Experimental evidence for the importance of convected methylhydroperoxide as a source of hydrogen oxide HO_x radicals in the tropical upper troposphere

Ravetta, F., D.J. Jacob, W.H. Brune, B.G. Heikes, B. Anderson, D.R. Blake, G.L. Gregory, G.W. Sachse, S.T. Sandholm, R.E. Shetter, H.B. Singh, and R.W. Talbot

<u>J. Geophys. Res., 106</u>, 32,709-32,716, 2002.

Abstract

Concurrent measurements of OH, HO_2 , H_2O_2 , and CH_3OOH concentrations were made during an aircraft flight over the tropical South Pacific that followed a back-and-forth pattern at constant 10 km altitude for 4 hours. One end of the pattern sampled an aged convective outflow while the other end sampled the background atmosphere. Concentrations of HO_2 and CH_3OOH in the convective outflow were elevated by 50% and 350% relative to background, respectively, while concentrations of OH and H_2O_2 were not elevated. The high CH_3OOH concentrations in the outflow were due to convective pumping from the marine boundary layer. In contrast to CH_3OOH , H_2O_2 was not enhanced in the outflow because its high water solubility allows efficient scavenging in the convective updraft. A photochemical model calculation constrained with the ensemble of aircraft observations reproduces the HO_2 enhancement in the outflow and attributes it to the enhanced CH_3OOH ; the calculation also reproduces the lack of OH enhancement in the outflow and attributes it to OH loss from reaction with CH_3OOH . Further analysis of model results shows substantial evidence that the rate constant used in standard mechanisms for the $CH_3O_2 + HO_2$ reaction is about a factor of 3 too low at the low temperatures of the upper troposphere. A sensitivity simulation using a value of 3.4×10^{-11} cm³ molecule⁻¹ s⁻¹ at 233 K for this rate constant yields better agreement with observed HO_2 concentrations, and better closure of the chemical budgets for both CH_3OOH and H_2O_2 . The $CH_3O_2 + HO_2$ reaction then becomes the single most important loss pathway for HO_x radicals ($HO_x = OH + peroxy$ radicals) in the upper troposphere.

The full text of this paper is available as a postscript file