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� Interpret Nigerian air pollution with satellite and aircraft observations.
� Per capita NMVOC emissions are higher than emissions in China.
� DecembereFebruary surface ozone exceeds 70 ppbv.
� Open fires, fuel emissions, and restricted ventilation contribute to high ozone.
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a b s t r a c t

Nigeria has a high population density and large fossil fuel resources but very poorly managed energy
infrastructure. Satellite observations of formaldehyde (HCHO) and glyoxal (CHOCHO) reveal very large
sources of anthropogenic nonmethane volatile organic compounds (NMVOCs) from the Lagos megacity
and oil/gas operations in the Niger Delta. This is supported by aircraft observations over Lagos and
satellite observations of methane in the Niger Delta. Satellite observations of carbon monoxide (CO) and
nitrogen dioxide (NO2) show large seasonal emissions from open fires in DecembereFebruary (DJF).
Ventilation of central Nigeria is severely restricted at that time of year, leading to very poor ozone air
quality as observed from aircraft (MOZAIC) and satellite (TES). Simulations with the GEOS-Chem
chemical transport model (CTM) suggest that maximum daily 8-h average (MDA8) ozone exceeds
70 ppbv over the region on a seasonal mean basis, with significant contributions from both open fires (15
e20 ppbv) and fuel/industrial emissions (7e9 ppbv). The already severe ozone pollution in Nigeria could
worsen in the future as a result of demographic and economic growth, although this would be offset by a
decrease in open fires.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
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1. Introduction

Nigeria is Africa's most populous country (170 million people as
of 2012). Its population grew 60% between 1990 and 2008 and is
projected to reach 0.5e1 billion people by 2100 (UN, 2013). Niger-
ia's 2012 GDP growth rate of 7% per year, forecast to continue (PwC,
2013), is amongst the highest in the world. The Nigerian economy
recently surpassed South Africa as the largest on the continent
(Magnowski, 2014).
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Fig. 1. Map of Nigeria highlighting major emission centers. The population density
map is for 2000 (CIESN, 2005).

Fig. 2. Surface winds and deep convection over Nigeria. Mean 0e1 km wind vectors
(arrows) and 500 hPa convective mass fluxes (contours) are shown for the dry season
(DecembereFebruary) and wet season (JuneeAugust) of 2006. Data are from NASA
MERRA (Rienecker et al., 2011).
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This rapid growth in Nigeria elicits a range of environmental
concerns including air quality. Pollution from mobile sources is
exacerbated by inefficient vehicles, disorganized road networks,
traffic congestion, and fuel adulteration (Hopkins et al., 2009; Osuji
et al., 2009; Assamoi et al., 2010). The megacity Lagos has higher
emissions of nonmethane volatile organic compounds (NMVOCs)
than megacities in China and India (Hopkins et al., 2009).
Baumbach et al. (1995) measured average benzene concentrations
in Lagos of 80 ppbv, which is 8 times more than the highest con-
centrations found by Barletta et al. (2005) in Chinese cities. The oil
and gas sector is also a large source of air pollution due to flaring
(Ologunorisa, 2001; Osuji and Avwiri, 2005), illegal oil refining (EIA,
2012), gas leakage and venting (Hopkins et al., 2009), and frequent
pipeline explosions (Minga et al., 2010; Fadeyibi et al., 2011). In the
densely populated Niger Delta, where oil and gas extraction is
concentrated, carcinogenic polycyclic aromatic hydrocarbon (PAH)
concentrations are amongst the highest in the world (Ana et al.,
2012). In addition, inadequate electricity distribution results in
dependence of industries and households on diesel-powered
backup generators (BUGs), kerosene, and fuelwood (Ikeme and
Ebohon, 2005; Akinlo, 2009).

Satellites provide a unique resource for observing air quality in a
region such as Nigeria where ground-based information is sparse.
In a recent continental-scale study for Africawe used formaldehyde
(HCHO) observations from the space-based Ozone Monitoring In-
strument (OMI) to map emissions of isoprene, a NMVOC emitted by
vegetation (Marais et al., 2012). However, we found that we could
not retrieve isoprene emissions over Nigeria because of extremely
high HCHO of apparently anthropogenic origin, comparable to
levels observed over industrial regions of China (Fu et al., 2007).

Here we conduct a comprehensive analysis of satellite obser-
vations of atmospheric composition over Nigeria, including not
only HCHO but also carbon monoxide (CO), nitrogen dioxide (NO2),
glyoxal (CHOCHO), methane (CH4), and ozone (O3). We also use
aircraft measurements obtained during the African Monsoon
Multidisciplinary Analysis (AMMA) campaign in 2006 (Hopkins
et al., 2009; Redelspeger et al., 2006) and the Measurement of
Ozone andWater Vapor aboard Airbus In-service Aircraft (MOZAIC)
program in 2003e2004 (Marenco et al., 1998; http://www.iagos.fr/
mozaic). We interpret these data with the GEOS-Chem chemical
transport model (CTM) in terms of the information they provide for
Nigerian emissions and air quality.

2. Pollution sources and transport in Nigeria

Fig. 1 shows the major population centers and industrial point
sources in Nigeria. The highest population densities are in the
northern state Kano, the southwestern state Lagos, and the Niger
Delta states in the southeast. Metropolitan Lagos has a population
of 21 million people with a growth rate of 670 000 people per year
(Cocks, 2013). The majority of Nigeria's industry is concentrated in
5 cities e Kano and Kaduna in the north, Lagos in the southwest,
and Warri and Port Harcourt in the Niger Delta.

Oil and gas production is concentrated in the Niger Delta. Pro-
duction in 2011 was 2.1 million bpd (barrels per day) of crude oil
(3% of global production) and 28 billion m3 of natural gas (0.9%). Up
to 70% of extracted natural gas is lost by venting, leakage, and
flaring (Ashton-Jones, 1998). Extensive pipeline networks transport
crude oil from wells to export terminals and also link wells to re-
fineries, but the latter only operate at 20% capacity due to
mismanagement, poor maintenance, and pipeline vandalism (EIA,
2012). Low refining capacity has forced Nigeria to import more
than 80% of its refined products, while more than 80% of extracted
crude oil is exported accounting for >95% of Nigeria's export
earnings (EIA, 2012). Theft of crude oil at pipelines is between
100 000 and 400 000 bpd andmuch of this is refined illegally in the
Niger Delta for local and international sale of kerosene, diesel, and
bitumen (EIA, 2012).

Electricity generation in Nigeria includes oil- and gas-fueled
thermal power plants and hydropower. Hydroelectric plants are
concentrated in central Nigeria, while thermal power plants are
close to industry in Lagos and oil extraction facilities in the Delta
(Fig. 1). Although coal fueled the industrialization of Nigeria in the
early 20th century, most coal mines were abandoned following the
Nigerian-Biafran civil war (1967e1970) (Oguejiofor, 2010). Inade-
quate supply of electricity and regular power outages lead to
dependence on diesel for BUGs and kerosene for lighting. BUGs are
used by 97% of businesses and in 1990 accounted for 30% of the
nation's grid capacity (Ikeme and Ebohon, 2005). Fuelwood and
waste burning, a source of energy for illegal oil refining in the Niger
Delta and domestic use by rural populations, accounts for >80% of
the country's energy consumption (Hyman et al., 1994; Maconachie
et al., 2009; EIA, 2012).
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Fig. 2 shows 2006 surface winds and 500 hPa convective mass
fluxes for the dry season (DecembereFebruary e DJF) and wet
season (JuneeAugust e JJA). TheWest African Monsoon (WAM) is a
prominent feature in JJA and effectively ventilates the region. In DJF,
by contrast, winds are stagnant over central Nigeria and vertical
ventilation is suppressed by a strong temperature inversion at
900e750 hPa due to warm northeasterly Harmattan winds at that
altitude blowing from the Sahara (Sauvage et al., 2005). The lack of
ventilation is illustrated in Fig. 3 with a GEOS-Chem simulation of
222Rn, a chemically inert continental tracer with uniform source
from non-frozen soil and e-folding lifetime of 5.5 days (Jacob et al.,
1997; Liu et al., 2001). Surface air 222Rn concentrations in DJF in
West Africa are the highest in the world, highlighting the potential
for accumulation of pollution.
3. Atmospheric composition over Nigeria observed from
space

Fig. 4 shows DJF mean satellite observations of atmospheric
composition over Nigeria mapped on a 0.5 � 0.5� grid: CO from
AIRS, tropospheric NO2 and HCHO from OMI, CH4 from SCIA-
MACHY, and CHOCHO from GOME-2. Values for JJA are shown for
OMI NO2 only; other data are excessively noisy in that season
because of cloud cover. Sources of data are given in Table 1. AIRS CO
columns are weighted towards the mid-troposphere (McMillan
et al., 2011) while other variables have uniform vertical sensitivity
in the tropospheric column (after air mass factor correction). Ob-
servations are averaged over 2005e2007, except for CHOCHO
which is 2007 only as GOME-2 was launched in October 2006.
MODIS Terra fire counts at 1 � 1 km2 resolution are superimposed
on AIRS CO.

CO and NO2 (DJF) showmaxima in central Nigeria from seasonal
open fires. Urban and industrial activity in Lagos and the Niger
Delta is also apparent in the DJF observations for NO2 but not for CO,
possibly reflecting the weak boundary layer sensitivity of the AIRS
instrument. NO2 concentrations in JJA are considerably lower than
in DJF over most of Nigeria, reflecting the lack of fire influence but
also the more efficient ventilation. The exception is northern
Nigeria (Sahel), where higher NO2 in JJA may be due to stimulation
of NOx emissions by precipitation at the onset of the wet season
(Yienger and Levy, 1995; Jaegl�e et al., 2004). The JJA NO2 maximum
in the northeastern corner of Nigeria may be due to crop cultivation
and receding shorelines of Lake Chad (Batello et al., 2004).

HCHO in Nigeria, offset from the open fire NO2 and CO
enhancement, is highest in the Niger Delta and is also high over
Lagos, indicating a dominant source from anthropogenic NMVOCs.
This is in sharp contrast to the rest of Africa where HCHO observed
Fig. 3. Mean 222Rn mixing ratios in surface air simulat
from space is mainly from open fires and isoprene (Stavrakou et al.,
2009;Marais et al., 2012). CH4 peaks in the Niger Delta, indicative of
the oil/gas source, with high values also along the distribution line
to Lagos. By contrast, CHOCHO is higher over Lagos than over the
Delta. CHOCHO is not produced from oxidation of alkanes (a large
fraction of oil/gas emissions; Gilman et al. (2013)) but has a high
yield from oxidation of aromatics associatedwith vehicle emissions
(Fu et al., 2008; Liu et al., 2012).

The satellite data indicate HCHO:NO2 molar ratios of 6e8 over
Lagos, whereas values for megacities in China and the US tend to be
less than unity (Martin et al., 2004; Duncan et al., 2010; Witte et al.,
2011). This reflects an unusually high NMVOC/NOx emission ratio in
Lagos, as would be expected from the very inefficient energy
infrastructure and lack of pollution control.
4. Constraints on Nigerian emissions

We use the GEOS-Chem global 3-D CTM (see Appendix) to
simulate atmospheric composition over Nigeria and compare with
aircraft and satellite observations. Table 2 shows Nigerian emis-
sions in the model, including corrections on the basis of observa-
tions as discussed below.

Some information on anthropogenic emissions from Lagos is
available from atmospheric composition measurements made on-
board the AMMA BAe-146 aircraft on Thursday 8 August 2006 at
1530e1700 local time. The NMVOC measurements imply very high
emissions (Hopkins et al., 2009). Fig. 5 compares observed and
simulated (GEOS-Chem) boundary layer (<1 km) NMVOC and CO
concentrations. The standard GEOS-Chem simulation uses RETRO
(Schultz et al., 2007) as its default global inventory for anthropo-
genic NMVOC emissions, except for ethane which is from Xiao et al.
(2008). We find that CO, ethane, propane, and acetone are well
simulated. Other NMVOCs including higher alkanes and aromatics
are underestimated several-fold, likely reflectingmissing sources in
the RETRO emission inventory from vehicles, BUGs, and industry
and consistent with other observations of elevated concentrations
in Lagos (Baumbach et al., 1995). Successful simulation of CO and
short alkanes suggests that the model bias for NMVOCs reflects
error in emissions rather than transport or dilution. We corrected
anthropogenic emissions throughout Nigeria by the corresponding
factor bias and results are shown in Fig. 5. The residual error is from
chemical non-linearity and is within the uncertainty in the
comparison.

The resulting corrected anthropogenic NMVOC emissions in
Nigeria for 2006 are 6.4 Tg C a�1, 4 times the RETRO inventory
(Table 2). From the stoichiometry of speciated emissions this
translates into 8.4 Tg NMVOCs a�1 (49 kg NMVOCs per capita) and
ed by GEOS-Chem for DecembereFebruary 2006.



Fig. 4. Satellite observations of atmospheric composition over Nigeria: 2005e2007 DecembereFebruary (DJF) means (2007 only for CHOCHO) and JuneeAugust (JJA) means for
NO2. Data are atmospheric columns except for NO2 (tropospheric column) and CH4 (column-averaged mixing ratio). Individual fire counts at 1 � 1 km2 are also shown. Gray
indicates missing data. See Table 1 for sources of data.

Table 1
Satellite data used in this work.

Species Instrument Producta Reference

CO AIRSb NASA v5 L2 McMillan et al. (2011)
NO2 OMI ESA TEMIS v2 L2 Boersma et al. (2007)
CH4 SCIAMACHYc SRON/JPL v5.5 Frankenberg et al. (2011)
HCHO OMI NASA v2 L3 Kurosu (2008)
CHOCHO GOME-2 Research product Lerot et al. (2010)
Fire Counts MODIS NASA v5 L3 Giglio et al. (2003)
O3 TESd v005 Bowman et al. (2006)

a v ¼ version; L ¼ level.
b Only daytime data are used as these have higher quality than nighttime data

(Kopacz et al., 2010). A 10% downward correction is applied to correct for positive
bias (Yurganov et al., 2008, 2010; Warner et al., 2010; McMillan et al., 2011).

c Data are for land only and include a bias correction dependent on water vapor
(Wecht et al., 2014).

d Reprocessed to a fixed a priori profile forWest Africa and filtered for data quality
following Zhang et al. (2010).

Table 2
Annual emissions in Nigeria (2006).a

Species Emission inventory Emissions

Standard Corrected

NOx [Tg N a�1] 0.60 1.1
Fossil fuel EDGAR v2.0 0.10 0.21b

Biofuel Yevich and Logan (2003) 0.073 0.073
Open fires GFED v2 0.096 0.27c

Soils Yienger and Levy (1995) 0.33 0.52d

CO [Tg CO a�1] 15 49
Fossil fuel EDGAR v2.0 3.2 5.4b

Biofuel Yevich and Logan (2003) 5.3 5.3
Open fires GFED v2 6.2 38c

NMVOCs [Tg C a�1] 2.7 7.4
Fuel RETROe 1.6 6.4f

Open fires GFED v2 0.35 0.35
Biogenic MEGAN 0.79 0.65g

CH4 [Tg a�1] 8.2 8.2
Oil and Gas EDGAR v4.2 1.7 1.7
Livestock EDGAR v4.2 1.3 1.3
Waste EDGAR v4.2 0.90 0.90
Wetlands Picket-Heaps et al. (2011) 2.7 2.7
Other EDGAR v4.2 1.6 1.6

a “Standard” emissions are those in the standard version of GEOS-Chem (v9-01-
03) using the emission inventories indicated. “Corrected” emissions are modified on
the basis of additional information and constraints from observations as described
in the text.

b Including additional emissions from motorcycles and back-up generators (see
Appendix).

c Increased to improve agreement with MOZAIC CO, AIRS CO, and OMI NO2.
d Increased to improve agreement with OMI NO2 in northern Nigeria in JJA.
e Except ethane, which is from Xiao et al. (2008).
f Increased on the basis of AMMA aircraft observations.
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can be compared to an estimated anthropogenic source of
23 Tg NMVOCs a�1 from China (18 kg NMVOCs per capita) (Zhang
et al., 2009).

Fig. 6 shows the simulation by GEOS-Chem of the satellite ob-
servations in Fig. 4. The simulation includes the above correction to
anthropogenic NMVOC emissions as well as other corrections
applied as scale factors to the standard GEOS-Chem emissions
(Table 2 and Appendix). Model values are means for DJF 2006 (and
JJA for NO2 only) sampled at the satellite overpass times, and
including AIRS CO and SCIAMACHY CH4 averaging kernels. The
model has a horizontal resolution of 2 � 2.5� while the observa-
tions in Fig. 4 are on a 0.5 � 0.5� grid, so that fine-scale features in
the observations are diluted in the model.
g Decreased across the Sahel to match the HCHO and CHOCHO satellite data.



Fig. 5. Concentrations of CO and NMVOCs over Lagos on 8 August 2006 at 1530e1700
local time. Observations from the AMMA aircraft at <1 km altitude (black) are
compared to GEOS-Chem results sampled at the time and location of the aircraft ob-
servations, using the standard GEOS-Chem emission inventories (red) and after scaling
of emissions to correct for the bias (blue) (Table 2). Values are geometric means, with
geometric standard deviations for the observations. Model points are offset for clarity.
CO concentrations are ppmv. ALK4 ≡ �C4 alkanes, MeCHO ≡ acetaldehyde,
MEK ≡ methyl ethyl ketone. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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GEOS-Chem roughly reproduces the spatial distribution and
magnitude of NO2 and CO after increasing GFED v2 open fire emis-
sions of NOx and CO (Table 2). The previously discussed increase of
model anthropogenic NMVOC emissions to fit the AMMA data en-
ables simulation of the observed OMI HCHO maximum over Lagos
and the Niger Delta. The model roughly reproduces the CHOCHO
Fig. 6. GEOS-Chem simulation of the satellite observations in Fig. 4 after applying correction
and include total column CO weighted by the AIRS averaging kernels, tropospheric NO2 co
averaging kernels, and CHOCHO column. The model is sampled during the satellite overpa
observations over Lagos but is too high in the Delta. Aromatics are
the dominant anthropogenic source of CHOCHO (Liu et al., 2012),
andweregreatly increased in themodel tomatch theAMMAaircraft
data over Lagos (Fig. 5). It may be that such an increase is not
appropriate for the Delta as oil/gas emissions are dominated by al-
kanes. The CHOCHO and HCHO enhancement east of Nigeria is from
oxidation of isoprene emitted in central Africa that is still too high
after decreasing emissions there (see Appendix).

The high CH4 levels in the Niger Delta, observed by SCIAMACHY
and reproduced in GEOS-Chem, are dominated by emissions from
the oil and gas industry. According to EDGAR v4.2 (EC-JRC/PBL,
2011), the default anthropogenic inventory for CH4 emissions in
GEOS-Chem, oil/gas emissions account for 75% of DJF CH4 emissions
in the Niger Delta (oil/gas extraction) and 40e50% across coastal
Nigeria (pipeline network linking the Delta and Lagos). Wetlands
are also a major source of CH4 in the Delta (18e30%).

5. Implications for ozone air quality

Clear skies, stagnant air, and strong temperature inversions over
central Nigeria in DJF imply a particular propensity for air quality
problems. Observations allow us to place some constraints on
surface O3, a major respiratory irritant produced by photochemical
oxidation of VOCs and CO in the presence of NOx. Field and model
studies have found elevated surface O3 concentrations in West
Africa in DJF due to seasonal open fires (Helas et al., 1995; Marufu
et al., 2000; Sauvage et al., 2005; Aghedo et al., 2007). Here we
test the GEOS-Chem simulation of O3 with aircraft observations
from MOZAIC (Thouret et al., 1998) and satellite observations from
TES, and examine the implications for O3 pollution over Nigeria
now and in the future.
s to the emission inventories (Table 2). Values are means for DecembereFebruary 2006
lumn, HCHO column, column average CH4 mixing ratios weighted by the SCIAMACHY
ss times. The horizontal resolution is 2 � 2.5� .



Fig. 7. Mean vertical profiles of O3 concentrations over Abuja and Lagos in Januar-
yeFebruary. MOZAIC observations are for 3 descent flights over Abuja and 16 over
Lagos at 18e19 and 18e21 local time, respectively, in 2003e2004. Horizontal lines are
1s standard deviations. Corresponding GEOS-Chem profiles are means for Januar-
yeFebruary 2006 at the same local time.
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MOZAIC observations of vertical O3 profiles from commercial
flights are available for Lagos and Abuja in JanuaryeFebruary
2003e2004 at 18e21 and 18e19 local time, respectively. These are
shown in Fig. 7 together with the corresponding mean model
profiles for JanuaryeFebruary 2006 sampled at the same local time.
The observations at Abuja show mean concentrations of
60e75 ppbv from the surface to 700 hPa. Such high values are due
to a combination of fires and anthropogenic emissions, as discussed
below. The model is about 10 ppbv higher than the observations
below 800 hPa. It does not capture the drop at the surface, which
could be due to poor model representation of stratified conditions
near the surface after sunset (Jacob et al., 1993). Lower O3 con-
centrations in the Abuja profile above 700 hPa are associated with
the African Easterly Jet (AEJ) (Sauvage et al., 2007). Concentrations
over Lagos differ from those over Abuja mostly below 900 hPa,
Fig. 8. O3 concentrations measured by TES in the lower free troposphere in DJF 2006. The
kernel matrix row for Abuja). The right panels show the TES retrievals and the GEOS-Chem O
and smoothed by the TES sensitivity. The TES data were reprocessed to use a fixed a priori
reflecting the influx of clean oceanic air (Fig. 2). Above 900 hPa the
Harmattan northeasterly winds carry O3 pollution from central
Nigeria over Lagos. This is again roughly reproduced by the model,
with a 10 ppbv positive bias.

TES is a thermal IR instrument with sensitivity to O3 in the lower
free troposphere. Fig. 8 shows the TES O3 retrieval at 825 hPa,
representing a tropospheric column concentration with maximum
sensitivity at 800e700 hPa (left panel). Retrievals nearer the sur-
face have a similar vertical pattern of sensitivity but weaker signal.
O3 at 800e700 hPa is strongly affected by the Harmattan winds
transporting O3-rich air from central to coastal Nigeria, as is
apparent from the vertical profiles over Abuja and Lagos (Fig. 7).
Deep convection over coastal Nigeria (Fig. 2) then transports that
O3-rich air to high altitude. The TES observations show a maximum
over Lagos, consistent with that transport pattern. GEOS-Chem
results sampled with TES sensitivity (Fig. 8) show a more muted
effect of this transport with little gradient from central to coastal
Nigeria, consistent also with the aircraft profiles of Fig. 7.

Fig. 9 shows mean surface daily maximum 8-h average (MDA8)
O3 concentrations simulated by GEOS-Chem in surface air for DJF
2006. Values in central Nigeria exceed 80 ppbv. Even allowing for a
possible ~10 ppbv positive bias in the model, these are very high
values and suggest that Nigeria has presently a major O3 air quality
problem. We are unaware of an official O3 air quality standard in
Nigeria, but the US health-based standard of 75 ppbv (MDA8)
would be routinely exceeded.

The band of elevated O3 pollution in the GEOS-Chem simulation
across central Nigeria follows the pattern of seasonal open fires but
also the transport of pollution from coastal anthropogenic sources
(Fig. 2) and meteorological stagnation (Fig. 3). GEOS-Chem sensi-
tivity simulations with zeroed sources indicate that open fires in-
crease mean MDA8 O3 in central Nigeria in DJF by 15e20 ppbv
while anthropogenic sources (fuel) increase it by 7e9 ppbv,
consistent with the previousmodel study by Aghedo et al. (2007). A
sensitivity simulation zeroing emissions from NMVOC anthropo-
genic emissions only indicate that these contribute half of the
anthropogenic MDA8 O3 increase.

Anthropogenic emissions in Nigeria are expected to increase in
the future following economic growth. The Representative Con-
centration Pathways (RCP) scenarios (van Vuuren et al., 2011)
left panel shows the vertical sensitivity of the TES 825 hPa retrieval (mean averaging
3 values sampled along the TES orbit tracks at the overpass time (0130 and 1330 local)
(Zhang et al., 2010) so that the structure in the figure is solely from the observations.



Fig. 9. Mean daily maximum 8-h average (MDA8) O3 concentrations simulated by
GEOS-Chem in surface air over Nigeria for DecembereFebruary 2006.
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project anthropogenic NOx emissions in Nigeria of 0.2e0.5 Tg N a�1

by 2050, compared to 0.2 Tg N a�1 for 2000, but these assume
strong regulation of air pollution in the future. A less optimistic
scenario where fuel emissions scale with power generation would
imply an order-of-magnitude increase in anthropogenic emissions
if Nigeria's economy were to rise to the current level of BRICS na-
tions (i.e. Brazil, Russia, India, China, and South Africa). On the other
hand, economic growth would likely be associated with decreased
fire activity. Arino et al. (2012) find significant decrease in Nigerian
fires over 1995e2009 from ATSR satellite measurements. Thus the
future of O3 air quality in Nigeria depends on the likely opposite
trends of anthropogenic and fire emissions.
6. Conclusions

Nigeria has a large and rapidly growing population, a massive
oil/gas exploitation sector, and a poorly functioning energy sector.
Little information is available on its air quality. Here we used an
ensemble of satellite observations of atmospheric composition
together with aircraft observations and the GEOS-Chem model to
better understand pollution sources and ozone air quality in
Nigeria. Particulate matter and carcinogens such as benzene also
degrade air quality in Nigeria, but observations of these pollutants
near source regions are very limited.

Satellite observations of HCHO and CHOCHO indicate extremely
high NMVOC emissions in the Lagos megacity and in the Niger
Delta where oil and gas extraction is concentrated. HCHO is highest
over the Delta while CHOCHO is highest over Lagos and downwind.
The HCHO data indicate extensive leakage of NMVOCs (mostly al-
kanes) from oil/gas extraction, as corroborated by satellite obser-
vations of CH4. The CHOCHO data imply considerable emissions of
aromatic NMVOCs in Lagos, consistent with limited in situ data. We
estimate an anthropogenic NMVOC source of 6.4 Tg C a�1 for
Nigeria e higher on a per capita basis than China.

Anthropogenic NOx emissions in Nigeria are lower than in
comparable urban/industrial areas of China or the US, reflecting the
very inefficient power production system. There is however a large
NOx source from open fires in DecembereFebruary (DJF). Together
with severely restricted ventilation this leads to poor O3 air quality
in central Nigeria. Model results suggest that the daily maximum 8-
h average surface (MDA8) O3 exceeds 70 ppbv over much of the
region on a seasonal mean basis, and this is supported by satellite
(TES) and aircraft (MOZAIC) data. Sensitivity simulations indicate
that open fires and fuel/industrial emissions enhance MDA8 O3 by
15e20 and 7e9 ppbv, respectively, over central Nigeria in DJF.
Future economic growth with associated increase of fuel/industrial
emissions would worsen O3 air quality although this might be
compensated by decreasing fire activity.
Acknowledgments

This work was funded by NASA through the Aura Science Team
and by a South African National Research Scholarship for Study
Abroad awarded to EAM. The authors grately acknowledge James
Hopkins and Claire Reeves for access to the NMVOC measurements
obtained onboard the BAe-146 aircraft as part of the AMMA
campaign in JulyeAugust 2006. The authors acknowledge the
strong support of the European Commission, Airbus, and the Air-
lines (Lufthansa, Air-France, Austrian, Air Namibia, Cathay Pacific,
Iberia and China Airlines so far) who carry the MOZAIC or IAGOS
equipment and perform the maintenance since 1994. MOZAIC is
presently funded by INSU-CNRS (France), M�et�eo-France, CNES,
Universit�e Paul Sabatier (Toulouse, France) and Research Center
Jülich (FZJ, Jülich, Germany). IAGOS has been and is additionally
funded by the EU projects IAGOS-DS and IAGOS-ERI. The MOZAIC-
IAGOS data are available via CNES/CNRS-INSU Ether web site http://
www.pole-ether.fr.
Appendix. GEOS-Chem description

We use the GEOS-Chem chemical transport model (version 9-
01-03, http://geos-chem.org) driven by GEOS-5 assimilated mete-
orological data from the NASA Global Modeling and Assimilation
Office (GMAO). The GEOS-5 meteorological data have a native
horizontal resolution of 0.5 � 0.67� with 72 vertical pressure levels
and 6-h temporal frequency (3-h for surface variables and mixing
depths). We use data for year 2006 and degrade the horizontal
resolution to 2 � 2.5� and 47 pressure levels for input to GEOS-
Chem. GEOS-Chem results use a one year spinup for chemical
initialization.

The simulations presented here include the standard GEOS-
Chem representation of oxidant-aerosol chemistry as described
for example by Mao et al. (2010). We added chemical mechanisms
for the oxidation of benzene, toluene, and xylenes (Calvert et al.,
2002), and ethylene and acetylene (Saunders et al., 2003), as
these are important reactive NMVOCs in Nigeria. We also con-
ducted a separate GEOS-Chem simulation of CH4 (Picket-Heaps
et al., 2011) for comparison with the SCIAMACHY CH4 data.

Emissions used in the model are listed in Table 2. Anthropogenic
emissions of CO and NOx in the standard GEOS-Chem simulation
are from the EDGAR v2.0 inventory (Olivier et al., 1996) and biofuel
NOx and CO emissions are from the Yevich and Logan (2003) in-
ventory. NOx emissions from soils and fertilizer use are from
Yienger and Levy (1995) as implemented byWang et al. (1998) and
are increased by 60% to improve agreement with OMI tropospheric
NO2. Open fire emissions are from GFED v2 with 8-day temporal
resolution (van der Werf et al., 2006). We impose a cap of
1 g C m�2 d�1 on the biomass burn rate in central Africa to avoid
spuriously high emissions. We also increase open fire emissions of
CO and NO2 in Nigeria to better match CO fromMOZAIC (Abuja and
Lagos flights) and AIRS, and NO2 from OMI. Anthropogenic NMVOC
emissions, including biofuel use, are from the RETRO inventory
(Schultz et al., 2007), except ethane emissions which are from Xiao
et al. (2008). Isoprene and biogenic acetone, ethene, and propene
emissions are calculated with theMEGAN v2.1 inventory (Guenther
et al., 2006) including modifications described in Marais et al.
(2012) and a 50% emissions reduction in central Africa and the
Sahel (Marais et al., 2014).

http://www.pole-ether.fr
http://www.pole-ether.fr
http://geos-chem.org
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Anthropogenic emission inventories for Nigeria do not properly
account for motorcycles and diesel-powered backup generators
(BUGs). Assamoi and Liousse (2010) developed a black carbon and
organic carbon aerosol emission inventory for motorcycles in West
Africa. Here we include these emissions and emissions of carbonyls,
aromatic VOCs, NOx, and CO using emission factors available for
Vietnam (Oanh et al., 2012). We derive BUG emissions in Nigeria
using the 2400 MW installed capacity for 1999 estimated by the
Nigerian Energy Commission (www.energy.gov.ng/) and emission
factors from Gullet et al. (2006) and Sawant et al. (2007).

Further adjustments of emissions on the basis of the aircraft and
satellite data over Nigeria are described in the text and in Table 2.
References

Aghedo, A.M., Schultz, M.G., Rast, S., 2007. The influence of African air pollution on
regional and global tropospheric ozone. Atmos. Chem. Phys. 7, 1193e1212.

Akinlo, A.E., 2009. Electricity consumption and economic growth in Nigeria: evi-
dence from cointegration and co-feature analysis. J. Policy Model. 31, 681e693.
http://dx.doi.org/10.1016/j.jpolmod.2009.03.004.

Ana, G.R.E.E., Sridhar, M.K.C., Emerole, G.O., 2012. Polycyclic aromatic hydrocarbon
burden in ambient air in selected Niger Delta communities in Nigeria. J. Air
Waste Manage 62, 18e25. http://dx.doi.org/10.1080/10473289.2011.628900.

Arino, O., Casadio, S., Serpe, D., 2012. Global night-time fire season timing and fire
count trends using the ATSR instrument series. Remote Sens. Environ. 116,
226e238. http://dx.doi.org/10.1016/j.rse.2011.05.025.

Ashton-Jones, N., 1998. The Human Ecosystem of the Niger Delta: an ERA Hand-
book. Environmental Rights Action (ERA), Ibadan, Nigeria, p. 137.

Assamoi, E.-M., Liousse, C., 2010. A new inventory for two-wheel vehicle emissions
in West Africa for 2002. Atmos. Environ. 44, 3985e3996. http://dx.doi.org/
10.1016/j.atmosenv.2010.06.048.

Barletta, B., Meinardi, S., Rowland, F.S., Chan, C.-Y., Wang, X., Zou, S., Chan, L.Y.,
Blake, D.R., 2005. Volatile organic compounds in 43 Chinese cities. Atmos.
Environ. 39, 5979e5990. http://dx.doi.org/10.1016/j.atmosenv.2005.06.029.

Batello, C., Marzot, M., Tour�e, A.H., 2004. The Future is an Ancient Lake. FAO, Rome,
Italy.

Baumbach, G., Vogt, U., Hein, K.R.G., Oluwole, A.F., Ogunsola, O.J., Olaniyi, H.B.,
Akeredolu, F.A., 1995. Air pollution in a large tropical city with a high traffic
density e results of measurements in Lagos, Nigeria. Sci. Total Environ. 169,
25e31.

Boersma, K.F., Eskes, H.J., Veefkind, J.P., Brinksman, E.J., van der, A.,R.J., Sneep, M.,
van den Oord, G.H.J., Levelt, P.F., Stammes, P., Gleason, J.F., Bucsela, E.J., 2007.
Near-real time retrieval of tropospheric NO2 from OMI. Atmos. Chem. Phys. 7,
2103e2118. http://dx.doi.org/10.5194/acp-7-2103-2007.

Bowman, K.W., Rodgers, C.D., Kulawik, S.S., Worden, J., Sarkissian, E., Osterman, G.,
Steck, T., Lou, M., Eldering, A., Shephard, M., Worden, H., Lampel, M., Clough, S.,
Brown, P., Rinsland, C., Gunson, M., Beer, R., 2006. Tropospheric emission
spectrometer: retrieval method and error analysis. IEEE T. Geosci. Remote 44,
1297e1307.

CIESN (Center for International Earth Science Information Network), 2005. Gridded
Population of the World, Version 3 (GPWv3) Data Collection. Columbia Uni-
versity, New York. http://sedac.ciesin.columbia.edu/gpw/index.jsp.

Calvert, J., Atkinson, R., Becker, K.H., Kamens, R.M., Seinfeld, J.H., Wallington, T.J.,
Yarwood, G., 2002. The Mechanisms of Atmospheric Oxidation of Aromatic
Hydrocarbons. Oxford University Press, New York.

Cocks, T. Will Nigerian Boom Babies Feed Prosperity or Entrench Poverty?, Reuters,
http://www.reuters.com/article/2013/04/09/us-africa-summit-population-
idUSBRE9380DH20130409, 9 April 2013, (accessed 08.07.13.).

Duncan, B.N., Yoshida, Y., Olson, J.R., Sillman, S., Martin, R.V., Lamsal, L., Hu, Y.,
Pickering, K.E., Retscher, C., Allen, D.J., Crawford, J.H., 2010. Application of OMI
observations to a space-based indicator of NOx and VOC controls on surface
formation. Atmos. Environ. 44, 2213e2223. http://dx.doi.org/10.1016/
j.atmosenv.2010.03.010.

EC-JRC/PBL (European Commission, Joint Research Centre/Netherlands Environ-
mental Assessment Agency PBL), 2011. Emission Database for Global Atmo-
spheric Research (EDGAR), Release Version 4.2. http://edgar.jrc.ec.europa.eu.

EIA (US Energy Information Administration), Nigeria, http://www.eia.gov/
countries/analysisbriefs/Nigeria/nigeria.pdf, Last Updated: October 16, 2012,
(accessed 15.01.13.).

Fadeyibi, I.O., Jewo, P.I., Opoola, P., Babalola, O.S., Ugburo, A., Ademiluyi, S.A., 2011.
Burns and fire disasters from leaking petroleum pipes in Lagos, Nigeria: an 8-
year experience. Burns 37, 145e152. http://dx.doi.org/10.1016/
j.burns.2010.06.012.

Frankenberg, C., Aben, I., Bergamaschi, P., Dlugokencky, E.J., van Hees, R.,
Houweling, S., van der Meer, P., Snel, R., Tol, P., 2011. Global column-averaged
methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY:
trends and variability. J. Geophys. Res. 116, D04302. http://dx.doi.org/10.1029/
2010JD014849.

Fu, T.-M., Jacob, D.J., Palmer, P.I., Chance, K., Wang, Y.X., Barletta, B., Blake, D.R.,
Stanton, J.C., Pilling, M.J., 2007. Space-based formaldehyde measurements as
constraints on volatile organic compound emissions in east and south Asia and
implications for ozone. J. Geophys. Res. 112, D06312. http://dx.doi.org/10.10292/
2006JD007853.

Fu, T.-M., Jacob, D.J., Wittrock, F., Burrows, J.P., Vrekoussis, M., Henze, D.K., 2008.
Global budgets of atmospheric glyoxal and methylglyoxal, and implications for
formation of secondary organic aerosols. J. Geophys. Res. 113, D15303. http://
dx.doi.org/10.1029/2007JD009505.

Giglio, L., Descloitres, J., Justice, C.O., Kaufman, Y.J., 2003. An enhanced contextual
fire detection algorithm for MODIS. Remote Sens. Environ. 87, 273e282. http://
dx.doi.org/10.1016/S0034-4257(03)00184-6.

Gilman, J.B., Lerner, B.M., Kuster, W.C., de Gouw, J.A., 2013. Source signature of
volatile organic compounds from oil and natural gas operations in northeastern
Colorado. Environ. Sci. Technol. 47, 1297e1305. http://dx.doi.org/10.1021/
es304119a.

Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P.I., Geron, C., 2006. Esti-
mates of global terrestrial isoprene emissions using MEGAN (Model of Emis-
sions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 6, 3181e3210.
http://dx.doi.org/10.5194/acp-6-3181-2006.

Gullet, B.K., Touati, A., Oudejans, L., Ryan, S.P., 2006. Real-time emission charac-
terization of organic air toxic pollutants during steady state and transient
operation of a medium duty diesel engine. Atmos. Environ. 40, 4037e4047.
http://dx.doi.org/10.1016/j.atmosenv.2006.03.031.

Helas, G., Lobert, J., Scharffe, D., Sch€afer, L., Goldammer, J., Baudet, J., Ahoua, B.,
Ajavon, A.-L., Lacaux, J.-P., Delmas, R., Andreae, M.O., 1995. Ozone production
due to emissions from vegetation burning. J. Atmos. Chem. 22, 163e174.

Hopkins, J.R., Evans, M.J., Lee, J.D., Lewis, A.C., Marsham, J.H., McQuaid, J.B.,
Parker, D.J., Stewart, D.J., Reeves, C.E., Purvis, R.M., 2009. Direct estimates of
emissions from the megacity of Lagos. Atmos. Chem. Phys. 9, 8471e8477. http://
dx.doi.org/10.5194/acp-9-8471-2009.

Hyman, E.L., 1994. Fuel substitution and efficient woodstoves: are they the answers
to the fuelwood supply problem in northern Nigeria. Environ. Manag. 18,
23e32. http://dx.doi.org/10.1007/BF02393747.

Ikeme, J., Ebohon, O.J., 2005. Nigeria's electric power sector reform: what should
form the key objectives? Energ. Policy 33, 1213e1221. http://dx.doi.org/10.1016/
j.enpol.2003.11.018.

Jacob, D.J., Logan, J.A., Yevich, R.M., Gardner, G.M., Spivakovsky, C.M., Wofsy, S.C.,
Munger, J.W., Sillman, S., Prather, M.J., Rodgers, M.O., Westberg, H.,
Zimmerman, P.R., 1993. Simulation of summertime ozone over North America.
J. Geophys. Res. 98 (D8), 14 797e14 816.

Jacob, D.J., Prather, M.J., Rasch, P.J., Shia, R.-L., Balkanski, Y.J., Beagley, S.R.,
Bergmann, D.J., Blackshear, W.T., Brown, M., Chiba, M., Chipperfield, M.P., de
Grandpr�e, J., Dignon, J.E., Feichter, J., Genthon, C., Grose, W.L., Kasibhatla, P.S.,
K€ohler, I., Kritz, M.A., Law, K., Penner, J.E., Ramonet, M., Reeves, C.E.,
Rotman, D.A., Stockwell, D.Z., Van Velthoven, P.F.J., Verver, G., Wild, O., Yang, H.,
Zimmerman, P., 1997. Evaluation and intercomparison of global atmospheric
transport models using 222Rn and other short-lived tracers. J. Geophys. Res. 102
(D5), 5 953e955 970. http://dx.doi.org/10.1029/96JD02955.

Jaegl�e, L., Martin, R.V., Chance, K., Steinberger, L., Kurosu, T.P., Jacob, D.J., Modi, A.I.,
Yobou�e, V., Sigha-Nkamdjou, L., Galy-Lacaux, C., 2004. Satellite mapping of rain-
induced nitric oxide emissions from soils. J. Geophys. Res. 109, D21310. http://
dx.doi.org/10.1029/2004JD004787.

Kopacz, M., Jacob, D.J., Fisher, J.A., Logan, J.A., Zhang, L., Megretskaia, I.A.,
Yantosca, R.M., Singh, K., Henze, D.K., Burrows, J.P., Buchwitz, M., Khlystova, I.,
McMillan, W.W., Gille, J.C., Edwards, D.P., Eldering, A., Thouret, V., N�ed�elec, P.,
2010. Global estimates of CO sources with high resolution by adjoint inversion
of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES). Atmos. Chem.
Phys. 10, 855e876. http://dx.doi.org/10.5194/acp-10-855-2010.

Kurosu, T.P., 1 May 2008. OMI HCHO Readme File. http://www.cfa.harvard.edu/
atmosphere/Instruments/OMI/PGEReleases/READMEs/OMHCHO_README.pdf
(accessed 01.08.09.).

Lerot, C., Stavrakou, T., De Smedt, I., Müller, J.-F., Van Roozendael, M., 2010. Glyoxal
vertical columns from GOME-2 backscattered light measurements and com-
parisons with a global model. Atmos. Chem. Phys. 10, 12059e12072.

Liu, H., Jacob, D.J., Bey, I., Yantosca, R.M., 2001. Constraints from 210Pb and 7Be on
wet deposition and transport in a global three-dimensional chemical tracer
model driven by assimilated meteorological fields. J. Geophys. Res. 106 (D11), 12
109e112 128. http://dx.doi.org/10.1029/2000JD900839.

Liu, Z., Wang, Y., Vrekoussis, M., Richter, A., Wittrock, F., Burrows, J.P., Shao, M.,
Chang, C.-C., Liu, S.-C., Wang, H., Chen, C., 2012. Exploring the missing source of
glyoxal (CHOCHO) over China. Geophys. Res. Lett. 39, L10812. http://dx.doi.org/
10.1029/2012GL051645.

Maconachie, R., Tanko, A., Zakariya, M., 2009. Descending the energy ladder? Oil
price shocks and domestic fuel choices in Kano, Nigeria. Land Use Policy 26,
1090e1099. http://dx.doi.org/10.1016/j.landusepol.2009.01.008.

Magnowski, D., 7 April 2014. Nigerian Economy Overtakes South Africa's on
Rebased GDP. Bloomberg. http://www.bloomberg.com/news/2014-04-06/
nigerian-economy-overtakes-south-africa-s-on-rebased-gdp.html (accessed
07.04.14.).

Mao, J., Jacob, D.J., Evans, M.J., Olson, J.R., Ren, X., Brune, W.H., St Clair, J.M.,
Crounse, J.D., Spencer, K.M., Beaver, M.R., Wennberg, P.O., Cubison, M.J.,
Jimenez, J.L., Fried, A., Weibring, P., Walega, J.G., Hall, S.R., Weinheimer, A.J.,
Cohen, R.C., Chen, G., Crawford, J.H., McNaughton, C., Clarke, A.D., Jaegl�e, L.,
Fisher, J.A., Yantosca, R.M., Le Sager, P., Carouge, C., 2010. Chemistry of hydrogen
oxide radicals (HOx) in the Arctic troposphere in spring. Atmos. Chem. Phys. 10,
5823e5838. http://dx.doi.org/10.5194/acp-10-5823-2010.

http://www.energy.gov.ng/
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref80
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref80
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref80
http://dx.doi.org/10.1016/j.jpolmod.2009.03.004
http://dx.doi.org/10.1080/10473289.2011.628900
http://dx.doi.org/10.1016/j.rse.2011.05.025
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref4
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref4
http://dx.doi.org/10.1016/j.atmosenv.2010.06.048
http://dx.doi.org/10.1016/j.atmosenv.2010.06.048
http://dx.doi.org/10.1016/j.atmosenv.2005.06.029
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref7
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref7
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref7
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref8
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref8
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref8
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref8
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref8
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref8
http://dx.doi.org/10.5194/acp-7-2103-2007
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref10
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref10
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref10
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref10
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref10
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref10
http://sedac.ciesin.columbia.edu/gpw/index.jsp
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref12
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref12
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref12
http://www.reuters.com/article/2013/04/09/us-africa-summit-population-idUSBRE9380DH20130409
http://www.reuters.com/article/2013/04/09/us-africa-summit-population-idUSBRE9380DH20130409
http://dx.doi.org/10.1016/j.atmosenv.2010.03.010
http://dx.doi.org/10.1016/j.atmosenv.2010.03.010
http://edgar.jrc.ec.europa.eu
http://www.eia.gov/countries/analysisbriefs/Nigeria/nigeria.pdf
http://www.eia.gov/countries/analysisbriefs/Nigeria/nigeria.pdf
http://dx.doi.org/10.1016/j.burns.2010.06.012
http://dx.doi.org/10.1016/j.burns.2010.06.012
http://dx.doi.org/10.1029/2010JD014849
http://dx.doi.org/10.1029/2010JD014849
http://dx.doi.org/10.10292/2006JD007853
http://dx.doi.org/10.10292/2006JD007853
http://dx.doi.org/10.1029/2007JD009505
http://dx.doi.org/10.1029/2007JD009505
http://dx.doi.org/10.1016/S0034-4257(03)00184-6
http://dx.doi.org/10.1016/S0034-4257(03)00184-6
http://dx.doi.org/10.1021/es304119a
http://dx.doi.org/10.1021/es304119a
http://dx.doi.org/10.5194/acp-6-3181-2006
http://dx.doi.org/10.1016/j.atmosenv.2006.03.031
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref24
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref24
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref24
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref24
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref24
http://dx.doi.org/10.5194/acp-9-8471-2009
http://dx.doi.org/10.5194/acp-9-8471-2009
http://dx.doi.org/10.1007/BF02393747
http://dx.doi.org/10.1016/j.enpol.2003.11.018
http://dx.doi.org/10.1016/j.enpol.2003.11.018
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref28
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref28
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref28
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref28
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref28
http://dx.doi.org/10.1029/96JD02955
http://dx.doi.org/10.1029/2004JD004787
http://dx.doi.org/10.1029/2004JD004787
http://dx.doi.org/10.5194/acp-10-855-2010
http://www.cfa.harvard.edu/atmosphere/Instruments/OMI/PGEReleases/READMEs/OMHCHO_README.pdf
http://www.cfa.harvard.edu/atmosphere/Instruments/OMI/PGEReleases/READMEs/OMHCHO_README.pdf
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref33
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref33
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref33
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref33
http://dx.doi.org/10.1029/2000JD900839
http://dx.doi.org/10.1029/2012GL051645
http://dx.doi.org/10.1029/2012GL051645
http://dx.doi.org/10.1016/j.landusepol.2009.01.008
http://www.bloomberg.com/news/2014-04-06/nigerian-economy-overtakes-south-africa-s-on-rebased-gdp.html
http://www.bloomberg.com/news/2014-04-06/nigerian-economy-overtakes-south-africa-s-on-rebased-gdp.html
http://dx.doi.org/10.5194/acp-10-5823-2010


E.A. Marais et al. / Atmospheric Environment 99 (2014) 32e4040
Marais, E.A., Jacob, D.J., Kurosu, T.P., Chance, K., Murphy, J.G., Reeves, C., Mills, G.,
Casadio, S., Millet, D.B., Barkley, M.P., Paulot, F., Mao, J., 2012. Isoprene emissions
in Africa inferred from OMI observations of formaldehyde columns. Atmos.
Chem. Phys. 12, 6219e6235. http://dx.doi.org/10.5194/acp-12-6219-2012.

Marais, E.A., Jacob, D.J., Guenther, A., Chance, K., Kurosu, T.P., Murphy, J.G.,
Reeves, C.E., Pye, H.O.T., 2014. Improved model of isoprene emissions in Africa
using OMI satellite observations of formaldehyde: implications for oxidants and
particulate matter. Atmos. Chem. Phys. 14, 7693e7703. http://dx.doi.org/
10.5194/acp-14-7693-2014.

Marenco, A., Thouret, V., N�ed�elec, P., Smit, H., Helten, M., Kley, D., Karcher, F.,
Simon, P., Law, K., Pyle, J., Poschmann, G., Von Wrede, R., Hume, C., Cook, T.,
1998. Measurement of ozone and water vapor by airbus in-service aircraft: the
MOZAIC airborne program, an overview. J. Geophys. Res. 103 (D19),
25 631e25 642. http://dx.doi.org/10.1029/98JD00977.

Martin, R.V., Fiore, A.M., Van Donkelaar, A., 2004. Space-based diagnosis of surface
ozone sensitivity to anthropogenic emissions. Geophys. Res. Lett. 31, L06120.
http://dx.doi.org/10.1029/2004GL019416.

Marufu, L., Dentener, F., Lelieveld, J., Andreae, M.O., Helas, G., 2000. Photochemistry
of the African troposphere: influence of biomass-burning emissions. J. Geophys.
Res. 105 (D11), 14 513e514 530. http://dx.doi.org/10.1029/1999JD901055.

McMillan, W.W., Evans, K.D., Barnet, C.D., Maddy, E.S., Sasche, G.W., Diskin, G.S.,
2011. Validating the AIRS version 5 CO retrieval with DACOM in situ measure-
ments during INTEX-A and -B. IEEE Geosci. Remote 49, 2802e2813. http://
dx.doi.org/10.1109/TGRS.2011.2106505.

Minga, A., Thouret, V., Saunois, M., Delon, C., Serça, D., Mari, C., Sauvage, B.,
Mariscal, A., Leriche, M., Cros, B., 2010. What caused extreme ozone concen-
trations over Cotonou in December 2005? Atmos. Chem. Phys. 10, 895e907.
http://dx.doi.org/10.5194/acp-10-895-2010.

Oanh, N.T.K., Phuong, M.T.T., Permadi, D.A., 2012. Analysis of motorcycle fleet in
Hanoi for estimation of air pollution emission and climate mitigation co-benefit
of technology implementation. Atmos. Environ. 59, 438e448. http://dx.doi.org/
10.1016/j.atmosenv.2012.04.057.

Oguejiofor, G.C., 2010. Modeling of linear and exponential growth and decay
equations and testing them on pre- and post-war-coal production in Nigeria: an
operations research approach. Energ. Source Part B 5, 116e125.

Olivier, J.G.J., Bouwman, A.F., van der Maas, C.W.M., Berdowski, J.J.M., Veldt, C.,
Bloos, J.P.J., Visschedijk, A.J.H., Zandveld, P.Y.J., Haverlag, J.L., 1996. Description of
EDGAR Version 2.0: a Set of Global Emission Inventories of Greenhouse Gases
and Ozone-depleting Substances for all Anthropogenic and Most Natural
Sources on a Per Country Basis and on 1�1� Grid. Bilthoven, The Netherlands.

Ologunorisa, T.E., 2001. A review of the effects of gas flaring on the Niger Delta
environment. Int. J. Sust. Dev. World 8, 249e255.

Osuji, L.C., Avwiri, G.O., 2005. Flared gases and other pollutants associated with air
quality in industrial areas of Nigeria: an overview. Chem. Biodivers. 2,
1277e1289. http://dx.doi.org/10.1002/cbdv.200590099.

Osuji, L.C., Ogali, R.E., Usen, M.U., 2009. Effect of petroleum condensate/gasoline
mixture on automotive engines. Helv. Chim. Acta 92, 328e334.

PwC (Pricewaterhouse Coopers), http://www.pwc.com/en_GX/gx/world-2050/
assets/pwc-world-in-2050-report-january-2013.pdf, World in 2050. The BRICs
and Beyond: Prospects, Challenges and Opportunities, (accessed 26.04.13.).

Picket-Heaps, C.A., Jacob, D.J., Wecht, K.J., Kort, E.A., Wofsy, S.C., Diskin, G.S.,
Worthy, D.E.J., Kaplan, J.O., Bey, I., Drevet, J., 2011. Magnitude and seasonality of
wetland methane emissions from the Hudson Bay Lowlands (Canada). Atmos.
Chem. Phys. 11, 3773e3779. http://dx.doi.org/10.5194/acp-11-3773-2011.

Redelsperger, J.-L., Thorncroft, C.D., Diedhiou, A., Lebel, T., Parker, D.J., Polcher, J.,
2006. African Monsoon Multidisciplinary Analysis (AMMA): an international
research project and field campaign. Br. Am. Meteorol. Soc. 87, 1739e1746.
http://dx.doi.org/10.1175/BAMS-87-12-1739.

Rienecker, M.M., Suarez, M.J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E.,
Bosilovich, M.G., Schubert, S.D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J.,
Collins, D., Conaty, A., Da Silva, A., Gu, W., Joiner, J., Koster, R.D., Lucchesi, R.,
Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C.R., Reichle, R.,
Robertson, F.R., Ruddick, A.G., Sienkiewicz, M., Woollen, J., 2011. MERRA: NASA's
modern-era retrospective analysis of research and applications. J. Clim. 24,
3624e3648. http://dx.doi.org/10.1175/JCLI-D-11-00015.1.

Saunders, S.M., Jenkin, M.E., Derwent, R.G., Pilling, M.J., 2003. Protocol for the
development of the Master Chemical Mechanism, MCM v3 (Part A): tropo-
spheric degradation of non-aromatic volatile organic compounds. Atmos.
Chem. Phys. 3, 161e180. http://dx.doi.org/10.5194/acp-3-161-2003.

Sauvage, B., Thouret, V., Cammas, J.-P., Gheusi, F., Athier, G., N�ed�elec, P., 2005.
Tropospheric ozone over Equatorial Africa: regional aspects from the MOZAIC
data. Atmos. Chem. Phys. 5, 311e335. http://dx.doi.org/10.5194/acp-5-311-
2005.

Sauvage, B., Gheusi, F., Thouret, V., Cammas, J.-P., Duron, J., Escobar, J., Mari, C.,
Mascart, P., Pont, V., 2007. Medium-range mid-tropospheric transport of ozone
and precursors over Africa: two numerical case studies in dry and wet seasons.
Atmos. Chem. Phys. 7, 5357e5370. http://dx.doi.org/10.5194/acp-7-5357-2007.
Sawant, A.A., Shah, S.D., Zhu, X., Miller, J.W., Cocker, D.R., 2007. Real-world emis-
sions of carbonyl compounds from in-use heavy-duty diesel trucks and diesel
Back-Up Generators (BUGs). Atmos. Environ. 41, 4535e4547. http://dx.doi.org/
10.1016/j.atmosenv.2006.11.028.

Schultz, M.G., Backman, L., Balkanski, Y., Bjoerndalsaeter, S., Brand, R., Burrows, J.P.,
Dalsoeren, S., de Vasconcelos, M., Grodtmann, B., Hauglustaine, D.A., Heil, A.,
Hoelzemann, J.J., Isaksen, I.S.A., Kaurola, J., Knorr, W., Ladstaetter-
Weibenmayer, A., Mota, B., Oom, D., Pacyna, J., Panasiuk, D., Pereira, J.M.C.,
Pulles, T., Pyle, J., Rast, S., Richter, A., Savage, N., Schnadt, C., Schulz, M.,
Spessa, A., Staehelin, J., Sundet, J.K., Szopa, S., Thonicke, K., van het Bolscher, M.,
van Noije, T., van Velthoven, P., Vik, A.F., Wittrock, F., August 2007. REanalysis of
the TROpospheric Chemical Composition over the Past 40 Years (RETRO) d a
Long-term Global Modeling Study of Tropospheric Chemistry: Final Report.
Jülich/Hamburg, Germany.

Stavrakou, T., Müller, J.-F., De Smedt, I., Van Roozendael, M., van der Werf, G.R.,
Giglio, L., Guenther, A., 2009. Evaluating the performance of pyrogenic and
biogenic emission inventories against one decade of space-based formaldehyde
columns. Atmos. Chem. Phys. 9, 1037e1060. http://dx.doi.org/10.5194/acp-9-
1037-2009.

Thouret, V., Marenco, A., Logan, J.A., N�ed�elec, P., Grouhel, C., 1998. Comparisons of
ozone measurements from the MOZAIC airborne program and the ozone
sounding network at eight locations. J. Geophys. Res. 103 (D19), 25695e25720.
http://dx.doi.org/10.1029/98JD02243.

UN (United Nations) Economic and Social Affairs, 2013. World Population Pros-
pects: the 2012 Revision. New York. http://esa.un.org/unpd/wpp/ (accessed
13.07.13.).

van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K.,
Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M.,
Nakicenovic, N., Smith, S.J., Rose, S.K., 2011. The representative concentration
pathways: an overview. Clim. Change 109, 5e31. http://dx.doi.org/10.1007/
s10584-011-0148-z.

Wang, Y., Jacob, D.J., Logan, J.A., 1998. Global simulation of tropospheric O3-NOx-
hydrocarbon chemistry, 1. Model formulation. J. Geophys. Res. 103 (D9),
10713e10725. http://dx.doi.org/10.1029/98JD00157.

Warner, J.X., Wei, Z., Strow, L.L., Barnet, C.D., Sparling, L.C., Diskin, G., Sachse, G.,
2010. Improved agreement of AIRS tropospheric carbon monoxide products
with other EOS sensors using optimal estimation retrievals. Atmos. Chem. Phys.
10, 9521e9533. http://dx.doi.org/10.5194/acp-10-9521-2010.

Wecht, K.J., Jacob, D.J., Sulprizio, M.P., Santoni, G.W., Wofsy, S.C., Parker, R., B€osch, H.,
Worden, J.R., 2014. Spatially resolving methane emissions in California: con-
straints from the CalNex aircraft campaign and from present (GOSAT, TES) and
future (TROPOMI, geostationary) satellite observations. Atmos. Chem. Phys.
Discuss. 14, 4119e4198. http://dx.doi.org/10.5194/acpd-14-4119-2014.

van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Kasibhatla, P.S.,
Arellano Jr., A.F., 2006. Interannual variability in global biomass burning
emissions from 1997 to 2004. Atmos. Chem. Phys. 6, 3423e3441. http://
dx.doi.org/10.5194/acp-6-3423-2006.

Witte, J.C., Duncan, B.N., Douglass, A.R., Kurosu, T.P., Chance, K., Retscher, C., 2011.
The unique OMI HCHO/NO2 feature during the 2008 Beijing Olympics: impli-
cations for ozone production sensitivity. Atmos. Environ. 45, 3103e3111. http://
dx.doi.org/10.1016/j.atmosenv.2011.03.015.

Xiao, Y., Logan, J.A., Jacob, D.J., Hudman, R.C., Yantosca, R., Blake, D.R., 2008. Global
budget of ethane and regional constraints on U.S. sources. J. Geophys. Res. 113,
D21306. http://dx.doi.org/10.1029/2007JD009415.

Yevich, R., Logan, J.A., 2003. An assessment of biofuel use and burning of agricul-
tural waste in the developing world. Glob. Biogeochem. Cycles 17 (4), 1095.
http://dx.doi.org/10.1029/2002GB001952.

Yienger, J.J., Levy II, H., 1995. Empirical model of global soil-biogenic NOx emissions.
J. Geophys. Res. 100 (D6), 11447e11464. http://dx.doi.org/10.1029/95JD00370.

Yurganov, L.N., McMillan, W.W., Dzhola, A.V., Grechko, E.I., Jones, N.B., van der
Werf, R., 2008. Global AIRS and MOPITT CO measurements: validation, com-
parison, and links to biomass burning variations and carbon cycle. J. Geophys.
Res. 113, D09301. http://dx.doi.org/10.1029/2007JD009229.

Yurganov, L., McMillan, W., Grechko, E., Dzhola, A., 2010. Analysis of global and
regional CO burdens measured from space between 2000 and 2009 and vali-
dated by ground-based solar tracking spectrometers. Atmos. Chem. Phys. 10,
3479e3494. http://dx.doi.org/10.5194/acp-10-3479-2010.

Zhang, Q., Streets, D.G., Carmichael, G.R., He, K.B., Huo, H., Kannari, A., Klimont, Z.,
Park, I.S., Reddy, S., Fu, J.S., Chen, D., Duan, L., Lei, Y., Wang, L.T., Yao, Z.L., 2009.
Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys. 9,
5131e5153. http://dx.doi.org/10.5194/acp-9-5131-2009.

Zhang, L., Jacob, D.J., Liu, X., Logan, J.A., Chance, K., Eldering, A., Bojkov, B.R., 2010.
Intercomparison methods for satellite measurements of atmospheric compo-
sition: application to tropospheric ozone from TES and OMI. Atmos. Chem. Phys.
10, 4725e4739. http://dx.doi.org/10.5194/acp-10-4725-2010.

http://dx.doi.org/10.5194/acp-12-6219-2012
http://dx.doi.org/10.5194/acp-14-7693-2014
http://dx.doi.org/10.5194/acp-14-7693-2014
http://dx.doi.org/10.1029/98JD00977
http://dx.doi.org/10.1029/2004GL019416
http://dx.doi.org/10.1029/1999JD901055
http://dx.doi.org/10.1109/TGRS.2011.2106505
http://dx.doi.org/10.1109/TGRS.2011.2106505
http://dx.doi.org/10.5194/acp-10-895-2010
http://dx.doi.org/10.1016/j.atmosenv.2012.04.057
http://dx.doi.org/10.1016/j.atmosenv.2012.04.057
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref47
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref47
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref47
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref47
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref48
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref48
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref48
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref48
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref48
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref48
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref48
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref49
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref49
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref49
http://dx.doi.org/10.1002/cbdv.200590099
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref51
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref51
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref51
http://www.pwc.com/en_GX/gx/world-2050/assets/pwc-world-in-2050-report-january-2013.pdf
http://www.pwc.com/en_GX/gx/world-2050/assets/pwc-world-in-2050-report-january-2013.pdf
http://dx.doi.org/10.5194/acp-11-3773-2011
http://dx.doi.org/10.1175/BAMS-87-12-1739
http://dx.doi.org/10.1175/JCLI-D-11-00015.1
http://dx.doi.org/10.5194/acp-3-161-2003
http://dx.doi.org/10.5194/acp-5-311-2005
http://dx.doi.org/10.5194/acp-5-311-2005
http://dx.doi.org/10.5194/acp-7-5357-2007
http://dx.doi.org/10.1016/j.atmosenv.2006.11.028
http://dx.doi.org/10.1016/j.atmosenv.2006.11.028
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref60
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref60
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref60
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref60
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref60
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref60
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref60
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref60
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref60
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref60
http://refhub.elsevier.com/S1352-2310(14)00748-1/sref60
http://dx.doi.org/10.5194/acp-9-1037-2009
http://dx.doi.org/10.5194/acp-9-1037-2009
http://dx.doi.org/10.1029/98JD02243
http://esa.un.org/unpd/wpp/
http://dx.doi.org/10.1007/s10584-011-0148-z
http://dx.doi.org/10.1007/s10584-011-0148-z
http://dx.doi.org/10.1029/98JD00157
http://dx.doi.org/10.5194/acp-10-9521-2010
http://dx.doi.org/10.5194/acpd-14-4119-2014
http://dx.doi.org/10.5194/acp-6-3423-2006
http://dx.doi.org/10.5194/acp-6-3423-2006
http://dx.doi.org/10.1016/j.atmosenv.2011.03.015
http://dx.doi.org/10.1016/j.atmosenv.2011.03.015
http://dx.doi.org/10.1029/2007JD009415
http://dx.doi.org/10.1029/2002GB001952
http://dx.doi.org/10.1029/95JD00370
http://dx.doi.org/10.1029/2007JD009229
http://dx.doi.org/10.5194/acp-10-3479-2010
http://dx.doi.org/10.5194/acp-9-5131-2009
http://dx.doi.org/10.5194/acp-10-4725-2010

	Anthropogenic emissions in Nigeria and implications for atmospheric ozone pollution: A view from space
	1 Introduction
	2 Pollution sources and transport in Nigeria
	3 Atmospheric composition over Nigeria observed from space
	4 Constraints on Nigerian emissions
	5 Implications for ozone air quality
	6 Conclusions
	Acknowledgments
	Appendix GEOS-Chem description
	References


