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Introduction

There is considerable interest in understanding the linkages between regional ozone polluti
global atmospheric chemistry because of the implications for the oxidizing power of the a
sphere, greenhouse radiative forcing by ozone, and intercontinental transport of pollution. P
ular focus over the past decade has been placed on the North Atlantic Ocean (NAO) atmo
through a series of field programs [Parrish, this issue]. We have recently applied the GEO
CHEM global 3-D model of tropospheric chemistry [Bey et al.,2001a] driven by assimilated
meteorological observations for 1993-1997 from the NASA Data Assimilation Office (DA
[Schubert et al.,1993] to a detailed analysis of observations from the 1997 North Atlan
Regional Experiment (NARE) [Fehsenfeld et al.,1996], the Atmospheric Chemistry Studies i
the Oceanic Environment (ACSOE) [Sturges et al.,1996], and the 2nd Atmospheric Characteriz
tion Experiment (ACE-2) [Raes et al.,2000], as well as ozonesonde and surface measurem
over the NAO. Model budget analyses, tagging of species by source region, and sensitivity
lations are offering new insights on the sources of tropospheric ozone over the NAO and the
Atlantic transport of pollution. This work is being prepared for publication in the Journal of G
physical Research [Li et al.,2001a, b]. We present here a few of the major results.

Sources of ozone over the North Atlantic

There has been long-standing debate over the contributions of anthropogenic pollution and
port from the stratosphere to the tropospheric ozone budget over the NAO.Oltmans et al.[1992,
1994] have argued for a major stratospheric influence on surface ozone at Bermuda in spr
the basis of strong subsidence indicated by trajectory analyses. However, the relationship o
siding trajectories to the actual origin of ozone is ambiguous [Moody et al.,1995]. Other studies
have found evidence for a major contribution from North American pollution to the springt
ozone maximum at Bermuda [Dickerson et al.,1995;Prados et al.,1999]. A positive O3:CO cor-
relation at Sable Island and other Canadian Atlantic sites in summer was reported byParrish et al.
[1993] and implies a dominance of pollution over stratospheric influence at least for that se
Negative O3:CO correlations in winter at the same sites have been attributed to ozone titratio
NOx and hydrocarbons [Parrish et al.,1998]. Similar correlations between ozone and CO ha
been observed at Mace Head on the western coast of Ireland [Derwent et al., 1994].

The observed O3:CO correlations at Sable Island and Mace Head are well simulated by our m
(Figure 1), providing support for the model representation of photochemistry and transpor
the NAO. Further comparison of observed and simulated time series of ozone and CO conc
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tions at Bermuda and Mace Head in 1996-1997 are shown in Figure 2; the success of the m
capturing both background values and high events is apparent. In that Figure we have d
posed model ozone and CO into contributions from different source regions by using tagged
ers [Wang et al.,1998;Bey et al.,2001b]. We find that most of the surface ozone observed
Bermuda in spring originates from the lower troposphere over North America, while trans
from the upper troposphere/lower stratosphere plays only a minor role (Figure 2a). Similarl
simulations indicate that most of the ozone observed at Mace Head in spring is produced
lower troposphere over Europe (Figure 2b), and this is further supported by decomposition
time series of CO concentrations in the model (Figure 2c). The “other” contribtions in Figur
and 2b are mainly from ozone productions in the lower troposphere over the NAO. Consid
that the ozone precursors over the NAO are largely from North America and Europe, the a
pogenic influence from North America on surface ozone in Bermuda and from European o
face ozone in Mace Head may be even larger.

Prospero et al.[1995] found that summertime ozone at Izana in the Canary Islands (28°N, 16°W,

2.4 km) is positively correlated with7Be aerosols, and negatively correlated with210Pb aerosols,
and viewed these relationships as evidence for a high-altitude source of ozone, possibly fro
stratosphere. We examined the ability of the GEOS-CHEM model to reproduce these correla
using the radionuclide simulation previously reported byLiu et al. [2001]. We find that simulated

ozone at Izana is correlated with7Be (r=0.80; slope=0.39) and anti-correlated with210Pb (r=0.50,
slope=-0.01) [Li et al., 2001b]. Tagged ozone tracer simulations show that these correlation
mostly driven by ozone production in the middle and upper troposphere, with transport from
stratosphere contributing less than 5 ppbv ozone at the site.

There has been considerable recent interest in the effect of ship NOx emissions on ozone produc
tion over the NAO [Lawrence and Crutzen,1999;Kasibhatla et al.,1999]. In our standard simula-
tions we use ship emission estimates from the Global Emissions Inventory Activity (GE
[Benkovitz et al.,1996], which are sufficently low that ships play little role in the ozone budget
recent ship emission inventory byCorbett et al.[1999] indicates much larger values, implying
large influence from ships on ozone and OH over the NAO [Lawrence and Crutzen,1999].Kasib-
hatla et al.[1999] compared the 1997 NARE aircraft observation statistics for NO and NOy with
results from a global 3-D model driven by GCM meteorology, and concluded that the high
emissions ofCorbett et al.[1999] were inconsistent with the aircraft observations. By compar
to specific 1997 NARE observations removed from continental influence, our simulations
indeed that when the ship emission inventory ofCorbett et al.[1999] is included, the marine
boundary layer NO and NOy concentrations are overestimated by a factor of 2; ozone concen
tions are increased by about 10 ppbv. We conclude that the aircraft observations were incon
with the representation of the high ship NOx emissions ofCorbett et al. [1999] in their model.

Trans-Atlantic transport of pollution

Analyses of observations have shown evidence for long-range transport of North American
pollution to the middle and upper troposphere over Europe, but little effect on the surface [Stohl
and Trickl,this issue]. Tagging of ozone and CO enable us to diagnose trans-Atlantic transp
pollution in the GEOS-CHEM simulation. We find that ozone produced in the lower troposp
(>700 hPa) over North America contributes on average about 5 ppbv to the surface ozone a
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Head, but as much as 10-15 ppbv during some transatlantic transport events. Figures 2b
show such events on March 23-26 and April 26-29, 1997. We find that these trans-Atlantic p
tion transport events are less frequent in summer than in other seasons  [Li et al., 2001b].

A remarkable result of our simulation is the occasional occurrence of trans-Atlantic transp
European pollution to North America. We show in Figure 3 one such event during June 3-6,
On June 2-3, a high pressure system formed between the Hudson Bay and the North Se
60°N while a low pressure system was developing between Newfoundland and the eastern
along 45°N. Between the two systems a low level (below 2 km) easterly flow was establis
bringing European pollution directly to the northeastern North America. This easterly
stopped on June 4 as the low pressure system moved eastward. However, the European p
cloud persisted over the northeastern North America until June 8, with large effects on simu
ozone and CO at Sable Island (Figure 4). The “other” contribution in Figure 4a is mainly f
ozone production in the lower troposphere over the NAO, which was particularly large durin
June 3-6 event. Under the flow pattern discussed above, it is likely that the “other” contrib
during the June 3-6 event were due to European pollution being transported to the NAO an
sequent ozone production. As a result, the European influence during the June 3-6 event m
even larger. Unfortunately, no observations were available for that period, and the anomalo
culation pattern did not recur for the remainder of the summer. However, we find similar e
occurred almost every spring and sometimes fall for the time period that we simulated, i.e.,
1997.

In sensitivity simulations with either North American or European fossil fuel emissions shut
we find that anthropogenic sources in North America enhance July mean ozone concentrat
surface air over Europe by 2-4 ppbv, with maxima over the British Isles (Figure 5, left pa
Greater North American influence is actually found over North Africa and the Middle E
because of the deep mixing in these arid regions [Li et al., 2001c]. Anthropogenic sources in
Europe enhance July surface ozone over North America by only 1-2 ppbv (Figure 5, right p
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Figure 1. Correlations between ozone and CO concentrations at Sable Island on the east c
Canada (44°N, 60°W) and at Mace Head on the west coast of Ireland (53°N, 10°W). The figure
shows monthly correlation coefficients and slopes in the observations (solid circles) and
GEOS-CHEM model (open circles). The Sable Island observations are for 1993 [Parrish et al.,
1998] and the Mace Head observations are for 1997 (Peter Simmonds and Gerard Spain, p
communication). Model results are for the corresponding years.
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Figure 2. Observed (dotted line) and simulated (solid line) time series of surface concentra
of (a) ozone in spring 1996 at Bermuda and (b) ozone in spring 1997 at Mace Head, and (c)
1997 at Mace Head. Contributions from different sources are isolated in the model with ta
ozone and CO tracers [Wang et al.,1998;Bey et al.,2001b]. In this manner, total ozone concentr
tions are decomposed into contributions from production in (1) the upper troposphere (< 400
and lower stratosphere (UT/LS); (2) the middle troposphere (MT; 400-700 hPa); and (3) the
troposphere (LT; > 700 hPa) over North America and Europe separately. Total CO concentr
are decomposed into contributions from direct anthropogenic emissions in different conti
and chemical production within the atmosphere. Ozone data for Bermuda were provided by
uel Oltmans. Ozone and CO data for Mace Head are provided by Peter Simmonds and G
Spain, respectively. The arrows highlight North American pollution events at Mace Head
cussed in the text.
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Figure 3. Simulated surface concentrations on June 3-6, 1997 of the European pollution o
tracer produced in the lower troposphere over Europe on June 3-6, 1997. GEOS surface
fields are also shown. The location of Sable Island is indicated by the solid circle.
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Figure 4. Observed (dotted line) and simulated (solid line) time series of surface concentra
of ozone and CO at Sable Island in the summer of 1997. Contributions from different source
isolated in the model with tagged tracers as in Figure 2. The arrows indicate the European
tion event in the model on June 7-8, 1997. Observations are from David Parrish (personal co
nication).
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Figure 5. Decrease in simulated monthly mean ozone concentrations in surface air in July
Europe when North American fossil fuel emissions are shut off (left panel) and over North A
ica when European fossil fuel emissions are shut off (right panel).
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