change could have important implications
for air quality and vice versa. It is becoming increasingly important to view air quality from a global
perspective and to integrate air quality and climate stabilization goals in the design of environmental
policy. This chapter presents a review and analysis of these issues with the air quality perspective
focused on tropospheric ozone, particulate matter, and mercury.

World population growth, industrialization, energy demand, and environmental goals are presently
driving rapid global change in emissions with complex consequences for climate, air quality, and
ecosystems. As North America strives to reduce its pollutant emissions to meet air quality standards,
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rising emissions in the developing world may increase background pollutant concentrations and offset
some of the gains. Climate change can have important impacts on air quality, and in turn air pollutants
are recognized to be major climate forcing agents. Policies to mitigate climate change could have
important implications for air quality and vice versa. It is becoming increasingly important to view air
quality from a global perspective and to integrate air quality and climate stabilization goals in the design
of environmental policy. This chapter presents a review and analysis of these issues with the air quality
perspective focused on tropospheric ozone, particulate matter (PM), and mercury.

11.1 Intercontinental Pollution

Intercontinental transport of pollution between Asia, North America, and Europe takes place via the
prevailing westerly winds. Asian dust events in the western United States provide a vivid image of this
intercontinental transport (Fig. 11.1). Satellite observations of dust transport across the Pacific show that
sources in Asia can affect U.S. surface sites in less than a week (Husar et al. 20017), although the average
transport time is 2-3 weeks (Liu and Mauzerall 2005). Circumpolar transport of pollution around the
globe at northern mid-latitudes takes place on a time scale of a month, and meridional mixing of the
northern hemisphere requires about three months. Global-scale mixing of the troposphere takes place on
a time scale of a year. These time scales can be used to determine the appropriate spatial scope of air
quality policy depending on the atmospheric lifetime of the pollutant considered. Pollutants with
lifetimes of a few days or less do not generally warrant an intercontinental perspective, while pollutants
with lifetimes longer than a month are best addressed from that perspective.

Fig. 11.1 Visibility impairment at Glen Canyon, Arizona, during an Asian dust event on April 16, 2001 (right
photo) as compared to a clear day (left photo). (Source: U.S. EPA (http://www.epa.gov/visibility/program.html).
See Fairlie et al. (2007) for a discussion of the April 2001 dust events including evidence that the dust was of
Asian origin)

Mercury has long been recognized by the scientific community as a global pollutant for which
regulation can best be accomplished by a global emissions treaty (Selin 2005). Mercury is mostly
emitted in elemental form Hg(0), which is oxidized in the atmosphere to Hg(II) and subsequently
deposited. The atmospheric residence time of Hg(0) is on the order of a year (Selin et al. 2007),
sufficiently long to allow transport on a global scale. Although local emissions may affect near-source
“hot spots” (Dvonch et al. 2005; Keeler et al. 2006), global model simulations indicate that only 20—
30% of U.S. mercury deposition originates from North American sources, and that anthropogenic Asian
sources contribute a comparable fraction (Seigneur et al. 2004; Travnikov 2005; Selin and Jacob 20086;
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(Wu et al. 2006) while North American emissions have been decreasing (Fig. 11.2).
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Fig. 11.2 Global trend of mercury anthropogenic emissions by continent, 1990-2000. (Data from Pacyna et al.
2006)

Intercontinental influence on surface ozone can also be significant. Ozone has a lifetime of days in the
continental boundary layer but several weeks in the free troposphere. It is produced in the free
troposphere from anthropogenic precursors vented from the source continents, most importantly
methane and NO, (Fiore et al. 2002). Methane has an atmospheric lifetime of 10 years and thus

produces ozone on a global scale. Observations at northern mid-latitudes have shown a rising ozone
background over the past century (Marenco et al. /994), and observations in North America show a
continuing rise in background ozone in the past few decades (Lin et al. 2000; Jaffe et al. 2003; Jaffe and
Ray 2007). These increases can only be partly explained by anthropogenic emissions of NO, and

methane (Wang and Jacob /998; Fusco and Logan 2003; Lamarque et al. 2005) and could reflect
additional factors such as lightning (Mickley et al. 200/), fires (Jaffe et al. 2004) and atmospheric
dynamics (Ordonez et al. 2007).

EPA (2003) defines a policy-relevant background (PRB) as the ozone concentration that would be
present in U.S. surface air in the absence of North American anthropogenic emissions, and thus not
amenable to regulation under current policy frameworks. The PRB has been used by EPA as a baseline
to quantify the incremental health impacts of North American pollution sources. The present-day PRB is
in the range 20—40 ppbv (Fiore et al. 2003), which represents a significant increment toward ozone air
quality standards (Fig. 11.3). At least half of this PRB is anthropogenic (Mickley et al. 20017; Shindell
and Favulegi 2002; Fiore et al. 2003; Lamarque et al. 2005), with a growing contribution from Asia.
Asian NO, emissions have doubled over the past decade and presently enhance surface ozone

concentrations in the United States by 3—7 ppbv according to global models (Zhang et al. 2008a). A
recent study conducted by the U.S. National Academy of Sciences concludes that the association
between short-term changes in ozone concentrations and mortality is generally linear throughout most of
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the concentration range, although uncertainties make it difficult to determine whether there is a
threshold for the association at the lower end of the range. The NRC concludes that if there is a
threshold, it is likely to be below the current NAAQS (NRC 2008). Thus, enhancements in ozone
concentrations resulting from international transport are implicated in increases in premature mortality

rates.
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Fig. 11.3 Ozone Air Quality Standards (AQS) and background surface ozone concentrations. The U.S. 8-h AQS
was reduced to 75 ppb in 2008. The U.S. EPA is presently (January 2010) considering reducing its 8-h AQS from
75 ppb to a value in the range 60-70 ppb. EPA is also proposing a secondary seasonal standard in a range
between 7 and 15 ppm-h (weighted, cumulative exposure to ozone during daylight hours over a three-month
growing season) to reduce ozone damage to vegetation

Intercontinental influence on PM is limited by scavenging during transport (Tarrason and Iversen /996;
Park et al. 2004). A major exception is the Arctic in winter—spring, where boundary layer transport of
European pollution under dry stratified conditions leads to the phenomenon known as “Arctic

haze” (Barrie /986). Observations and models for the western United States indicate surface air

concentrations of Asian sulfate of the order of 0.1 mg m > on an annual mean basis (Heald et al. 2006;
Park et al. 2006; Liu and Mauzerall 2007; Liu et al. 2008), while van Donkelaar et al. (2008) report

0.13-0.17 mg m > for western Canada in spring. These intercontinental pollution enhancements are of
little concern for air quality standards, though they could affect visibility standards under the Regional
Haze Rule (Park et al. 20006).

In addition to ozone and PM, recent air quality policy has focused on a large number of hazardous air
pollutants (HAPs) that can be harmful to human health. The U.S. EPA lists 187 HAPs with atmospheric
lifetimes ranging from minutes to years, which determine their potential for intercontinental transport.
Most have sufficiently short lifetimes (less than a day) that intercontinental transport is not an issue.

11.2 Effects of Climate Change on Air Quality

Air quality is highly sensitive to weather, and it follows that a change in climate (i.e., in the long-term
statistics of weather) may have important air quality implications. Jacob and Winner (2009) give a
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recent review. Major heat waves in the eastern United States in 1988 and in Europe in 2003 were
associated with intense pollution episodes (Lin et al. 200/; Guerova and Jones 2007). Such heat waves
are likely to become more frequent in the future climate (Christensen et al. 2007). Interest in the effect
of climate change on U.S. air quality has grown in recent years, including in particular through the EPA
Global Change Research Program. In Mexico, there are particular concerns about the effects of drought-
related forest fires on air quality and whether or not the frequency of severe droughts might be enhanced
by climate change. The effect of forest fires on urban air quality in Mexico can be substantial. For
example, in the spring of 2005 metropolitan Guadalajara experienced one of the most severe air quality
episodes in its history due to a fire in the La Primavera forest INE-SEMARNAT 2006a).

11.2.1 Twenty-First Century Climate Change

Increasing greenhouse gas concentrations over the twenty-first century are expected to drive significant
climate change. Current projections draw mainly from four socioeconomic scenarios constructed by the
Special Report on Emission Scenarios (SRES) of the IPCC (SRES 2007): Al (rapid economic growth
and efficient introduction of new technologies), A2 (very heterogeneous world with sluggish economic
growth), B1 (convergent world with rapid introduction of clean and efficient technologies), and B2
(focus on sustainability, intermediate economic development). The A1l scenario further distinguishes
three sub-scenarios (A1FI, fossil intensive; A1T, predominantly non-fossil; and A1B, balanced across
energy sources) by technological emphasis. SRES (200/) reports emission projections for greenhouse
and other gases developed by a number of economic models for the different scenarios. The IPCC
(2001) reports the multi-model means, and these are the standard greenhouse emission scenarios used in
global climate models. The IPCC also includes consistent future scenarios for aerosol and ozone
precursor emissions, but these are generally not used in future-climate projections because of the
difficulty of converting them into future perturbations to concentrations and radiative budgets. These
issues are discussed in Sect. 11.4.

The global climate models (GCMs) used in projections of twenty-first century climate change simulate
the climate of the Earth by solving the primitive equations for atmospheric dynamics and physics on a
global scale, generally including some coupling with ocean and land dynamics. The IPCC (Christensen
et al. 2007; Meehl et al. 2007) reports climate change projections for the twenty-first century from a
large ensemble of GCMs applied to the SRES scenarios. The projected 1990-2050 increases in global
mean surface temperatures range from 0.8 to 2.7°C for the different GCMs and scenarios. Associated
with this projected global temperature increase is a global increase in humidity, due to enhanced
evaporation from the oceans, and consequently an increase in global precipitation though with large
regional variations. For North America, the ensemble of models projects higher-than-average surface
warming, an increase in heat waves, and a wetter climate in the north vs. drier in the south (Fig. 11.4).
The results in Fig. 11.4 are for the IPCC A1B scenario in 2090 but similar patterns of change are found
for other scenarios and shorter time horizons (Christensen et al. 2007).
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Fig. 11.4 Projected 1990-2090 changes in annual mean surface temperature (top) and precipitation (middle) for
North America (A1B scenario). Values are averages from 21 GCMs contributing to the IPCC (Christensen et al.
2007). The bottom panel shows the number of models projecting a precipitation increase: a value of 21 indicates
consensus for an increase, and zero indicates consensus for a decrease. A mid-range value (8-13) indicates lack
of consensus regarding the sign of the precipitation change. Model results for other scenarios and shorter time
horizons show similar patterns of change. (Christensen et al. 2007)

11.2.2 Effects of Climate Change on Ventilation

Air pollution episodes are associated in general with suppressed horizontal and vertical mixing, i.e.,
stagnant conditions and shallow mixing depths. A major factor determining regional stagnation in the
East is the frequency of mid-latitude cyclones tracking across southern Canada. The cold fronts
associated with these cyclones sweep the polluted air ahead of the front, replacing it with cleaner polar
air (Cooper et al. 200/; Li et al. 2005). GCM simulations by Mickley et al. (2004a), Murazaki and Hess
(2006), and Wu et al. (2008a) indicate a higher frequency of summer pollution episodes in the central
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and eastern United States in the future climate due to reduced frequency and northward shift of mid-
latitude cyclones. Such a trend in cyclone activity is a robust feature of GCMs at least in winter
(Lambert and Fyfe 2006), and can be explained by weakening of the meridional thermal gradient due to
strong Arctic warming. Observations for the past several decades show indeed a significant decrease in
mid-latitude cyclone frequency (McCabe et al. 2007).

Climate change may either increase or decrease mixing depths, depending in particular on the change in
soil moisture. GCM simulations for the twenty-first century climate find inconsistent results (Jacob and
Winner 2009). According to Jazcilevich et al. (2000, 2003a, b, 2005), rapid urbanization and its
associated land-use changes have had a large effect on mixing depths and urban-scale circulations
affecting air quality in Mexico City.

Uncertainty in GCM projections of future climate change generally increases as the spatial scale of
interest decreases and as coupling to the hydrological cycle becomes involved. There is a strong need to
assess GCM skill in simulating present-day climatological statistics relevant to air quality including
mixing depths, stagnation events, and precipitation frequency. Eventually, the multi-model ensemble
approach used by the IPCC to assess robustness in projections of future regional climate change
(Christensen et al. 2007) should be extended to meteorological variables of interest for air quality.
Dynamical downscaling of GCM fields using regional climate models could significantly improve the
simulation of air quality (Gustafson and Leung 2007).

11.2.3 Effects on Ozone

Surface ozone is strongly correlated with temperature during pollution episodes (Jacob and Winner
2009). This relationship is driven in part by the joint association of high ozone and temperature with
stagnation episodes, in part by the temperature dependence of emission of biogenic isoprene (a major
ozone precursor), and in part by the temperature dependence of the chemistry for ozone formation
(Jacob et al. 1993; Sillman and Samson /995). A few studies have used observed correlations of high-
ozone events (>80 ppbv) with meteorological variables, together with regionally downscaled GCM
projections of these meteorological variables, to infer the effect of twenty-first century climate change
on air quality if emissions were to remain constant. A major assumption is that the observed present-day
correlations, based on short-term variability of meteorological variables, are relevant to the longer-term
effect of climate change. Cheng et al. (2007) correlates ozone levels at four Canadian cities with
different synoptic weather types, and use projected changes in the frequency of these weather types (in
particular more frequent stagnation) to infer an increase in the frequency of high-ozone events by 50%
in the 2050s and 80% in the 2080s. Lin et al. (2007) apply the relationship of Fig. 11.5 for the
northeastern United States to infer a 10-30% increase in the frequency of high-ozone events by the
2020s and a doubling by 2050. Wise (2009) projects a quadrupling in the frequency of high-ozone
events in Tucson, Arizona by the end of the twenty-first century.
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Fig. 11.5 Probability that the daily maximum 8-h average ozone will exceed 84 ppb for a given daily maximum
temperature, based on 1980-1998 data. Values are shown for the Northeast, the Los Angeles Basin, and the
Southeast. (From Lin et al. 2007)

A number of recent studies have presented a more fundamental approach to the problem by using future-
climate GCM simulations, sometimes nested with regional meteorological models (e.g., Leung and
Gustafson 2005), to drive global and regional chemical transport models (CTMs), keeping
anthropogenic emissions at present levels (Hogrefe et al. 2004; Murazaki and Hess 2006; Racherla and
Adams 2006; Tagaris et al. 2007; Tao et al. 2007; Wu et al. 2008a; Lin et al. 2008; Zhang et al. 2008b).
Other studies have perturbed individual meteorological variables in CTM simulations for the present
climate and diagnosed the ozone response (Steiner et al. 2006; Dawson et al. 2007a).

A general result across all models is that twenty-first century warming is projected to increase surface
ozone in polluted regions of the United States and that temperature is the principal driving factor.
Increases in the summertime maximum 8-hour daily average (MDAS) surface ozone are typically 1—

10 ppbv depending on the model, the region, and the time horizon considered (Jacob and Winner 2009;
EPA 2009). Decreases are mostly confined to clean and coastal areas where ozone is largely determined
by its background, which declines in the future climate because of increasing water vapor stimulating
ozone chemical loss (Wu et al. 2008b; Lin et al. 2008). Significant increases of ozone in the northeastern
United States are found in all models, but beyond this there are large regional differences between
models (Jacob and Winner 2009). For example, Racherla and Adams (2006) and Tao et al. (2007) find a
maximum effect in the Southeast, where Wu et al. (2008a) find little effect. This difference appears to
reflect at least in part different assumptions regarding the fate of isoprene nitrates (Wu et al. 2008a;
Horowitz et al. 2007).

A prevailing finding among models is that the ozone increase from climate change is largest under
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conditions where present-day ozone is already high. Bell et al. (2007) (using model results from Hogrefe
et al. 2004) find a strong correlation between present-day ozone and the magnitude of ozone increase for
50 cities in the eastern United States, and attribute it to the higher ozone production potential in areas
with high anthropogenic emissions. Jacobson (2008) finds greatest sensitivity in Los Angeles and
attributes it to increased chemical sensitivity of ozone to temperature when ozone is high.

Although current emission control strategies will likely remain effective in the future climate (Liao et al.
2007), stronger emission controls may be required to meet a given air quality objective (Wu et al.
2008a). This ‘climate change penalty’ is illustrated in Fig. 11.6 with simulated probability distributions
of summertime ozone in the Midwest for 2050 vs. 2000 conditions. We see that the same ozone air
quality that would be achieved with a 40% decrease of anthropogenic NO, emissions for the present-day

climate would require a 50% decrease in the 2050 climate. Wu et al. (2008a) find that as U.S. NO,

emissions decrease, the climate penalty also decreases and can even become a climate benefit, thus
amplifying the effectiveness of emission controls.
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Fig. 11.6 Simulated effect of 2000-2050 global change in emissions and climate (A1 scenario) on surface ozone
in the Midwest, illustrating the climate change penalty (Wu et al. 2008a). The figure shows cumulative probability
distributions of summer daily maximum 8 h-average surface ozone for (1) 2000 climate and anthropogenic
emissions (black), (2) 2050 climate and 2000 anthropogenic emissions (red), (3) 2000 climate and 2050
anthropogenic emissions (green), (4) 2050 climate and anthropogenic emissions (blue), and (5) 2050 climate and
anthropogenic emissions but with 25% additional domestic NO, emission reductions (U.S. anthropogenic NO,

emissions reduced by 50% instead of 40% compared to 2000 levels) (pink, closely overlaps the green). The black
and green arrows measure the climate change penalty for ozone air quality with 2000 and 2050 anthropogenic
emissions respectively

11.2.4 Effects on PM

Unlike for ozone, no strong and consistent correlation is observed between PM concentrations and
meteorological variables that would provide guidance on the expected effects of climate change. This is
likely because PM includes a number of components with different and complex sensitivities to the
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meteorological environment. For example, increasing temperature would cause nitrate to decrease but
sulfate to increase (Aw and Kleeman 2003; Dawson et al. 2007b; Tagaris et al. 2007). The effect on
secondary organic aerosol (SOA) involves compensating factors between increased biogenic VOC
emissions and increased volatility (Liao et al. 2007). PM should correlate with precipitation (Dawson et
al. 2007b), reflecting removal by wet scavenging, but finding this correlation in the observations is
elusive (Woods et al. 2007), possibly because precipitation is in general associated with air mass
changes. The few CTM studies in the literature reviewed by Jacob and Winner (2009) indicate +0.1—

1 mg m~> changes in surface PM, 5 concentrations in the United States as a result of 2000-2050 climate
change, although the patterns of these changes are inconsistent among the various studies.

Climate-driven changes in natural emissions from dust and forest fires could be the most important
factors driving changes in PM concentrations. Wildfires in North America have increased over the past
decade, reflecting both the legacy of fire suppression in the twentieth century and the effect of climate
change (Westerling et al. 2006). Spracklen et al. (2009) project a 50% increase in fire emissions in North
America in the 2050 climate solely due to climate change, resulting in a 10% increase in annual mean
PM, s in the western United States.

11.2.5 Effects on Hazardous Air Pollutants

Many HAPs are produced or consumed in the atmosphere by reaction with the hydroxyl radical (OH).
Concentrations of OH are generally expected to increase in the future climate due to increase in water
vapor (Johnson et al. /999), but the effect as found in different models is only on the order of 10% over
the course of the twenty-first century (Wu et al. 2008b). 1t is likely that climate-driven changes in
pollutant ventilation (Sect. 11.2.2) will affect HAP concentrations more than changes in chemistry.

11.2.6 Effects on Atmospheric Deposition and Mercury

The only study so far to have examined the effect of climate change on atmospheric deposition in North
America is the regional climate simulation of Zhang et al. (2008b). They find varying spatial patterns of
increases and decreases, reflecting calculated changes in precipitation patterns and regional circulations,
as found also in a model study for Europe by Langner et al. (2005). Predicting these regional-scale
changes is subject to large uncertainty, as pointed out above. Regardless of changes in the deposition
patterns, the total amount deposited is determined to first-order by the amount emitted (what goes up
must come down). In the case of acid and nitrogen deposition, the relevant emissions are mainly
anthropogenic, and changes in these emissions (Sect. 11.4) would be the main drivers of changes in
deposition.

The effect of climate change on mercury cycling through the atmosphere has received little attention so
far. A potentially important issue is the volatility of mercury accumulated in land and ocean reservoirs
(Jacob and Winner 2009). Volatilization of soil mercury as a result of climate change could be of

considerable importance, as the amount of mercury stocked in soil (1.2 10° Mg) dwarfs that in the

atmosphere (6 ° 10° Mg) and in the ocean (4"10* Mg) (Selin et al. 2008). Soil mercury is mainly bound

to organic matter, and future warming at boreal latitudes could release large amounts of this organic
matter to the atmosphere as CO, either through increased respiration or through increased fires. The soil

mercury bound to this carbon could volatilize to the atmosphere, eventually re-depositing to ecosystems
in a mobile and more toxic form.
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11.3 Effects of Air Pollutants on Climate Change

Tropospheric ozone and PM are recognized by the IPCC as important agents of climate change (Forster
et al. 2007); thus, it follows that air quality policy could have significant climate consequences (Levy et
al. 2008a, b). Decreases of ozone and BC PM can mitigate warming, while decreases of sulfate, nitrate,
and OC PM can exacerbate warming. The list of climate-relevant air pollutants should also include
methane, which is the second most important anthropogenic greenhouse gas and also affects air quality
by increasing the tropospheric ozone background (West and Fiore 2005).

11.3.1 Radiative Forcing

The global energy budget of the Earth is determined by a balance at the top of the atmosphere between
incoming solar radiation (peaking in the visible), reflected solar radiation, and outgoing terrestrial
radiation (peaking in the infrared). Climate is in equilibrium when the absorbed solar radiation
(incoming minus reflected) equals the outgoing terrestrial radiation. A change in atmospheric
composition can perturb this balance. The radiative forcing associated with this change is defined as the
resulting energy flux imbalance at the top of the atmosphere, as computed by a radiative transfer model
with all other factors (including temperature) kept at their original equilibrium values. Eventually the
climate responds to the forcing by moving to a new energy-flux equilibrium, with associated changes in
temperature and other variables.

Radiative forcing has been the standard metric used by the IPCC since 1990 to quantify the
contributions of different agents to climate change. It is much easier to calculate than the climate
response, and it is more certain because it avoids the complexity of climate feedbacks represented in
different manners in different GCMs. The change in global equilibrium surface temperature (7" ) ) from a

given radiative forcing varies by a factor of four between state-of-science GCMs (NRC 2005), but a
consistent finding across GCMs is that the response of ' | is proportional to the magnitude of the forcing

and largely insensitive to the nature of the forcing agent (Boer and Yu 2003; NRC 2005). This makes
radiative forcing a valuable metric to compare the importance of different climate change agents and to
develop policies for mitigating climate change.

Radiative forcing is defined as positive if it results in a gain of energy for the Earth system, negative if it
results in a loss. Positive forcing causes warming, negative forcing causes cooling. Greenhouse gases
including ozone and methane absorb infrared radiation emitted from the Earth’s surface and re-emit it at
a lower temperature, thus decreasing the outgoing radiation flux and producing a positive forcing. Ozone
also absorbs solar radiation in the near-UV and this makes an additional small positive forcing. PM
interacts with solar radiation, scattering it back to space (negative forcing) or absorbing it (positive
forcing). The absorbing component of PM radiative forcing is mainly BC, and the scattering component
is mostly sulfate.

different anthropogenic emissions relative to pre-industrial radiative equilibrium (1750 climate).

Figure 11.7 departs from the usual presentation of radiative forcings in that it is based on anthropogenic
emissions rather than changes in concentrations. The emission-based perspective (Shindell et al. 2005) is
more useful for analyzing the impacts of air quality policy. In particular, the radiative forcing from
tropospheric ozone is not identified per se but rather as the radiative forcings from the emissions of its
precursors, which affect not only ozone but other climate agents as well.
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Fig. 11.7 Global radiative forcings due to emission changes between 1750 and 2000, from IPCC (Forster et al.

2007). In the figure, NMVOC refers to (non-methane) volatile organic compounds
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We see from Fig. 11.7 that the largest positive radiative forcing is from CO, emissions (+1.56 W m2).

Second is from methane emissions (+0.66 W m_z), representing the sum of effects of methane emissions
on the concentrations of methane, ozone, stratospheric water vapor, and CO,. Third is from BC

emissions (+0.46 W m2), including the effects on both atmospheric concentrations and snow albedo.
Anthropogenic emissions of CO and non-methane volatile organic compounds (VOCs) also have

significant positive radiative forcings (+0.20 and +0.09 W m 2 respectively), even though they are not
significant greenhouse gases themselves, because of their effects on OH concentrations (and hence on
the lifetime of methane), tropospheric ozone, and CO,. Adding up the effects of these four emissions

relevant to air quality (methane, BC, CO, VOCs) yields a total radiative forcing of +1.41 W m 2,
comparable to that from CO,. Clearly, air quality policy can play a role in mitigating or enhancing

climate change over the near term.

Emissions of NO, appear to have compensating effects on climate (Fuglesvedt et al. /999; Wild et al.

2001; West et al. 2007). They provide a source of tropospheric ozone (positive forcing) but also of
nitrate aerosols (negative forcing), and in addition increase the concentration of OH and hence the loss
of methane (negative forcing). The net overall effect in Fig. 11.7 is a small negative forcing

-0.11W m_z), but the sign is within the range of uncertainty on the individual terms and Forster et al.
(2007) decline to give a best estimate.

Anthropogenic emissions of scattering PM have large negative radiative forcings. These include a direct
effect from aerosol scattering of solar radiation and an indirect effect from perturbation to cloud
properties, the latter being highly uncertain (NRC 2005). Figure 11.7 gives best estimates for direct

forcings of —0.40 W m ™2 from SO, emissions, —0.20 W m 2 from OC emissions, and —0.10 W m 2

from anthropogenic dust emissions (desertification, agricultural erosion). The sources of OC are not well
known, and could include a major contribution from SOA production by anthropogenic VOC emissions
not included in Fig. 11.7 (Volkamer et al. 2005; Donahue et al. 2006; Fu et al. 2008). If so, the net
radiative forcing from anthropogenic VOCs could possibly be negative rather than positive. The current

best estimate of the indirect aerosol forcing given in Fig. 11.7 (-0.9 W m_?‘) is larger than the direct

forcing, Adding up the PM-related negative radiative forcings in Fig. 11.7 yields a total of =1.6 W m ™2,
indicating that PM may have masked much of the greenhouse warming over the past century.
Regulatory actions to reduce emissions of SO, will reduce sulfate acrosol concentrations and hence also

reduce negative radiative forcing. Air quality policies aimed at PM reductions could thus impede efforts
to curb anthropogenic climate change (Ming et al. 2005).

The radiative forcing estimates reported by the IPCC are global averages. Ozone and PM have short
lifetimes and hence their radiative forcings show far more spatial variability than those of long-lived
greenhouse gases such as CO, and methane. For ozone, the spatial gradient in forcing is mainly between

the polluted continents, and in urban areas of the United States it can reach values of =30 W m ™2 (Jin et
al. 2005). Deposition of BC to snow further contributes a positive regional radiative forcing (Hansen and
Nazarenko 2004; Qian et al. 2009). Such regional structure in radiative forcing cannot be simply
translated into a surface temperature change because of horizontal transport of heat (Boer and Yu 2003;
Levy et al. 2008a). GCM simulations of climate response are necessary for quantitative interpretation
and we discuss those next.
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11.3.2 Climate Response for North America

Recent model results using the IPCC A1B scenario to examine the effect of changing concentrations of
ozone, BC, OC, and sulfate on future climate find that by the year 2100 the projected decrease in sulfate
aerosol (driven by a 65% reduction in global sulfur dioxide emissions) and the projected increase in BC
aerosol (driven by a 100% increase in its global emissions) contribute a significant portion of the
simulated A1B surface air warming relative to the year 2000: 0.4°C globally, 0.6°C (Northern
Hemisphere), 1.5-3°C (wintertime Arctic), and 1.5-2°C (~40% of the total) in the summertime United
States (Levy et al. 2008a, b).

Mickley et al. (2004b) find that the predicted surface warming from anthropogenic tropospheric ozone is
twice as large in the northern as in the southern hemisphere, reflecting the northern dominance of the
forcing. They and Shindell et al. (20006) find disproportionately strong warming in continental interiors
of northern mid-latitudes in summer, when ozone is highest, in contrast to forcing by CO, for which the

strongest warming is in winter. Shindell et al. (2006) further point out that the Arctic, where warming
has been strongest over the past decades, is particularly sensitive to ozone radiative forcing.

Direct radiative forcing by PM is more localized over source regions than that of ozone, although Levy
et al. (2008a) find that the climate response is not necessarily enhanced over the region of forcing but is
mostly spread over the global scale. The sharp distinction in temperature effects between PM types is of
concern because sulfate in North America has been decreasing faster than BC PM, and this is apparent
in some long-term observed trends of radiative forcing (Liepert and Tegen 2002).

Besides this direct radiative forcing effect, PM affects the formation and microphysics of clouds and
thus can modify precipitation locally, as has been observed for orographic precipitation (Jirak and
Cotton 2006; Rosenfeld and Givati 2006). A climatological data analysis for coastal areas of the western
North Atlantic by Ceverny and Balling (/998) shows precipitation to be highest on Saturdays and
minimum early in the week, which the authors attribute to precipitation enhancement by anthropogenic
PM accumulating over the course of the working week. Forster and Solomon (2003) similarly find a
weekly variation in the diurnal temperature range over the United States which they attribute to the
effect of anthropogenic PM on clouds. The sign of the effect varies with location, suggesting that PM
could enhance cloud formation in some areas and suppress it in others. Bell et al. (2008) find a midweek
maximum in summer afternoon rain intensity and storm height in the U.S. Southeast that they attribute
to the weekly cycle of PM concentrations.

PM may elicit further climatic responses. A regional model study by Qian et al. (2009) indicates that BC
deposition to the snowpack of the western United States has significant consequences on wintertime
snowpack accumulation and spring runoff. Jacobson and Kaufman (2006) find a reduction in wind speed
over California correlated with anthropogenic PM, which they interpret with a GCM as driven by
increased atmospheric stability from PM radiative forcing. PM-driven changes in precipitation and
atmospheric stability would in turn affect PM concentrations, representing a possible regional feedback
between climate change and air quality.

Regional climate effects of air-quality related emissions can be especially significant in megacities such
as Mexico City. Emissions in Mexico City differ substantially from cities in Canada and the United
States, with a much higher contribution of carbonaceous PM (Molina and Molina 2002). Magafia (2007)
estimates that average temperatures in Mexico City have risen 4-5°C over the past 100 years, which
presumably reflects in part the urban heat island effect (Jauregui and Luyando /998), in part global
climate change, but also the effect of BC emissions. In 2006, two field campaigns (MILAGRO and
MAX-Mex, http://www.eol.ucar.edu/projects/milagro/) were conducted in the Mexico City region to
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characterize emissions from Mexico City and examine their effects on regional and global climate. As
results from these campaigns are analyzed, the contributions of local emissions to urban climate change
in Mexico City should become clearer.

11.4 Projections of Future Anthropogenic Emissions

The Special Report on Emission Scenarios (SRES) of the IPCC in 2000 included consistent 2000-2100
projections of global methane, CO, NO_, SO, and VOC anthropogenic emissions along with CO,, for
the different socioeconomic scenarios described in Sect. 11.2.1 (Nakicenovic et al. 2000). They do not

include consideration of how climate change may affect emissions. Figure 11.8 shows the projections
for NO,, methane and SO,. All scenarios project a steady global increase of NO, emissions over the

2000-2050 period, ranging from 20 (B1) to 200% (A1F), and mostly driven by China and India. NO,

emissions in the United States are projected to decrease over that period in all scenarios except A2.
Methane emissions are projected to increase in all scenarios. In the A1F and A2 scenarios these
emissions increase by as much as a factor of two by 2050 due to increases in livestock, landfill, and
fossil fuel sources. CTM simulations based on the different SRES scenarios indicate that the global rises
in NO, and methane emissions will increase the surface background ozone in the northern hemisphere

by 2—7 ppbv by 2030 (Prather et al. 2003; Unger et al. 2006), independent of any climate change.
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Fig. 11.8 Global 2000-2100 trends of methane, NO,, and SO, for different IPCC SRES scenarios (Source:
Nakicenovic et al. 2000)

Dentener et al. (2005) suggest that the SRES projections for NO, may be too pessimistic because they

do not sufficiently account for recent and pending air pollution control legislation in the developing
world. The authors present two alternate scenarios, a relatively optimistic one assuming full enforcement
of current legislation (CLE), and an extremely optimistic one assuming maximum feasible reduction
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(MFR) of emissions based on implementation of all currently available technology without regard to
cost. The CLE scenario shows a modest 13% increase in global NO_ emissions by 2030 relative to 2000.

The MFR scenario shows a decline to 35% of present-day emissions by 2030. Reductions in fossil fuel
use to meet climate stabilization targets would also decrease the NO_ emissions relative to the SRES

Such optimism must however be tempered by observations of recent trends. Measurements of
tropospheric NO, from space have shown a doubling of NO, emissions from China over the 2000-2006

time period (Zhang et al. 2008a), much faster than projected by any of the SRES emission scenarios. In
the United States, NO, emissions from power plants have decreased in response to recent regulations

(Frost et al. 2006), but there is some evidence from atmospheric observations that the NOx source from

motor vehicles has increased (Parrish 2006; Boersma et al. 2008), contrary to emission trends reported
by EPA. Data for 1984-2004 from the National Atmospheric Deposition Program show a large
increasing trend in ammonium deposition (Lehmann et al. 2007), suggesting an increase in nitrogen
cycling from agriculture. Such an increase would affect soil and livestock NO, emissions, already

thought to be underestimated in current inventories (Martin et al. 2003; Bertram et al. 2005; McElroy
and Wang 2005).

For methane, the CLE scenario gives results similar to SRES. However, observations over the past
decade show a leveling of methane concentrations (Forster et al. 2007). It is thus possible that the SRES
scenarios for methane are too pessimistic, though it is also possible that the present plateau is only a
temporary reprieve (Wuebbles and Hayhoe 2002). Positive feedback of climate change on methane
emission from wetlands and thawing permafrost could be a major driver for increasing methane in the
future (Gedney et al. 2004)

Global SO, emissions are projected to increase over the next few decades (except in the B2 scenario)

but then to level off and start decreasing between 2020 and 2040 reaching emissions below present
levels after 2050 (Smith et al. 2005). The short-term increase in projected emissions is driven mainly by
China and India, and the eventual decrease reflects implementation of coal washing, scrubbers, and a
transition away from coal. More recent evidence suggests that SO, emissions from China may decrease

sooner than indicated in the scenario as SO, scrubbers are now being installed on new power plants. As
SO, emissions decrease, sulfate concentrations will decrease essentially simultaneously, hence

removing the negative radiative forcing of sulfate from the atmosphere. Recent estimates of black
carbon (BC) and organic carbon (OC) emissions for the years 2030 and 2050 also project decreases in
global emissions relative to 1996 (Streets 2007). However, the magnitude of emission reductions varies
greatly depending on which IPCC SRES storyline is followed (A1B, A2, B1, and B2) in the
development of the projections and which region of the world is considered with emissions from South
America potentially even increasing (Streets 2007). The relative rate of change of aerosol concentrations
in the atmosphere will have a large impact on radiative forcing. As shown in Fig. 11.9, the combination
of increasing BC and decreasing sulfate along with increases in OC and ozone is projected to result in a
1-2°C net increase in summer temperatures over most of North America in 2100 (Levy et al. 2008a, b).

http://www.springerlink.com/content/k5383327257x5380/fulltext.html 9/27/2011



Global Change and Air Quality Page 18 of 41

Summer 2100 Surface Temperature Change
Due to Short-Lived Gases and Particles

Latitude

60E 120E 180 120W 60w
Longitude
e e
2 -1 05 0 05 1 2 3 5

Fig. 11.9 Surface temperature change in °C due to short-lived gases and particles during northern hemisphere
summer for 2100-2091 vs. 2010-2001 in the GFDL model. (Levy et al. 2008b)

Streets et al. (2009) projected future mercury emissions out to 2050 on the basis of the IPCC (2001)
scenarios. They find a global change in emission relative to present ranging from —4 to +96% depending
on the scenario. The trend is mainly driven by increased coal use in the developing world, principally
China and India which already dominate the global mercury emission inventory (Selin 2005). The
fraction of total mercury emitted in elemental form is expected to decrease from 65% today to 50-55%
by 2050, which would tend to reduce global-scale transport. This decrease is due to reductions in
industrial (non-coal) emissions, which have a low Hg(II)/Hg(0) ratio relative to coal combustion
(Pacyna et al. 2006).

11.5 Time Scales and Implications for Accountability

The rate of change in anthropogenic emissions affecting ozone, PM, and mercury has accelerated over
the past decade. This reflects on the one hand vigorous emission controls in North America and Europe
to meet increasingly stringent air quality objectives, and on the other hand rapid growth of emissions in
China (and to a lesser extent India) from industrialization. This shift is clearly apparent from satellite
observations (Fig. 11.10). It has important implications for both climate change and intercontinental
pollution. Meeting ozone and mercury air quality standards in North America in the future is likely to be
increasingly on external pollution sources outside North America, making the development of
international policies and agreements increasingly important.
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Fig. 11.10 1996-2005 trends in tropospheric NO, columns as observed by the GOME and SCIAMACHY satellite
instruments. (van der A et al. 2008)

In the case of mercury, rapid change in global emissions (Fig. 11.2) is likely to obfuscate benefits from
North American emission controls, except at sites immediately downwind of major point sources where
high mercury deposition is of local origin (Keeler et al. 2006). In the case of 0zone, intercontinental
pollution influence acts mainly to increase background ozone concentrations with peak ozone
concentrations largely a result of regional emissions of ozone precursors.

Effects of climate change on air quality are expected to develop over a time scale of decades,
corresponding to the time scales for climate change (Lin et al. 2007). Direct observation of these effects
will be difficult because of the confounding effect from regional changes in emissions. However, it
should be possible to monitor long-term trends in air pollution meteorology, in particular the frequency
of stagnation episodes. Leibensperger et al. (2008) report a decrease in the frequency of mid-latitudes
cyclones ventilating the northeastern United States over the 1980-2006 time period, consistent with
expected trends from greenhouse warming. Combining this information with the strong observed
interannual correlation between cyclone frequency and ozone pollution episodes, they conclude that the
80 ppbv standard for ozone at that time period would largely have been met in the region by now were it
not for climate change.

International policies for reducing hemispheric-scale pollution can be monitored and evaluated by
satellite observations of atmospheric composition, which represent a major new development in the
observation system for global atmospheric chemistry over the past decade. Inverse model analyses
applied to satellite observations of NO,, formaldehyde, methane, and CO have been used to improve

national and global emission estimates for NO, (Martin et al. 2003), VOCs (Shim et al. 2005), methane

decadal trends in NO_ emissions from the United States (Frost et al. 2006) and worldwide (van der A et

al. 2008), and to detect changes in emissions on a weekly or event time scale (Beirle et al. 2003; Wang
et al. 2007). Adjoint approaches to inverse modeling allow satellite data to constrain emissions at the
scale of individual cities (Kopacz et al. 2009). Satellite observations of ozone and PM have also been
used to test models of intercontinental transport (Heald et al. 2006; Zhang et al. 2006). As discussed in
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Chap. 10, the present observing system, if sustained in the future, should make it possible to monitor and
diagnose the effects of changes in certain global pollutant emissions on background air quality on a
decadal time scale. It would also allow for comparison of projected with actual emissions, adding an
additional element of accountability.

11.6 Climate Mitigation, Air Quality Management, and
Technological Change

In the long run, the most consequential effects of climate change on air quality may arise from the
technological changes that will be required to minimize anthropogenic influences on the Earth’s climate.
Achieving the objectives of the United Nations Framework Convention on Climate Change
(http://unfcce.int/resource/docs/convkp/conveng. pdf)—“stabilization of greenhouse gas concentrations
in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate
system”—requires capping the atmospheric concentrations of long-lived greenhouse gases at some yet-
to-be-determined value. Achieving this goal means that at some point in the future the net emissions of
these gases must decline until a desired steady-state capping concentration is reached. The emission
trajectories required depend on the capping concentration. The lower the concentration, the more rapidly
emissions must be reduced. In addition, reductions in BC (a particulate with adverse health effects, a
short lifetime and a high radiative forcing) would provide a rapid reduction in positive radiative forcing
and could decrease the rate of global warming in the short-term (Kopp and Mauzerall 20/0). How an
emission trajectory may be achieved depends on many factors such as global population growth, levels
of and diversity in global economic development, the goods and services demanded by these economies,
the energy needed to deliver these goods and services, the current and future technologies available to
supply this energy, the performance of these technologies (and how they change with time), when future
technologies may become available, and the cost and availability of fuel sources.

framework, components that simulate the socioeconomic systems and physical processes that determine
the effects of human activities on the physical environment and vice versa. They differ, however, in how
these systems are represented and simulated. Figure 11.11 depicts simulated global emissions of CO, in

the twenty-first century for five different scenarios: a reference “business as usual” case (similar to the
Al scenario described in Sect. 11.2.1) and four stabilization scenarios that would cap the atmospheric
concentrations of CO, at approximately 450 ppm (Level 1), 550 ppm (Level 2), 650 ppm (Level 3), and

750 ppm (Level 4). Each modeling group was given flexibility regarding their assumptions of
population growth, economic development, and the other factors that affect future CO, emissions. The

emission trajectories simulated by the models show significant differences, but all share common
features: (1) the lower the desired capping concentration the more quickly emissions must begin to
deviate from the reference scenario, (2) for capping targets of 550 ppm and above, several decades may
elapse before significant reductions in global CO, emissions growth must occur, and (3) nearly all

capping scenarios require that net CO, emissions reach an allowable maximum sometime within the
twenty-first century.
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Fig. 11.11 Projected global CO, emissions for various GHG mitigation scenarios. Results are from three

separate integrated assessment models. The dark solid lines depict futures in which no special actions are taken
to mitigate anthropogenic climate change (i.e., business as usual). The other curves represent four GHG
stabilization scenarios that would cap the atmospheric concentrations of CO,, at approximately 450 ppm (Leve/ 1),

The differences among the three models are more obvious in Fig. 11.12a, 11.12b (Clarke et al. 2007).
The figure depicts how global “market share” for various energy sources (see Fig. 11.12a for
definitions) evolves in time and changes with the magnitude of the CO, concentration target—assuming

perfect flexibility in the global deployment of energy technology or conservation measures. All of the
models show that the lower the desired capping concentration, the more rapidly and fundamentally the
energy supply system must change in order to meet the target. However, each model paints a
significantly different picture of how this evolution might be achieved. These differences result from
different assumptions about how the economy responds to environmental costs of greenhouse gas
emissions, changes in the energy intensity of the global economy, the cost and availability of fuel
sources and energy technologies, and the possibility of social or policy constraints on fuel sources or
technologies (e.g., nuclear power). Differences among the models indicate how uncertainty about the
evolution of the energy system (and the myriad emissions associated with this system) increases with
time. The actual uncertainty is even greater than indicated here because we cannot know the political
and socioeconomic conditions, social attitudes, or available technologies decades into the future.
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Fig. 11.12a Projected global primary energy consumption (exajoules/year) by energy source for the reference
and Level 4 GHG stabilization scenarios. These scenarios are the same as described in Fig. 11.11. Energy
sources considered by the models are indicated in the figure legend. Fossil fuel sources are modeled with and
without Carbon Capture and Sequestration (CCS). Note that if cost effective CCS technologies are available,
fossil fuels may supply significant fractions of global energy consumption even under aggressive GHG reduction
scenarios (see Fig. 11.13a, 11.13b also). (Clarke et al. 2007)
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Fig. 11.12b Projected global primary energy consumption (exajoules/year) by energy source for Level 1, 2, and 3
GHG stabilization scenarios. The scenarios and suite of technologies are the same as described in Fig. 11.11 and
11.12a, respectively

The model simulations provide one important insight regarding the future: considering the cost and
availability of fossil fuels (especially coal), it is difficult to envision a future energy system that does not
include a major contribution from fossil fuel sources, especially in rapidly developing countries. Thus,
meeting the emission reduction demands of most target CO, concentrations implies the availability of

practical and effective technologies for capturing and sequestering the CO, emissions from fossil fuels.

Without them, meeting the most commonly discussed greenhouse gas reduction targets will be difficult.
However, implementing carbon capture and sequestration (CCS) at the scale envisioned by these
simulations will be a monumental technical and logistical challenge. To give an idea of the global
magnitude of a future CCS industry, the three models project that stabilizing atmospheric CO,

concentrations at about 550 ppm will require a total cumulative capture and sequestration of 140-200 Gt
C by the year 2100 (Clarke et al. 2007), or approximately 20 times current annual global emissions
(Fig. 11.11).

When performed at a national and energy-sector level scale, simulations such as these provide insight
into how climate mitigation policies could affect future air quality. Figure 11.13a, 11.13b (Clarke et al.
2007) depicts how the energy sources for U.S. electricity production might evolve over the twenty-first
century as a function of the various greenhouse gas reduction scenarios discussed previously. The figure
shows that the mix of generation technologies will have to change dramatically, especially after 2050, in
order to meet the more stringent greenhouse gas concentration targets. This change will clearly affect
air-quality related emissions. However, these simulations also show that on a 10-20 year timescale, the
mix of energy sources and generating technologies (and, presumably, the associated emission sources)
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should be fairly stable. This stability reflects the inherent inertia of the energy system. In fact, the rate of
technological change may be overestimated in these simulations. In the models, changes in the energy
system are driven purely by economic considerations, assuming perfect flexibility. Change in the real
world could be either considerably more difficult, or significantly easier depending on political will.
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Fig. 11.13a U.S. electricity production by energy source for the reference and Level 4 GHG stabilization
scenarios. The figure indicates how uncertainty concerning future fuel sources and energy technologies increases
with time. Also, the lower the target GHG stabilization target (see Fig. 11.13b), the greater the projected changes
in fuel-sources and energy-technologies. Figures 11.12a, 11.12b and 11.13a, 11.13b suggest that future
technology and fuel-source change within a given national energy sector (here, U.S. electricity production) could
be much greater than global averages. (Clarke et al. 2007)
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Fig. 11.13b U.S. electricity production by energy source for Level 1, 2, and 3 GHG stabilization scenarios

The timescale issue also applies to other energy sectors. For example, for transportation, fuel sources
and technologies that have been proposed for reducing greenhouse gas emissions include biofuels (e.g.,
ethanol and biodiesel), hydrogen, conventional and plug-in hybrids, electric vehicles, various mass
transit options, and fuel cells. The air-quality related emissions from each of these options will be
different. However, it will be some time before any of them can achieve significant market penetration,
which provides opportunity to assess their implications for future air quality. The tools for conducting
these assessments exist today. They include the air quality models described in Chap. 10 of this book
and integrated assessment models such as those discussed in this section and the next. Using these tools,
we can assess not only the potential effects of greenhouse gas emission reduction policies and options
on air quality, but also the implications of air quality management decisions on climate change and
climate change policy. This application is discussed further in the next section.

Researchers in Mexico have also investigated future greenhouse gas emission scenarios as part of
Mexico’s Third National Communication to the United Nations Framework Convention on Climate
Change (INE-SEMARNAT 2006b). Greenhouse gas emissions from the Mexican energy sector were
estimated for years 2008, 2012 and 2030. The estimates showed a great deal of sensitivity to GDP
growth assumptions; nevertheless, the analysis indicated that near-term greenhouse gas emissions could
be reduced by 17% compared to the base scenario if a number of familiar measures were adopted, such
as increased utilization of renewable energy sources, implementation of stricter fuel economy standards
in private gasoline-run and diesel-run vehicles, and improved energy efficiency. '
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11.7 Integrated Assessment Studies of the Co-benefits
of Air Pollution and Greenhouse Gas Mitigation
Strategies

Integrated assessment studies can be very helpful in examining mitigation strategies that could benefit
both air quality and climate. Several recent integrated assessment studies have examined the co-benefits
to air quality, human health and welfare, and climate change of controlling methane emissions. Fiore et
al. (2002, 2008) show that reductions in methane emissions should lead to global reductions in surface
ozone concentrations. The benefits of these reductions to agriculture, forestry, and non-mortality human
health have been examined by West and Fiore (2005). West et al. (2006) conclude that a 20% reduction
in global methane emissions, starting in 2010 and continuing through 2030 relative to a business-as-
usual scenario, would result in approximately a 1 ppbv reduction in surface ozone concentrations
globally with an associated reduction of approximately 370,000 premature mortalities from ozone
exposure. West et al. (2007) further show that of all the ozone abatement strategies, methane emission
controls appear to have the greatest benefit for mitigation of climate change (Fig. 11.14).
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Fig. 11.14 Reductions in ozone precursor emissions have different effects on radiative forcing per unit reduction
in surface ozone concentration. Shown here is the radiative forcing decrease per unit (ppbv) decrease in global
surface ozone concentrations resulting from 20% global decreases in anthropogenic emissions of NO,, non-

methane VOC, CO, and methane. (Results are from global model calculations by West et al. 2007)

Ethanol is currently being promoted as a clean and renewable fuel that will reduce air pollution, climate
warming and reliance on imported oil. A recent integrated environmental assessment of the production
and use of ethanol as a substitute for gasoline indicates, however, that corn-based ethanol results at best
in only small reductions in greenhouse gas emissions relative to gasoline (Pimentel and Patzek 2005;
Farrell et al. 2006), and could cause an increase in ozone pollution due to NO_ produced as a byproduct

of nitrogen fertilizer (Jacobson 2007). A recent study also finds that when the extra N,O emission from
biofuel production is calculated in “CO, equivalent” global warming terms and compared with the
cooling effect of reducing emissions of fossil fuel derived CO,, the result is that production of biodiesel
and corn ethanol can contribute as much or more to global warming by N,O emissions than cooling by
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fossil fuels savings (Crutzen et al. 2008). In addition, there are concerns that neither corn-based ethanol
nor soybean-based biodiesel can replace substantial petroleum without significantly affecting food
supplies. According to Hill et al. (2006), only 12% of gasoline demand and 6% of diesel demand would
be met if all U.S. corn and soybean production were used for biofuels. On the other hand, if ethanol
were produced from non-food crops grown on agriculturally marginal land using little fertilizer, biofuel
would be produced with less impact on food supplies and with greater environmental benefits (Hill et al.
2006). Use of U.S. croplands for biofuels has been found to increase greenhouse gas emissions due to
resulting land-use change that brings additional land under cultivation (Searchinger et al. 2008).

Integrated assessments evaluating co-benefits of coordinated air pollution and climate mitigation efforts
have been conducted for different parts of the world. The European Environment Agency (EEA)
concluded that coordinated climate and air quality policy has considerable ancillary benefits including
lower overall costs of controlling air pollutant emissions (EEA 2004, 2006). An examination of four
megacities (Mexico City, New York City, Santiago, and Sao Paulo) indicates that greenhouse gas
mitigation would lead to large reductions in ozone and particulate matter concentrations with substantial
proposed control measures in Mexico City, that were estimated to reduce annual particle exposure by
1% and maximum daily ozone by 3%, would also reduce greenhouse gas emissions by 2% (i.e., over
300,000 t of carbon equivalent per year) for both periods 2003-2010 and 2003-2020. For both time
horizons, McKinley et al. (2005) estimate that about 4,400 Quality Adjusted Life Years (QALYs) would
be saved.

Assessments of potential co-benefits of greenhouse gas mitigation in China have also identified large
associated reductions in the emission of air pollutants. When the resulting health improvements are
monetized, the emission reductions are found in many cases to be cost-effective and even profitable
(Aunan et al. 2004, 2006). Conversely, a recent assessment of the effects of present and potential future
emissions of BC, OC, sulfur dioxide and sulfate from China on premature mortality and radiative
forcing finds that reductions in the emissions of aerosol precursors would likely reduce premature
mortalities globally while increasing radiative forcing (Saikawa et al. 2009) and hence climate warming.
Efforts to improve air quality in China using strategic technological choices such as advanced coal
gasification technology have the potential to cost-effectively reduce air pollution and improve public
health while permitting the sequestration of carbon dioxide (Wang and Mauzerall 2006). These types of
focused integrated assessments examining the connection between technological options, emissions,
atmospheric concentrations, impacts on health and agriculture, and associated costs have not been as
common in North America. They could be very helpful in optimizing technological strategies for
management of air quality and climate change.

11.8 Conclusions

Expected changes in climate and in worldwide anthropogenic emissions over the coming decades call
for a global perspective in addressing future air quality problems in North America. As we enter an era
of new international environmental policies directed at mitigating anthropogenic climate change,
leveraging and integrating these policies with those directed at improving air quality will be highly
beneficial to the achievement of both objectives.

Increasing global emissions could make it increasingly difficult to meet more stringent air quality

standards in North America by means of domestic emission controls. The global distribution of pollutant
emissions is changing rapidly, with decreases in North America and Europe and increases in Asia. The
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influence of rising Asian emissions on the problem of meeting North American air quality objectives is
obvious for mercury, which is recognized to be a global pollution problem. It may become increasingly
important for ozone. Models based on the IPCC future scenarios for NO, and methane emissions project

increases of 3—7 ppbv in the surface background concentration of ozone in the United States over the
next two decades. Unlike mercury or ozone, rising Asian emissions are not expected to have a
significant intercontinental influence on PM background in North America because of precipitation
scavenging during intercontinental transport. The principal exception to this rule would be the Arctic
regions of Canada and the United States.

Climate change may affect North American air quality independently of changes in pollutant emissions
through perturbations to the meteorological environment, the chemical environment, and natural
emissions. Simulation of regional climate is a major challenge for GCMs, and the skill of these models
in describing air pollution meteorology and its trends needs to be evaluated. Nevertheless, empirical
evidence exists of a relationship between increased ozone concentrations and rising air temperature.
Exploratory modeling studies suggest that ozone concentrations in polluted regions of North America
may increase by several ppb over the next decades as a result of climate change alone. Published
modeling studies concur that ozone increases due to climate change will be largest in urban areas and
where ozone is already high. In locations where ozone is relatively low, climate change may actually be
beneficial due to decrease in the ozone background as a result of increasing water vapor. Unlike for
ozone, there is no consensus among model studies as to the effect of climate change on PM. This reflects
the complexity of meteorological effects on the different PM components. Climate-driven increases in
wildfires could have a major effect. Little attention has been paid so far to the effect of climate change
on mercury, but this effect could potentially be large through increased ocean volatilization and release
of organic-bound mercury from soil.

Some air pollutants and their precursors can play a significant role in anthropogenic climate change and
represent a potential policy lever for mitigating this problem in the coming decades. Methane, ozone,
and BC combined have a positive radiative forcing (warming) as large as CO, according to the IPCC

(2007). Sulfate, nitrate, and OC PM have a major cooling effect, both directly by scattering sunlight and
indirectly by affecting cloud albedo. The cooling effect of sulfate aerosol is sufficiently large that global
anthropogenic sulfate formed from the oxidation of SO, is thought to have greatly slowed the pace of

greenhouse warming over the past century. Future reductions in SO, emissions to achieve air quality

improvements and acid deposition reduction goals will, therefore, tend to accelerate climate warming.
Reducing methane, CO, and BC emissions could offset this loss of cooling effect, while reducing NO,

emissions is thought to be climate-neutral. Reducing methane, CO, and BC emissions provide a means
for short-term mitigation of climate change, but long-term mitigation will require large reductions in
CO, emissions.

Projected changes in global emissions and climate could significantly complicate accountability
assessments of domestic emission control policies on a decadal time scale. This is manifest for mercury,
as emissions outside North America are changing rapidly and presently dominate large-scale deposition
to North American ecosystems. Changes in precursor emissions on a global scale could also have an
effect on ozone accountability; however, these changes would mainly affect background concentrations
and would, therefore, be separable from ozone pollution episodes.

In the long run, the most consequential effects of climate change on air quality may arise from the
technological changes that will be required to achieve long-term stabilization of greenhouse gas
concentrations. Energy policies focused on energy conservation and use of renewable energy or other
low-carbon or zero-carbon emission energy technologies such as nuclear power are likely to have major
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co-benefits for air quality management. However, unless multipollutant considerations are embodied in
air quality management strategies, actions to improve air quality could have either positive or negative
impacts on climate change. Such considerations, as well as opportunities for achieving air quality and
climate co-benefits, should be assessed to ensure that air quality initiatives have no unintended
consequences or result in no unintended technological or infrastructure legacy problems with regard to
other environmental protection goals.

From the point of view of air quality management, the pace of technological change will generally be
sufficiently slow that the air quality effects of new end-use technologies that might be adopted to
address climate change can be assessed well before they achieve significant market penetration (see
Chap. 8). However, the introduction of new fuels, and their related air quality and climate consequences,
could take place quite rapidly if they can be supplied in sufficient quantity and readily adapted to
existing technologies and infrastructure. As an example discussed elsewhere in this chapter, early
assessments of the effects of increased use of biofuels (e.g., ethanol) have raised questions regarding its
benefits for air quality as well as for net reduction of greenhouse gas emissions.
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