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Abstract PM2.5 during severe winter haze in Beijing, China, has reached levels as high as 880 μg/m3, with
sulfur compounds contributing significantly to PM2.5 composition. This sulfur has been traditionally assumed
to be sulfate, although atmospheric chemistry models are unable to account for such large sulfate
enhancements under dim winter conditions. Using a 1-D model, we show that well-characterized but
previously overlooked chemistry of aqueous-phase HCHO and S(IV) in cloud droplets to form a S(IV)-HCHO
adduct, hydroxymethane sulfonate, may explain high particulate sulfur in wintertime Beijing. We also
demonstrate in the laboratory that methods of ion chromatography typically used to measure ambient
particulates easily misinterpret hydroxymethane sulfonate as sulfate. Our findings suggest that HCHO and
not SO2 has been the limiting factor in many haze events in Beijing and that to reduce severe winter pollution
in this region, policymakers may need to address HCHO sources such as transportation.

Plain Language Summary Air pollution in Beijing is especially severe in winter, when
concentrations of tiny particles in the air can reach concentrations over 20 times greater than the safe
level recommended by theWorld Health Organization. In these severe pollution episodes, observations show
that a large portion of the particles is made up of sulfur. Scientists have assumed that this sulfur is in the form
of sulfate; however, computer simulations of air pollution chemistry have been unable to explain such
high sulfate concentrations. We show with a simple computer simulation that a large portion of the sulfur in
these haze episodes may, instead of sulfate, actually be a molecule called hydroxymethane sulfonate, which
is formed by a chemical reaction in cloud droplets of dissolved formaldehyde with dissolved sulfur
dioxide. We also show in laboratory experiments that the machines typically used for determining the
chemical composition of particles easily misinterpret hydroxymethane sulfonate as sulfate. Importantly, the
chemistry that produces hydroxymethane sulfonate is usually limited by formaldehyde, implying that
reductions in sulfur dioxide would be ineffective at reducing severe haze. Instead, focusing future emissions
reductions on formaldehyde emissions may be an effective way to curtail severe winter haze in the Beijing area.

1. Introduction

Air pollution in China imposes a significant burden on human health and welfare, with over 1 million deaths
per year attributed to high levels of fine particles (PM2.5, particulate matter with diameter less than 2.5 μm;
Cohen et al., 2017). Beijing and the surrounding area of the North China Plain (NCP) frequently experience
episodes of severe winter haze when PM2.5 levels exceed 200 μg/m3 (e.g., Rao et al., 2016; Y. Wang et al.,
2014; Zheng et al., 2015). Measurements made during these haze episodes often show large enhancements
in particulate sulfur compounds, which have been interpreted as sulfate (Wang et al., 2012; Y. Wang et al.,
2014; Wang et al., 2016). Due to low oxidant conditions, however, chemical transport models relying on
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conventional photochemical oxidation pathways for sulfur dioxide (SO2) often cannot reproduce the
enhanced particulate sulfur seen during these haze events (Cheng, Zheng, et al., 2016; Y. Wang et al., 2014;
Wang et al., 2016; Zhang et al., 2015).

Here we propose that enhanced particulate sulfur in some winter haze events may follow from the aqueous
phase reaction of sulfite or bisulfite with formaldehyde (HCHO) to form the adduct hydroxymethane sulfo-
nate (HMS; Boyce & Hoffmann, 1984; Kok et al., 1986; Kovacs et al., 2005; Olson & Hoffmann, 1986). Indeed
it would be challenging to show that HMS is not present under conditions typical of wintertime Beijing.
We also demonstrate in the laboratory that commonly used measurement techniques easily misinterpret
HMS as sulfate.

During severe winter haze events in the NCP, PM2.5 concentrations climb rapidly within the span of a few
hours (Ji et al., 2014). Meteorological conditions common to these events include low surface wind speeds
and a shallow planetary boundary layer, which limit ventilation of pollutants (Ji et al., 2014; Quan et al.,
2014; H. Wang et al., 2014; X. J. Zhao et al., 2013). In addition, levels of relative humidity tend to be high
(60%–90%; Ji et al., 2014; Quan et al., 2014; Zheng et al., 2015). Aerosol optical depths during these events
are typically in excess of 1 and thus strongly attenuate incoming solar radiation (Bi et al., 2014; Li et al.,
2013), which is already low during wintertime.

SO2 oxidation in the troposphere mainly occurs via OH in the gas phase and via H2O2 and O3 in the aqueous
phase. Replenishment of these oxidants depends in large part on the availability of sunlight (Alexander et al.,
2009; Quan et al., 2014; Wang et al., 2016), but both observations and modeling studies reveal especially low
levels of O3 and other oxidants during winter haze events in the NCP (Ji et al., 2014; Quan et al., 2014; Zheng
et al., 2015). Traditional chemical schemes in models relying on SO2 oxidation to form sulfate thus consis-
tently underestimate particulate sulfur during severe haze events, with models showing mean biases of
�40 to �50 μg/m3 (Gao et al., 2016; Y. Wang et al., 2014; Zhang et al., 2015). Models also underestimate
the relative contribution of particulate sulfur to total PM2.5 during haze events: observations show particulate
sulfur comprising ~20%–30% of total dry PM2.5 mass, while models predict contributions of just ~4%–15%
(Gao et al., 2016; Y. Wang et al., 2014). Several chemical mechanisms have been suggested to address this
shortfall—for example, aqueous phase oxidation of SO2 by NO2 (Cheng, Zheng, et al., 2016; Wang et al.,
2016), but some of these appear problematic (supporting information S1).

An alternative pathway that may explain the high particulate sulfur observed during winter haze events is the
reaction of dissolved bisulfite (HSO3

�) and sulfite (SO3
2�) with HCHO to form HMS (Boyce & Hoffmann, 1984;

Kok et al., 1986; Kovacs et al., 2005; Munger et al., 1983; Olson & Hoffmann, 1986). In this pathway, which does
not require oxidative conditions, dissolved SO2 dissociates to form bisulfite and sulfite, which then combine
with dissolved formaldehyde to form HMS (HOCH2SO3

�):

SO2 gð Þ ⇄
H1

SO2 aqð Þ (1)

SO2 aqð Þ ⇄
H2

HSO�
3 þ Hþ (2)

HSO�
3 ⇄

H3

SO2�
3 þ Hþ (3)

HCHO gð Þ ⇄
H4

HCHO aqð Þ (4)

HCHO aqð Þ þ HSO�
3 →

k5 HOCH2SO�
3 (5)

HCHO aqð Þ þ SO2�
3 þ H2O⇄

k6
HOCH2SO�

3 þ OH� (6)

HMS formation is known to occur in fog and cloud water, especially under conditions of high SO2 and
HCHO, cold temperatures, and low concentrations of oxidants that would typically compete with HMS
formation (Munger et al., 1983, 1986). Such conditions are often present during severe haze episodes in
winter in Beijing (Ji et al., 2014; Rao et al., 2016), as we describe below. HMS would also form in aerosol
water; however, since aerosol liquid water content is usually multiple orders of magnitude less than
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cloud liquid water content, formation of HMS in aerosol water should be insignificant as long as clouds
occasionally appear. The high levels of HCHO necessary for HMS formation have been observed in
Beijing in winter (Y. Zhang et al., 2014; Rao et al., 2016). For example, mean HCHO in winter 2014 was
5.51 ± 3.90 ppb, with peak concentrations of 14–17 ppb (Rao et al., 2016). The high level of wintertime
HCHO in Beijing, which occurs under conditions of low photochemical activity, has been attributed largely
to primary anthropogenic emissions (Chen et al., 2016; Rao et al., 2016). Especially important is the trans-
portation sector, which is estimated to account for ~62% of HCHO emissions in the Beijing area (Li et al.,
2017). Wintertime concentrations of SO2 in Beijing are also high, at ~50 ppb SO2 (Jiang et al., 2015; Rao
et al., 2016; Y. Wang et al., 2014).

HMS formation also requires moderate cloud pH in the range of ~4–6 (Munger et al., 1984, 1986; Olson &
Hoffmann, 1986). Measurements from fog/low cloud water in Beijing showed a pH of 5.2–6.2 between
1999 and 2006 (Jiang et al., 2009). More recent observations infer an aerosol pH of ~4–5 during haze events
(Guo et al., 2017; Liu et al., 2017; Song et al., 2018), which implies a somewhat higher pH in cloud droplets due
to ion exchange between cloud and aerosol during cloud processing (Ervens, 2015; Liu et al., 2017). In addi-
tion, precipitation in Beijing reveals pH values of ~5.5–6 (Huo et al., 2010; Tang et al., 2005; Zhu et al., 2016).
These observations together suggest that cloud pH in Beijing likely occurs in the 5–6 range.

Chemical loss of HMS occurs primarily by reaction with aqueous OH radical and with aqueous OH� (Munger
et al., 1986; Olson & Fessenden, 1992). Concentrations of OH radical are expected to be low during winter
haze events due to diminished sunlight, implying that primary chemical loss of HMS is via OH�, which, like
HMS production, is dependent on pH (equation (6)). Assuming that reaction with OH� is the only sink yields
an HMS lifetime of about 1 month at pH 4, about a week at pH 5, and a few hours at pH 6 (Munger et al., 1986).
This result suggests that HMS is stable in the aerosol phase after cloud droplets have evaporated, given an
aerosol pH of ~4.5 (Guo et al., 2017; Liu et al., 2017). With high levels of ammonia common in Beijing (Guo
et al., 2017), HMS in the particle phase could exist as a salt with NH4

+ as the counter ion. Dust could also pro-
vide counter ions for an HMS salt (Zhang et al., 2015).

Given the observed high levels of HCHO and SO2, HMS should be formed during Beijing winter haze condi-
tions when clouds top the boundary layer. That HMS has not to date been reported may be because HMS,
which is in the form of S(IV), has been misinterpreted in measurements as sulfate (S(VI)). In ion chromatogra-
phy, columns typically have trouble separating HMS and sulfite (Dixon & Aasen, 1999) and separating sulfite
and sulfate (Cao et al., 2014; Cheng, He, et al., 2016; Wang et al., 2005). In the most commonly employed types
of aerosol mass spectroscopy, aerosol particles are first evaporated thermally with lasers or other methods,
which can result in the decomposition of molecules such as HMS. Subsequent ionization can result in frag-
mentation so that observation of the parent component is extremely challenging. Thus, especially for com-
mon AMS and single-particle methods of measuring aerosol, only sulfur-containing fragments are typically
identified. Not properly accounting for the fragmentation of HMS could lead to its misidentification
(Neubauer et al., 1996; Whiteaker & Prather, 2003).

In this work, we first construct a simple 1-D model with well-known chemical reactions to determine whether
HMS may help explain the high concentrations of particulate sulfur observed during severe winter haze. We
simulate two time periods characterized by haze and for which we have speciated measurements of PM2.5:
December 2011 and January 2013. We also explore the factors that control HMS production by analyzing
the model timescales for different processes and conducting a series of sensitivity tests with the model.
Our use of a simple model allows us to bypass the uncertainties in emissions and transport inherent in 3-D
chemistry models and to focus on HMS production.

2. Data and Methods

We develop a simple 1-Dmodel for tracking cloud and aerosol chemistry in Beijing, following the approach of
Jacob et al. (1989). We focus on 7–31 December 2011 and 9–17 January 2013, due to the availability of spe-
ciated PM2.5 observations at these times (Cao et al., 2014; Cheng, He, et al., 2016; Y. Wang et al., 2014). The
model spans the boundary layer (~700 m), with four vertical layers and eddy-driven diffusion allowing trans-
port between layers. Fresh air mixes into the top layer, and chemical production and loss occurs in each layer
in the presence of cloud water. We track three chemical species in the gas, aerosol, and cloud phase—HMS,
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SO2, and HCHO. Details on the setup of the 1-D model are described in the supporting information (sections
S2 and S3).

Cloud pH and gas-phase concentrations of HCHO and SO2 are constrained in themodel usingmeasurements.
For the base case scenario, we specify HCHO concentrations at 5.5 ppb, based on surface observations in win-
ter 2014 (Rao et al., 2016). We also specify SO2 at 50 ppb, based on observations in January 2013 (Y. Wang et
al., 2014). We select cloud pH value of 5 for the base case, based on the constraints described in section 1
(Jiang et al., 2009; Liu et al., 2017; Zhu et al., 2016). By varying pH and HCHO and SO2 concentrations in a series
of simulations, we test the sensitivity of HMS formation to these three parameters. To validate model results,
we use daily mean measurements of particulate sulfur. These measurements, taken by ion chromatography
at Tsinghua University in Beijing, were made during December 2011 (Cheng, He, et al., 2016) and January
2013 (Cao et al., 2014; Y. Wang et al., 2014). To track trends in Beijing pollution, we also use observations
of total PM2.5 and SO2 spanning January 2013 to April 2018 from a network of 12 monitoring stations
throughout the city (Jiang et al., 2015).

To simulate conditions for the two haze periods without HMS chemistry, we use the GEOS-Chem chemical
transport model version 11-01 (Alexander et al., 2012; Park et al., 2004) driven by MERRA-2 meteorology
(Gelaro et al., 2017) with the Multi-resolution Emission Inventory for China (MEIC; Li et al., 2017), as described
in section S4.

In support of our model simulations, we conduct laboratory experiments to test whether typical ion chroma-
tography techniques can, in fact, distinguish between HMS and sulfate. We prepare solutions with varying
levels of HMS, sulfate, and sulfite and use two different ion chromatography systems (section S5).

3. Results

Observations of particulate sulfur during December 2011 reveal both clean and polluted periods, with
daily mean particulate sulfur ranging from ~2 to 24 μg/m3 with a mean of 8.5 μg/m3 (Figure 1). By com-
paring the observations to the sulfate concentrations simulated by GEOS-Chem, we can estimate the
amount of particulate sulfur that needs to be explained by HMS production or by some other mechanism.
We find that GEOS-Chem produces a good match with observed particulate sulfur in this month, with a
daily mean bias of �2.0 μg/m3. In the base case 1-D model, HMS is near zero for most of the month
except for the cloudy periods (13–17 December and 30 December), when it averages 13 μg/m3. During
these intervals, cloud liquid water content averages ~30 μL/m3, initiating HMS production. Figure 1 shows
what we call total particulate sulfur: the sum of the GEOS-Chem sulfate and HMS from the 1-D model. To
approximate how HMS may be interpreted in the observations, which assume that all particulate sulfur is
sulfate, we treat HMS here as having the same molecular weight as sulfate. The daily mean bias of total
particulate sulfur with observations over the December 2011 observation period is +2.1 μg/m3 (�0.88
to +5.0 μg/m3). However, adding HMS to GEOS-Chem sulfate reduces the modeled match with observa-
tions during the first and last episodes, with daily biases during these cloudy periods ranging from
+1.58 to +23.8 μg/m3. The biases likely arise from uncertainty in HCHO and in clouds (section S3). On
27 December, HMS is near zero and the peak in total particulate sulfur matches the peak in
GEOS-Chem sulfate.

A different picture emerges for January 2013. January 2013 was cloudier than December 2011, with peaks in
MERRA-2 low cloud liquid water path ranging from 33 to 116 g/m2, compared to a peak of just 34.2 g/m2 for
December 2011 (Figure S1). The time series of observed particulate sulfur for this month shows a mostly
polluted period with particulate sulfur ranging from ~8 to 105 μg/m3, with a mean of 50 μg/m3. There are
peaks in daily mean total particulate sulfur of 90.8 μg/m3 on 10 January and 105.0 μg/m3 on 12 January
(Figure 1). Mean particulate sulfur is significantly higher for January 2013 than for December 2011. GEOS-
Chem cannot capture either the variability or the large observed values (>30 μg/m3) of particulate sulfur
for January 2013. The daily mean bias between the GEOS-Chem and surface observations is �42.1 μg/m3.
Adding the time series of HMS calculated with the 1-D model to the GEOS-Chem sulfate greatly improves
the model match with observations. Simulated total particulate sulfur for January 2013 has a daily mean bias
against observations of just�0.01 μg/m3 (�30.5 to +29.9 μg/m3). Peaks in daily mean total particulate sulfur
in the model are ~66–90 μg/m3 (~27 to 150 μg/m3), compared to ~6–12 μg/m3 of sulfate in GEOS-Chem.
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Peaks in hourly mean total particulate sulfur in the model are ~87–106 μg/m3 (~36 to 176 μg/m3), compared
to ~9–26 μg/m3 of sulfate in GEOS-Chem.

Further supporting our hypothesis regarding HMS, laboratory experiments show that HMS and sulfate cannot
be well separated by typical ion chromatography columns (section S5 and Figure S2).

3.1. Factors Controlling HMS Production

To explain the factors controlling HMS production, we consider the timescales of the processes involved and
identify the rate-limiting factors and reactants. Reactions (5)–(6) have a 1:1 ratio for aqueous-phase reactants
HCHO and SO2, so these reactions will deplete atmospheric HCHO at the same rate as SO2. Because HCHO
concentrations in wintertime Beijing are an order of magnitude less than SO2, HCHO in the presence of
clouds is depleted long before SO2, making HCHO the limiting reactant; emissions are not fast enough to
replenish HCHO concentrations. In other words, if we assume that the HCHO lifetime is less than the cloud
lifetime, then the availability of atmospheric HCHO is what controls HMS production.

The timescale for eddy diffusion from the surface to model layers 2–3 (~200–400 m) is ~2 hr, while the dura-
tion of low clouds in MERRA-2 for December 2011 and January 2013 ranges between 7.5 and 15 hr. For con-
ditions in the 1-D model base case at pH ~5, HCHO has a lifetime against conversion to HMS of <1 hr,
signifying that HCHO is effectively titrated within the cloud on timescales faster than boundary layer mixing
and that increases in cloud pH would not affect total HMS. Since HCHO is limiting, changes in SO2 should
have little effect on HMS concentrations as long as SO2 is in excess of HCHO, which is confirmed by sensitivity
tests with the 1-D model (section S6 and Figure S3). Similarly, we find that increasing the modeled cloud pH
above 4.5 has little effect on HMS yield (section S6 and Figure S3).

Once HCHO in the cloud is consumed, further HMS production is limited by eddy diffusion of HCHO from the
surface. During December 2011 and January 2013, the interval between cloud events is on the order of days,

Figure 1. Time series of observed and simulated PM components for December 2011 and January 2013 in Beijing. The
black points represent daily mean observed particulate sulfur concentrations measured at Tsinghua University, centered
at 10 p.m. local time, or midway between the start and end times of the daily filter measurements (Cao et al., 2014). The red
dashed line indicates hourly sulfate concentrations from GEOS-Chem, and the solid red line represents the hourly sum of
GEOS-Chem sulfate and HMS concentrations generated by the 1-D model of HMS chemistry for a cloud pH of 5, and
monthly mean concentrations of 50 ppb SO2 and 5.5 ppb HCHO as boundary conditions for deriving implied emissions to
approximate January 2013 conditions. Red shading denotes the range of HMS values derived from simulations using
the observed uncertainty range for winter mean HCHO in 2014 in Beijing (Rao et al., 2016). Scale in y axes differs between
the two panels.
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allowing HCHO to build up before the onset of cloudiness. HCHO prior to the onset of clouds is controlled in
the model by a ventilation timescale of ~1–2 days, and so its accumulated mass is generally much greater
than that of HCHO entering the cloudy layer via eddy diffusion during the lifetime of the cloud, which is
just ~7–15 hr. As HCHO is depleted in clouds, surface HCHO continues to be taken up by the cloudy layer,
driving down gas-phase concentrations. Figure S4 shows a sample time series of simulated HCHO for one
set of assumptions.

Figure 2 shows the effect of varying the HCHO emissions in the model on HMS production; it also reveals the
relationship between the onset of clouds and the timing of the HMS peaks, a key difference between
December 2011 and January 2013 (Figure S1). Here we fix cloud pH at 5 and the SO2 surface boundary con-
centrations at 50 ppb for deriving emissions. We vary mean HCHO concentrations used in deriving the HCHO
emissions from 1.5 to 11.5 ppb, within the range observed by Rao et al. (2016) for January and February 2014
in Beijing. The resulting HCHO emissions for January 2013 range from 2.1 × 10�11 to 1.6 × 10�10 kg m�2 s�1.
The corresponding estimate in the MEIC inventory falls at the low end of this range at 2.3 × 10�11 kg m�2 s�1

(Li et al., 2017). Figure 2 shows surface HMS concentrations rising rapidly over the course of 3–5 hr after cloud
onset, as HCHO in the cloudy layer is converted to HMS. Continued HMS production occurs more slowly for
the duration of the cloud, limited by eddy diffusion of HCHO into the cloudy layer, which has a timescale
of 2 hr.

These rapid increases in HMS match the rapid increase in total PM2.5 observed during the January 2013 haze
event (Ji et al., 2014). In the model 1 ppb of gas-phase HCHO yields ~5 μg/m3 of HMS. Thus, HMS peaks seen
in the base case in Figure 1 require ~10–15 ppb of available HCHO; such values of HCHO have been observed
in wintertime Beijing, with average levels of ~5.5 ppb (Rao et al., 2016). After 14–30 hr, the clouds completely
disappear, and the HMS concentrations slowly fall as fresh air is mixed into the boundary layer. The magni-
tudes of the HMS peaks in the model roughly scale with the mean HCHO used in deriving HCHO emissions;
for mean HCHO concentrations of 5.5 ppb, surface hourly HMS concentrations in the model peak at ~71–112-
μg/m3.

Observations of surface SO2 and total PM2.5 in Beijing during 2013–2018 also support our HMS hypothesis
(Figure 3). Seasonal mean SO2 concentrations have decreased significantly in winter by 18 ppb in this time-
frame, with values below ~5 ppb in winter 2017–2018. In contrast, the number of extreme pollution days,
defined as days with daily mean PM2.5 > 200 μg/m3, reveals no significant trend over 2013 to 2018. Except

Figure 2. Effect of varying the mean surface HCHO concentration on modeled HMS production during January 2013 in
Beijing. Red curves represent the time series of hourly surface HMS concentrations, with increasing darkness denoting
increasing estimates of the mean HCHO surface concentrations during this time period, from 1.5 to 11.5 ppb. Black shading
represents hourly average cloud liquid water content (LWC) in each layer from MERRA-2, with darker colors indicating
greater LWC.
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for winter 2017–2018, each winter had 8–15 extreme pollution days. We hypothesize that concentrations of
SO2 may have fallen below those of HCHO in winter 2017–2018, limiting HMS production for the first time in
this time series. Field studies from 2015–2016 and 2016–2017 winters also show high levels of particulate
sulfur during haze, as much as 60 μg/m3, despite significant SO2 reductions since 2013 (Figure 3).

4. Discussion and Conclusion

Here we demonstrate that particulate sulfur in wintertime Beijing may occur as an S(IV)-HCHO adduct, hydro-
xymethane sulfonate (HMS), formed by reaction of aqueous-phase HCHO and S(IV) in cloud droplets. Indeed,
it would be challenging to show that HMS is not produced during episodes of low cloud cover in winter,
given typical levels of HCHO and SO2 in Beijing. High levels of ambient ammonia likely allow HMS to persist
as a salt with NH4

+ as the counter ion. We find that modeled HMS, when added to GEOS-Chem sulfate, can
successfully capture the magnitude of the observed severe haze of January 2013, when particulate sulfur,
defined as the sum of HMS and sulfate, frequently exceeded 50 μg/m3 and total PM2.5 approached
900 μg/m3. (To facilitate comparison with existing observations, which have been interpreted as sulfate,

Figure 3. Time series of observed surface SO2 and PM2.5 concentrations in Beijing, averaged across 12 monitoring stations
(Jiang et al., 2015), and of PMsulfur across 13 separate field studies using ion chromatography. Blue points indicate monthly
means, while black points are daily means in winter and gray the daily means for other seasons. The horizontal dashed line
in panel (a) corresponds to 5 ppb SO2, an estimate of the SO2 concentration below which SO2 becomes the limiting
reactant for HMS production in winter by dropping below typical HCHO levels. In panel (b), the dashed line represents
200 μg/m3, which we define as the threshold for extreme haze. In panel (c), each shape corresponds to an individual field
study.
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we treat HMS as having the same molecular weight as sulfate.) Previous studies have assumed that particu-
late sulfur during this episode was mainly composed of sulfate, but we show that typical measurement sys-
tems easily misinterpret HMS as sulfate.

We identify HCHO emissions and the onset of low cloud cover as key factors controlling HMS production in
winter haze. We further show that HMS formation is relatively insensitive to SO2 concentrations so long as
SO2 is in excess of HCHO; it is also insensitive to cloud pH at levels above 4.5. Our work stands in contrast
to previous studies that have used novel sulfur oxidation mechanisms to explain high levels of observed par-
ticulate sulfur (Cheng, Zheng, et al., 2016; Wang et al., 2016). Biases in total particulate sulfur in our model
likely arise from uncertainties in the timing of cloud events (section S3), liquid water content, and/or HCHO
emissions. In the 1-D model, HMS chemistry leads to episodes of HCHO depletion. Such transient depletions
do show up in observations for winter 2014, but not concurrently with large increases in PM2.5 (Rao et al.,
2016). We hypothesize that factors unaccounted for in the model—for example, spatial heterogeneity in
clouds (Gautam & Singh, 2018), horizontal transport, or feedbacks between haze and boundary layer height
(Ding et al., 2016; Li et al., 2010)—could slow the depletion of surface HCHO such that the clouds disappear
before significant drawdown of surface HCHO. This issue could be further investigated with a 3-D chemical
transport model. To further confirm the mechanism proposed here, HMS could be explicitly measured in
Beijing haze by ion chromatography using columns designed to separate S(IV) and S(VI), with the addition
of H2O2 to oxidize sulfite in the sample prior to analysis (Dixon & Aasen, 1999). HMS could also be measured
with a mass spectrometry system if the effects of evaporation/ionization on HMS can be properly accounted
for (Whiteaker & Prather, 2003).

The dependence of HMS production on a cloud topped boundary layer implies that HMS chemistry is episo-
dic. The role of HCHO in HMS production may help explain the continued occurrence of winter haze events
despite observed reductions in SO2. The SO2 column declined more than 50% over the NCP area between
2005 and 2015 (Krotkov et al., 2016), and surface observations show wintertime SO2 decreasing by
~18 ppb since 2013. Although such reductions in SO2 would reduce PM2.5 under some circumstances, our
results imply that SO2 concentrations in Beijing in winter were typically too far in excess of HCHO for these
emissions cuts to have an effect on HMS. We hypothesize that unless ambient SO2 drops below ~5 ppb, poli-
cies such as the shutting of coal plants in the Beijing area and adoption of stricter SO2 emissions controls
(Schreifels et al., 2012; Y. Zhao et al., 2013) would be ineffective against severe haze. Policymakers may need
instead to focus on quantifying and reducing sources of HCHO, such as from gasoline and diesel engines (Li
et al., 2014). It is of interest that the winter of 2017–2018 marks the first time since at least the winter of 2012–
2013 in which monthly average SO2 in Beijing dropped below this 5 ppb threshold. This winter is also the first
in which daily mean PM2.5 never exceeded 200 μg/m3.
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