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Text S1. Statistical methods to calculate PM2.5 concentrations and MDA8 ozone  
 
For PM2.5, we first construct the synoptic circulation factors across the eastern United 
States through the use of singular value decompositions (SVDs) of the spatial correlations 
between PM2.5 in each grid box and five meteorological variables in gridboxes in the 
surrounding region. The five variables are surface temperature, relative humidity, 
precipitation, and east-west and north-south wind speed. The SVD method effectively 
compresses the information from a multi-dimensional matrix of these four variables into 
a set of scalars that represent the oscillation of the PM2.5-related synoptic patterns (Shen 
et al., 2017a). We next develop a multiple linear regression model to correlate observed 
JJA monthly mean PM2.5 concentrations and the local values of the same five 
meteorological variables and the two most important synoptic factors in each gridbox, 
diagnosed using SVD. The model is of the form 

Y = α kXk
k=1

n

∑ + βnSn
n=1

2

∑ + b      (S1) 

where Y is the JJA monthly mean PM2.5 concentration for 1999-2015, X is a local 
meteorological variable, S is a synoptic circulation factor, α and β are coefficients, and b 
is the intercept. In order to avoid over-fitting, we use leave-one-out cross-validation, 
yielding the best variable combinations for each gridbox. Using leave-one-out cross 
validation, we find that the coefficients of determination (R2) between observed and 
predicted PM2.5 are 0.3-0.6 for PM2.5 from 1999-2015 (Figure S4b). 
 
For MDA8 ozone, we follow a similar approach. Previous studies have diagnosed the 
strong dependence of surface ozone on mid-tropospheric wind fields (Shen et al., 2015; 
Porter et al., 2015), and so we construct the ozone-related synoptic patterns using six 
meteorological variables, including surface temperature, relative humidity, and east-west 
and north-south wind speed on the surface, as well as east-west and north-south wind 
speed at 500 hPa. Using leave-one-out cross validation, R2 between observed and 
predicted JJA MDA8 ozone range from 0.4-0.7 (Figure S4a). 
 
We use the hybrid extreme value theory (Hybrid-EVT) model to simulate ozone extremes 
(> 70 ppbv) conditionally on daily mean temperature [Shen et al., 2016]. For most 
observations sites, the point process (PP) model, which formulates the Poison process 
limit of extreme ozone distribution above a threshold, can simulate well the ozone high 
tails. At sites where ozone suppression occurs, the PP model may fail to capture the 
ozone-temperature relationship, and so we refit the distribution using a logistic regression 
and a Generalized Pareto Distribution (GPD) model [Shen et al., 2016]. Unlike the PP 
model the GPD model only accounts for the ozone distribution above a threshold but not 
the probability exceeding this threshold [Cole, 2001]. Thus our final Hybrid-EVT model 
consists of both PP and GDP models, and their parameters are conditioned on daily 
temperature.  
  



Text S2. Health risk calculation 
 
The health impacts of ozone and PM2.5 changes are calculated following a previous study 
(Shindell et al., 2016). Changes in premature deaths are calculated as 

ΔM = Mb × P × AF       (S2) 
AF = 1− exp(−βΔC)       (S3) 
RR = exp(βΔC)       (S4) 

where P is the adult population (age ≥ 30) in the United States, Mb is the baseline 
mortality rate for the adult population based on estimates from World Health 
Organization (WHO 2011), ΔM is the number of premature deaths due to changes in 
PM2.5/ozone, AF is the attributable fraction of deaths due to diseases related to 
PM2.5/ozone, β is the slope of concentration-response function (CRF), ΔC is the change of 
PM2.5/ozone concentration, and RR is the relative risk. The long-term RR per 10 µg m-3 
increase in annual mean PM2.5 is 1.14 (95% confidence interval (CI): 1.04—1.23) for 
lung cancer and 1.09 (95% CI: 1.03—1.16) for cardiovascular and respiratory diseases 
(Pope et al., 2002). We increase the CRF slopes by 80% based on expert elicitation 
(Anenberg et al., 2012), which means the CRF slopes (β) are ln(1.14/10)×1.8 for lung 
cancer and ln(1.09/10)×1.8 for cardiovascular and respiratory diseases (Pan et al., 2004; 
Anenberg et al., 2012). The JJA changes of PM2.5 concentrations estimated in this study 
are scaled by 0.25 to represent their annual mean changes. The long-term RRs from 
respiratory disease is 1.04 (95% CI: 1.010-1.067) per 10 ppbv increase in the maximum 
6-month average of 1-h daily maximum ozone (Jerrett et al., 2009), which corresponds to 
a β  of ln(1.04/10). The JJA changes in ozone concentrations are scaled by 0.5 to estimate 
the maximum 6-month average changes. Using the hourly ozone observations for 1990-
2015, we find that the standard deviation of detrended JJA seasonal mean 1-h daily 
maximum ozone is 10% greater than the MDA8 ozone, so we increase the ΔC of MDA8 
ozone by 10% when calculating the health risk. The average health risk as well as its 
uncertainty is calculated from 10,000 bootstrap simulations.   



Table S1. Datasets used in this study. 
Dataset Description 

Observations and 
datasets derived from 
observations 
(1895-2015) 

Temperature: NCDC*, GHCN†, Delaware‡, MLOST§ and 
CRUTEM4|| 
Precipitation: NCDC*, GPCC¶, GHCN†, Delaware‡ 
Sea level pressure: HadSLP2# 

Drought: 8 different drought indices in NCDC* 
Ozone and PM2.5: U.S. EPA Air Quality System (AQS)** 

NOAA-20CR  
56-member ensemble, 
v2c, 1895-2014 
(Compo et al., 2011) 

Results from climate model simulation 
Boundary conditions: SSTs and sea ice extent 
Assimilation: surface pressure 

ERA-20CM  
10-member ensemble, 
1900-2010 (Hersbach 
et al., 2015) 

Results from climate model simulation 
Boundary conditions: SSTs and sea ice extent, forcings from 
CMIP5 
Assimilation: none 

GISS ModelE2 
21-year equilibrium 
simulation (Schmidt et 
al., 2014) 

Results from climate model simulation 
Boundary conditions: prescribed SSTs and sea ice extent in warm 
and cold AMO phases. 
Assimilation: none 

* Historical temperature, precipitation, and drought indices for U.S. climate divisions from 
National Climatic Data Center (Vose et al., 2014). The drought indices include Palmer Drought 
Severity Index (PDSI), Palmer Hydrological Drought Index (PHDI), Palmer "Z" Index 
(ZNDX), Modified Palmer Drought Severity Index (PMDI), and Standardized Precipitation 
Index over 3, 6, 9 and 12 months (SPxx). 
† Gridded Historical Climatology Network (GHCN, v2 for precipitation and v3 for temperature) 
provided by NOAA/OAR/ESRL Physical Sciences Division. 
‡ University of Delaware air temperature and precipitation dataset (Willmott et al., 2011). 
§ Merged Land-Ocean Surface Temperature Analysis (MLOST) (Smith et al., 2008; Vose et al., 
2012). 
|| Jones (CRU) Air Temperature Anomalies Version 4 (CRUTEM4) (Jones et al., 2012). 
¶ Global Precipitation Climatology Centre (GPCC) (Schneider et al., 2011). 
# Hadley Centre sea level pressure dataset (HadSLP2) (Allan et al., 2006). 
**Site measurements of ozone (1980-2015) are interpolated onto a 2.5°×2.5° latitude-by-
longitude grid resolution using spatial averaging (Shen et al., 2015). PM2.5 site measurements, 
which are less dense spatially than ozone and have a shorter record (1999-2015), are 
interpolated onto the same resolution but using inverse distance weighting (Shen et al., 2017a). 
 
  



Table S2. Models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) 
used for this study.  

 
Model Name Institute 

ACCESS1.0 Commonwealth Scientific and Industrial Research Organization (CSIRO) and 
Bureau of Meteorology (BOM), Australia 

ACCESS1.3 CSIRO and BOM, Australia 

BCC-CSM1-1 Beijing Climate Center, China Meteorological Administration 

BNU-ESM College of Global Change and Earth System Science, Beijing Normal 
University  

CanESM2 Canadian Centre for Climate Modelling and Analysis 
CCSM4 National Center for Atmospheric Research  
CESM1-CAM5 Community Earth System Model Contributors  
CMCC-CM Centro Euro-Mediterraneo per i Cambiamenti Climatici  
CMCC-CMS Centro Euro-Mediterraneo per i Cambiamenti Climatici 

CNRM-CM5 Centre National de Recherches Météorologiques / Centre Européen de 
Recherche et Formation Avancée en Calcul Scientifique 

CSIRO-MK3-6-0 Commonwealth Scientific and Industrial Research Organization in 
collaboration with Queensland Climate Change Centre of Excellence 

EC-EARTH EC-EARTH consortium 

FIO-ESM The First Institute of Oceanography, SOA, China 

FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences 
GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory 
GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory 
GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory 
GISS-E2-H NASA Goddard Institute for Space Studies  
GISS-E2-R NASA Goddard Institute for Space Studies  

HadGEM2-AO Met Office Hadley Centre (additional HadGEM2-ES realizations contributed 
by Instituto Nacional de Pesquisas Espaciais) 

HadGEM2-CC Met Office Hadley Centre (additional HadGEM2-ES realizations contributed 
by Instituto Nacional de Pesquisas Espaciais)  

HadGEM2-ES Met Office Hadley Centre (additional HadGEM2-ES realizations contributed 
by Instituto Nacional de Pesquisas Espaciais) 

INMCM4 Institute for Numerical Mathematics  
IPSL-CM5A-LR Institut Pierre-Simon Laplace  
IPSL-CM5A-MR Institut Pierre-Simon Laplace  
IPSL-CM5B-LR Institut Pierre-Simon Laplace  

MIROC-ESM 
Japan Agency for Marine-Earth Science and Technology, Atmosphere and 
Ocean Research Institute (The University of Tokyo), and National Institute for 
Environmental Studies 

MIROC-ESM-CHEM 
Japan Agency for Marine-Earth Science and Technology, Atmosphere and 
Ocean Research Institute (The University of Tokyo), and National Institute for 
Environmental Studies 



MIROC5 
Atmosphere and Ocean Research Institute (The University of Tokyo), National 
Institute for Environmental Studies, and Japan Agency for Marine-Earth 
Science and Technology 

MPI-ESM-LR Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology) 
MPI-ESM-MR Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology) 
MRI-CGCM3 Meteorological Research Institute  
NORESM1-M Norwegian Climate Centre  
  



 
Figure S1. Timeseries of the 11-year running mean values of JJA AMO (black) and 
annual mean AMO (blue).  Correlation between the two timeseries is shown inset. We 
use JJA AMO in this study.  
 

 
 
Figure S2. Timeseries of the 11-year running mean values of JJA AMO in this study 
(black) and those using two other definitions (D1 and D2) with different SST datasets. 
D1 refers to SSTs averaged over 25°N-60°N, 7°W-75°W minus regression on global 
mean temperatures (Van Oldenborgh et al., 2009). D2 refers to SSTs averaged over 
0°N-60°N, 0°W-80°W minus global mean temperatures from 60°S-60°N (Trenberth 
and Shea, 2006). These indices can be obtained from Royal Netherlands Meteorological 
Institute (https://climexp.knmi.nl/selectindex.cgi?id=someone@somewhere). The SST 
datasets used here are Hadley Centre Sea Ice and Sea Surface Temperature (HadISST, 
Kennedy et al., 2011) v3 and Extended Reconstructed Sea Surface Temperature 
(ERSST v3b) (Smith et al., 2008). 
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Figure S3. Map of perturbed SSTs used as boundary conditions in the GISS ModelE2 for 
AMO simulations.  The plot shows the SST response to a positive unit change in AMO 
(see Methods). 
 

 
Figure S4. (a) Maps of coefficients of determination (R2) between observed and 
predicted JJA seasonal mean MDA8 ozone concentrations for 1980-2015. (b) Same as (a), 
but using JJA monthly mean PM2.5 concentrations for 1999-2015. When averaged across 
the eastern United States, the R2 is 0.60 for ozone and 0.41 for PM2.5. 

  



 

 
Figure S5. Methodology used to estimate the effects of AMO on MDA8 ozone, ozone 
episodes (> 70 ppbv), and JJA mean PM2.5 in one-half AMO cycle from the cold to warm 
phase. To predict air quality using observed meteorology, we use MLOST temperatures, 
east-west and north-south windspeeds derived from HadSLP2 sea level pressures, and 
GPCC precipitation. The changes of air quality in one-half AMO cycle refer to the 
average changes from the peak in a cold phase (A, C) to the peak in a warm phase (B, D), 
as described in Methods. Dashed horizontal lines in panel (d) refer to the maximum 
(+0.25 K) and minimum (-0.24 K) 11-yr running mean AMO indices for the entire time 
frame. MLR refers to multivariate linear regression and Hybrid-EVT to a hybrid extreme 
value theory model. Details of the models and datasets are described in Table S1. Bars in 
panel (d) show the JJA index for positive (red) and negative (blue) AMO; black curve 
signifies the 11-year moving average of AMO. 
 

 
Figure S6. (a) Correlation coefficient r of JJA MDA8 ozone and NCEP surface air 
temperatures from 1980 to 2015.  (b) Same as (a), but for PM2.5 concentrations from 1999 
to 2015. In all panels, gridboxes with statistically significant (p < 0.05) correlations are 
stippled. All data are detrended by subtracting the 7-year moving averages. 
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Figure  S7. Similar to Figure 1c-e, but using based on NOAA Extended Reconstructed 
Sea Surface Temperature (ERSST v4) instead of HadISST.  
 

 
Figure S8. Change of mean JJA surface air temperatures in one-half AMO cycle inferred 
from different datasets: (a) GHCN, (b) Delaware, (c) MLOST, (d) HADCRUT, (e) ERA-
20CM, (f) NOAA-20CR, and (g) GISS ModelE2. See Table S1 and Methods for more 
details.  
 
 

 
 



 
 
Figure S9. The four U.S. regions used in this study.  
 
 

 
Figure S10. Similar as Figure 2c-d, but for heatwaves and number of stagnant days in the 

summertime.  
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Figure S11. Same as Figure S8, but for mean JJA precipitation. 

 
Figure S12. Same as Figure S8, but for JJA drought indices (Table S1). 



 
Figure S13. Changes of mean JJA SLPs in one-half AMO cycle from the cold to warm 
phase, as simulated by (a) NOAA-20CR, (b) ERA-20CM, and (c) GISS ModelE2. See 
Table S1 for descriptions of the model setups.  
 
 

 
Figure S14. Same as Figure S13, but for the mean JJA 200 hPa stream function.  

  



 
Figure S15. (a) Slopes of JJA seasonal mean MDA8 ozone with surface air temperatures 
in the eastern United States for 1980-2015. (b) Same as (a), but using monthly mean 
PM2.5 concentrations for 1999-2015. In both panels, gridboxes with statistically 
significant (p < 0.05) correlations are stippled. All data are detrended by subtracting the 
7-year moving averages. 
 

 
 

Figure S16. Excess mortality rates per summer due to air quality degradation in each U.S. 
region over one-half cycle of AMO from the cold to warm phase. Error bars denote one 
standard deviation around the median across the ensemble of model results. “Obs” 
signifies results obtained from observed meteorology, including MLOST temperatures, 
derived east-west and north-south windspeeds from HadSLP2 sea level pressures, and 
GPCC precipitation.  Other datasets are defined in Table S1. 
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Figure S17. (a) Simulated 11-year running mean JJA temperature in the eastern United 
States from 1900 to 2100, relative to 1950-2010 time periods. The projected temperature 
from 2006 to 2100 follows the RCP4.5 scenario, as inferred from an ensemble of 33 
CMIP5 models (Table S2). The observed 1900-2015 temperature anomalies are from 
NCDC and are shown as black line. (b) Increases of JJA temperature in the East in one-
half AMO cycle (~35 years) and in CMIP5 projections in the East, Midwest (MW), 
Northeast (NE), South Central (SC), and Southeast (SE) over future decades (mean 2045-
2055 vs. mean 2010-2020). The future climate projections are calculated as the median of 
an ensemble of 33 CMIP5 models. We use the first ensemble member for each model in 
Panel (a-b).  
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