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Introduction

This supporting information provideslditional information on the validation of the GEOS
Chem adjoint model witlobservational data from Singapore, the emissions modeling
framework, and additional health impact calculations for children.
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TextS1.

Validation of Adjoint Model with GFEDv4sriissions

Methods. We used two sources of observational data to compare with our modeled fine
particulate matter (PMs) concentrations. First, we reconstructed monthly 2IH9 PM s
based on data from Singapore’ s NNchobtalSommatlyofEnvi ronr
the Day (GSOD) at the Singapore Changi Airport. Since NizAsily available from 2014
2016, we also used daily pollutant standards index (PSI) observations to extend thenR/
series to 2010. We then used GSOD meteorologaré&ies (visibility, air temperature, wind
speed, and rainfall observations) to model monthly NEA fdm 20102016 and reconstruct
monthly PM s for the 20052009 validation period. Second, we used historicaj Pidm news
reports. Due to bias frorthe sparse reporting of PM on highly polluted days, we accounted
for missing days in the historical R®hverted PM;s by assuming that days with no
observations have baseline RMsalues and weighting the values to obtain monthly 2ZM
Baseline PMs( 1 3 . 7 7 was galcutated as the median of RNh Januandune and
NovemberDecember, or nofiire season months. This baseline concentration is similar to what
was found by Koplitz et §2016) We subtracted baseline Bifrom the reconstructed Pk
time series modeled from GSOD meteorological variables and based on historical PSI to infer
smoke PMs. We set months with negative smokébst o 0O 3 toi rgfleanthe lower bound
of Plvb5

Visibility was the most useful independent variable for reconstructingPMowever,
since there was an unexplained drop in maximum visibility in20it3, we adjusted visibility
values after mieR013 according to the difference in the ©Bercentile of visibility before and
after May 2013.

Results Figure SBhows the results from the validation. The historical&Biverted PMs
is shown in blue triangles, the reconstructed ENtaily and montly averages) is shown in
black lines, and monthly modeled RMfrom the GFED inventory) is shown in red circles. Since
the historical PSI data was taken from news reports, data availability is sparse, but it matches
well (= 0.94) with the reconstructechonthly dataset after accounting for days with no PSI
observations. Using monthly mean data, the adjusfed 0.94, = 0.97 for reconstructed and
observed PMs.

The modeled smoke PMcorrelates moderately well with reconstructed= 0.69) and
historical PStonverted smoke Pb4 (r = 0.64). While the adjoint model with GFEDv4s emissions
accurately captures high smoke Phh October 2006, we see large positive biases in modeled
relative to observed Pl in September 2006 (+ 31.2 to 31.8) @eptember 2009 (+ 11.5to
19). One explanation for this result may be uncertainty in the GFEDv4s experimental small fires
boost and burned area date from MCD64A1, which could lead to incorrect allocation of monthly
GFED emissions (2006/19). High cloudaver over Indonesia results in inconsistent availability
of surface reflectance scenes for burned area estimation and less opportunities to observe
active fires. Discrepancies in active fires and burned area may also limit the performance of the
small fires boost, particularly for pixels with only active fire observati(@tsang et aJ.2018). A
secondary factor is the low temporal variability in adjoint sensitiviifedaily variability in
meteorology (i.e. wind strength and direction) was large over the course of the month, the
sensitivity of the Singapore receptor to downwind fireisgsions may have also been highly
variable.
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Figure 3. Diagram of input data sources (top row) and steps to produce future estimates
(bottom row).
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Figure 8. Future area totals for different types of land cover and land use for the Buskwess
Usual(BAU) scenario from 2012030, every five years. Results are given for Sumatra and
Kalimantan, as well as all of Indonesia. Meatland areas are given in lighter shades for each
category. Intact and degraded refer to natural forest types.
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Figure 8. Future area totals for different types of land cover and land use for the Buskwess
Usual (BAU) scenario from 202030, every five years. Results are given for Sumatra and
Kalimantan, as well as all of Indonesia. M@atland areas are given in lightsades for each
category. Intact and degraded refer to natural forest types.
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Figure S4Total emissions and area in 2005 for Sumatra, Kalimantan, and all of Indonesia, for
peatland and nofpeatland areas in intact forest, degraded forest, Horest,and plantations
with secondary forest.
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Figure S5Monthly mean emissions rates for 20@509 for (a) Sumatra, (b) Kalimantan, and (c)
Indonesia. Codes refer to degraded forest (DG)fovest (NF), and plantation and secondary
forest (PL) on peatlanand nonpeatland areas.
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Figure 8. Screenshot of online decision support tool output for blocking fire emissions in grid

cells with proposed restoration |l ocations from t
(BRG). Grid cells with plannegktoration activities are in black. Light blue outlines highlight the

top five grid cells that contribute to public health impacts for the selected receptor. The

background map shows the Jullctober mean smoke PMexposure (ug/m) for Indonesia.

Example is shown for the Indonesian receptor for a high fire year (2006 meteorology) and 2020

2025 land use/ land cover transitions.
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Figure 3. Validation of modeled monthly smoke BRMn Singapore, from 2005 to 2009.

Historical PMsconcentrations (blue triangles) are derived from media reports of PSI and
weighted by number of observations per month (Alex Pui, personal communication).
Reconstructed Plk concentrations (red circles) are calculated as a function of observed
visibility,air temperature, wind speed, and rainfall from the NOAA Global Summary of the Day
(GSOD) dataset for the Singapore Changi airport. We subtract a baselige PM 13 .7 7 pg m
from both the historical and reconstructed BMo reflect smoke PMs, only doserved smoke

PM, s observations > 0 are shown. Modeled PMoncentrations (black line) are calculated

using downscaled GE@®em adjoint sensitivities, GFEDv4s emissions, and information on land
use/ land cover transitions. The modeled smoke,Ptbrrelates moderately well with
reconstructed (= 0.69) and historical R&nverted smoke P (r = 0.64).



Jul-Oct Jul-Oct Mean Smoke Exposure . .
Total (ug/m?) Annual Children ALRI Mortality
Scenario Emissions
OC(II%C) Indonesia Malaysia Singapore | Indonesia Malaysia Singapore
1,122 9 0
BAU 12.7 6.6 55 6 (280-
2.804) (2-23) (0-1)
390 3 0
Peatlands 4.4 2.6 1.6 1.9 (97-975) (1-6) (0-0)
g 637 4 0
= Concessions 7.7 41 2.2 3.2 (159- (1-9) (0-1)
3 1,592)
. 958
(<) .
g | Comsenvaton| g4 5.5 5.0 5.1 (239- (2_821) (O(-)l)
qE) reas 2394)
04
744 7 0
BRG Sites 7.7 4.1 4.2 3.2 (186-
1.861) (2-18) (0-1)

Table S1Cumulative JubDctober Indonesian fire emissions (Tg OC+BC), averag@cialyer

smoke exposure (ug/fPM, 5), and estimated annual average futurertality due to acute

lower respiratory infection (ALRI) in children, from January ZD@0ember 2029. First row

provides estimates for Businegs-Usual (BAU) land use and land cover trajectories, remaining

rows give reductions in emissions and childrem heal t h i mpacts associated
emissions in peatlands, industrial concessions, and conservation areas.
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