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a b s t r a c t

We applied a multiple linear regression (MLR) model to study the correlations of total PM2.5 and its
components with meteorological variables using an 11-year (1998e2008) observational record over the
contiguous US. The data were deseasonalized and detrended to focus on synoptic-scale correlations. We
find that daily variation in meteorology as described by the MLR can explain up to 50% of PM2.5 variability
with temperature, relative humidity (RH), precipitation, and circulation all being important predictors.
Temperature is positively correlated with sulfate, organic carbon (OC) and elemental carbon (EC) almost
everywhere. The correlation of nitrate with temperature is negative in the Southeast but positive in
California and the Great Plains. RH is positively correlated with sulfate and nitrate, but negatively with
OC and EC. Precipitation is strongly negatively correlated with all PM2.5 components. We find that PM2.5

concentrations are on average 2.6 mg m�3 higher on stagnant vs. non-stagnant days. Our observed
correlations provide a test for chemical transport models used to simulate the sensitivity of PM2.5 to
climate change. They point to the importance of adequately representing the temperature dependence of
agricultural, biogenic and wildfire emissions in these models.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Particulate matter with diameter of 2.5 mm or less (PM2.5) is
a major air quality concern because of its effects on human health.
PM2.5 concentrations depend on meteorological conditions, sug-
gesting that climate change could have significant effects on PM2.5
air quality. Several studies using chemical transport models (CTMs)
driven by general circulation models (GCMs) have investigated the
effects of 21st-century climate change on PM2.5 (Liao et al., 2006;
Racherla and Adams, 2006; Tagaris et al., 2007; Heald et al.,
2008; Avise et al., 2009; Pye et al., 2009). They find significant
effects (�1 mg m�3) but there is no consistency across studies,
including in the sign of effects, so that little can be concluded at
present regarding the sensitivity of PM2.5 to climate change (Jacob
and Winner, 2009).

The uncertain sensitivity to climate change in the case of PM2.5
reflects in part the complexity of the dependence of different PM2.5

components on meteorological variables, and in part the coupling
of aerosols to the hydrological cycle which is not well represented
in GCMs (Racherla and Adams, 2006; Pye et al., 2009). For example,
sulfate concentrations are expected to increase with increasing
: þ1 617 495 4551.
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temperature due to faster SO2 oxidation, but semi-volatile
components such as nitrate and organics are expected to decrease
as they shift from the particle phase to the gas phase at higher
temperature (Sheehan and Bowman, 2001; Aw and Kleeman, 2003;
Dawson et al., 2007; Tsigaridis and Kanakidou, 2007; Kleeman,
2008). Increasing cloud can increase sulfate due to in-cloud
production, and higher relative humidity (RH) promotes the
formation of ammonium nitrate, but an increase in precipitation
causes a decrease in all PM2.5 components through scavenging
(Koch et al., 2003; Liao et al., 2006; Dawson et al., 2007; Pye et al.,
2009). Increased stagnation in the future climate may also worsen
PM2.5 air quality (Liao et al., 2006; Leibensperger et al., 2008).

GCMeCTM studies of the effects of climate change on air quality
can only be as good as the model descriptions of processes. Confi-
dence is usually assessed by cross-model comparisons (Weaver
et al., 2009) and comparisons with observed concentrations.
However, biases common to all models may render consensus
misleading, and comparisons with observed concentrations can
only test the simulation of the present atmosphere, not the sensi-
tivity to climate change. It would be far more relevant to test the
ability of models to reproduce observed correlations of air quality
with meteorological variables, as has been done for ozone through
the observed correlation with temperature (Jacob and Winner,
2009). We need a better observational foundation to do the same
with PM2.5. Only a few observational studies so far have examined
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the correlations of PM with meteorological variables and then only
for small regional domains and a limited suite of species and
meteorological variables (Vukovich and Sherwell, 2002; Aw and
Kleeman, 2003; Koch et al., 2003; Chu, 2004; Wise and Comrie,
2005).

To address this need, we present here a systematic statistical
analysis to quantify the correlations of total PM2.5 and its different
components with meteorological variables on the scale of the
contiguous US and for an 11-year record of observations
(1998e2008). Our aim is to uncover important correlations that can
be used to gain insight into the sensitivity of PM2.5 to climate
change as well as to test the GCMeCTM representations of aerosol
processes.
2. Data and methods

2.1. Meteorological data

Dailymeanmeteorological data from1998 to 2008were obtained
from the National Center for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR) Reanalysis 1 (http://
www.cdc.noaa.gov/cdc/data.ncep.reanalysis.html) (Kalnay et al.,
1996; Kistler et al., 2001). Gridded daily precipitation observations
were obtained from the National Oceanic and Atmospheric Admin-
istration (NOAA) Climate Prediction Center (http://www.cpc.ncep.
noaa.gov/products/precip/realtime/GIS/retro.shtml). The meteoro-
logical parameters are listed in Table 1. They include surface
temperature (x1), three hydrometeorological parameters (x2, x3, x4),
two anticyclone parameters (x5, x6), wind speed (x7), and wind
direction (x8, x9). All except x6, x8 and x9 were deseasonalized and
detrended by subtracting the 30-day moving averages from the
original data, allowing us to focus on the synoptic-scale variability.

Fig. 1 shows the standard deviation of a few deseasonalized and
detrended meteorological variables. Temperature has greater
variability in the North than in the South, inland than on the coasts.
RH variability is largest in the Southwest and South-central. The
850-hPa geopotential height is more variable in the North, partic-
ularly in the Northeast and Midwest, reflecting frontal passages
that drive ventilation of these regions.
Table 1
Meteorological parameters considered in the statistical analysis.a

Independent
variable

Meteorological parameter

x1 Surface air temperature (K)b

x2 Surface air relative humidity (%)b

x3 Daily total precipitation (cm d�1)c

x4 Total column cloud cover (%)d

x5 Geopotential height at 850 hPa (km)
x6 Local rate of change of sea-level pressure dSLP/dt

(hPa d�1)
x7 Surface wind speed (m s�1)b e

x8 East-west wind direction indicator cos q (dimensionless)f

x9 North-south wind direction indicator sin q

(dimensionless)f

a All meteorological parameters are 24-h averages. Except for daily total precip-
itation and cloud cover, all data are from NCEP/NCAR Reanalysis 1 with spatial
resolution of 2.5� � 2.5� .

b “Surface” data are from the 0.995 sigma level.
c Obtained from the NOAA Climate Prediction Center, regridded from original

spatial resolution of 0.25� � 0.25� .
d Obtained from NCEP/NCAR Reanalysis 1, regridded from original spatial reso-

lution in T62 Gaussian grid with 192 � 94 points.
e Calculated from the horizontal wind vectors (u, v).
f q is the angle of the horizontal surface wind vector counterclockwise from the

east.
2.2. PM2.5 data

Daily mean surface concentrations of total PM2.5 from 1998 to
2008 measured with the Federal Reference Method (FRM) were
obtained from the EPA Air Quality System (EPA-AQS) (http://www.
epa.gov/ttn/airs/airsaqs/), which covers a network of w1000 sites
in the contiguous US. Speciation data from 2000 to 2008 including
sulfate, nitrate, ammonium, organic carbon (OC), and elemental
carbon (EC) were obtained from EPA-AQS for State and Local Air
Monitoring Stations (SLAMS) and the Speciation Trends Network
(STN), a total ofw200 sites. All PM data were collected either every
day, every 3rd day (most common for total PM2.5) or every 6th day
(most common for speciation data). Fig. 2 shows the site locations
in 2005 and the regional division used in this work.

Interpolated 2.5� � 2.5� 24-h average PM2.5 fields were con-
structed from site measurements to produce an 11-year time series
of PM2.5 concentrations for each grid square. We used inverse
distance weighting, in which all n sampled values (zi) within
a specified search distance (dmax) are inversely weighted by their
distances (dij) from the grid centroid to produce an average (zj) for
each grid square j:

zj ¼

Pn

i¼1

�
1=dij

�kzi

Pn

i¼1

�
1=dij

�k
(1)

where k is the power parameter. We chose k ¼ 2 and
dmax ¼ 500 km. Results are not overly sensitive to the choice of
interpolation method; an alternate method with simple spatial
averaging of data in individual grid squares produced similar
correlation results. Kriging has been used in the past for spatial
interpolation of air quality data (Lefohn et al., 1988; Jerrett et al.,
2005), but we did not use it here because the PM2.5 data are too
unevenly distributed (Wong et al., 2004).

Fig. 3 shows the annual mean concentrations of total PM2.5 and
the five major PM2.5 components, interpolated on the 2.5� � 2.5�

grid and averaged over the 11-year (total PM2.5) and 9-year
(speciation) periods. We do not consider dust and sea salt as they
are generally small contributors to PM2.5. Spatial interpolation is
more robust in the East, where site density is higher and urban-
erural contrast is lower than in the West (Malm et al., 2004; Tang
et al., 2004). PM2.5 concentrations have generally decreased over
the 1998e2008 period and this long-term trend is removed from
our analysis as described below.

2.3. Multiple linear regression

We used a multiple linear regression (MLR) model to correlate
PM2.5 and its components to the meteorological variables in Table 1.
All PM2.5 data were deseasonalized and detrended in the same way
as with the meteorological variables. This focuses the correlations
on synoptic time scales, avoiding aliasing from common seasonal
variations or long-term trends. The model is of the form

y ¼ b0 þ
X9

k¼1

bkxk þ interaction terms (2)

where y is the deseasonalized and detrended concentration of total
PM2.5 or its components for each grid square, (x1, ., x9) is the
ensemble of meteorological variables in Table 1, and bk are the
regression coefficients. The interaction terms are up to third-order
(xkxlxm). For each grid square, the regression was done stepwise to
add and delete terms based on Akaike Information Criterion (AIC)
statistics to obtain the best model fit (Venables and Ripley, 2003).
The number of explanatory terms xk in the MLR is on average 21.
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Fig. 1. Daily variability of surface air temperature, relative humidity and 850-hPa geopotential height in the US. Figure shows standard deviations for deseasonalized and detrended
observations from 1998 to 2008.

Fig. 2. Locations of EPA Air Quality System PM2.5-monitoring sites in 2005. Black dots denote total PM2.5 monitors where data are collected with Federal Reference Method (FRM);
yellow diamonds denote monitors in chemical speciation network (SLAMS þ STN). US regional divisions used in our analysis are also shown. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Annual mean concentrations of total PM2.5 and its five major components, interpolated on a 2.5� � 2.5� grid as described in text. Concentrations are in units of mg m�3 and
averaged over 1998e2008 for total PM2.5 and 2000e2008 for individual species. OC concentrations were adjusted to account for background filter contamination by subtracting the
2005 mean field blank measurements. Note differences in scales between panels.
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The Cook’s distances (Cook, 1979) show that the regression results
reflect the broad population rather than a small number of influ-
ential outliers. The variance inflation factor (Velleman and Welsch,
1981) ranges between 1.0 and 2.7, indicating that the problem of
multicollinearity among meteorological variables is generally
unimportant. The coefficient of determination (R2) quantifies the
fraction of variance of PM2.5 that can be accounted for with theMLR
model (Kutner et al., 2004).

In addition to full-year regressions, we also conducted regres-
sions for seasonal subsets of data (DJF, MAM, JJA, SON). These
generally showed results similar to the full-year correlations but we
will highlight some prominent differences.

3. Correlations of PM2.5 and components with meteorological
variables

3.1. Total PM2.5

Fig. 4 shows the relationships of total PM2.5 with meteorological
variables, asmeasured by theMLR coefficients bk in Eq. (2) associated
with each meteorological variable. Interaction terms are relatively
small and not shown. Individual PM2.5 components show similar
correlations as total PM2.5 for all meteorological variables except
temperature, RH, and wind direction. Component-specific correla-
tions for these variables are discussed in the following subsections.

Temperature is positively correlated with PM2.5 concentrations
throughout the US. This contrasts with the CTM sensitivity study of
Dawson et al. (2007), which found an average negative temperature
effect in the East of �0.016 and�0.17 mg m�3 K�1 in summer and in
winter, respectively, primarily due to volatilization of ammonium
nitrate at higher temperature. Dawson et al. (2007) perturbed
temperature in their CTM while holding all other variables
constant. The positive temperature relationship that we find here
reflects meteorological cofactors as discussed in Section 3.2.

Precipitation is negatively correlated with PM2.5 concentrations
throughout the US, as would be expected from the scavenging sink.
The correlation of PM2.5 with RH is positive in the Northeast and
Midwest but negative in the Southeast and the West. The correla-
tionwith column cloud cover is generally weak. We find surface RH
a better indicator than column cloud cover for liquid water content
within the surface boundary layer.

Fig. 4 also shows that high PM2.5 concentrations are correlated
with high 850-hPa geopotential height (anticyclonic conditions),
decreasing sea-level pressure (dSLP/dt < 0), low wind speed, and
(in the East) southerly flow. The positive association with anticy-
clonic conditions can be simply explained by dry weather and
subsidence inversions. The negative association with dSLP/dt
reflects PM accumulation on the tail end (west side) of anticyclones
and PM removal by cold fronts.

Fig. 5 shows the coefficients of determination (R2) for the MLR
model fit to observations, with values adjusted to account for
different number of explanatory terms in the MLR at each location
(Kutner et al., 2004). They range from 0.1 to 0.5 depending on grid
square. Wise and Comrie (2005) similarly found R2 values of
0.1e0.5 for correlations of PM to meteorological variables at sites in
the Southwest. We find the largest R2 in the Northeast, Midwest
and Pacific Northwest, where meteorological variables can explain
up to 50% of daily PM2.5 variability. Values are lowest in the west-
central US but this could reflect the paucity of sites to define mean
concentrations in 2.5� � 2.5� grid squares (Fig. 2).

Stagnation is characterized by anticyclonic condition, weak
wind, no precipitation, and usually high temperature. Taken
together, the results above illustrate strong association of high
PM2.5 levels with stagnation. A simple linear regression of desea-
sonalized and detrended total PM2.5 concentrations on a categorical
variable for stagnation (one for a stagnant day, zero otherwise) was
conducted to estimate the average differences in total PM2.5
between a stagnant vs. non-stagnant day. A stagnant day is defined
in our study as having daily mean SLP geostrophic wind <8 m s�1,
daily mean 500 hPa wind <13 m s�1, and daily total precipitation
<0.01 cm d�1 (Wang and Angell, 1999). The result is shown in Fig. 6.
Total PM2.5 is on average 2.6 mg m�3 higher on a stagnant day. Fig. 6
also shows the average number of stagnant days per year, high-
lighting the severity of stagnation in the Southwest.



Fig. 4. Correlations of total PM2.5 with meteorological variables. Figure shows multiple linear regression coefficients, bk, in units of mg m�3 D�1, where D is dimension of each
meteorological variable listed in Table 1. Wind direction panel shows vector sums of regression coefficients b8 and b9. Values are for deseasonalized and detrended variables and are
only shown when significant with 95% confidence (p-value < 0.05).
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3.2. PM2.5 components vs. temperature

Fig. 7 shows the deseasonalized relationships of the major PM2.5
components with surface air temperature, as measured by the MLR
coefficient b1 in Eq. (2). We do not show ammonium as it is mainly
the counter-ion for sulfate and nitrate. The relationships in Fig. 7
are positive almost everywhere for all components except nitrate.
The relationship for nitrate is negative in the South but positive in
the North and California. We elaborate on each component below.

The MLR coefficients for sulfate in the East are on average 530
and 25 ng m�3 K�1 in summer and winter, respectively. CTM
sensitivity simulations also find an increase of sulfate with
temperature due to higher SO2 oxidation rates (Aw and Kleeman,
2003; Dawson et al., 2007; Kleeman, 2008) but the dependence
Fig. 5. Coefficients of determination (R2) for multiple linear regression of deseason-
alized and detrended 1998e2008 total PM2.5 concentrations on meteorological vari-
ables of Table 1. Values are adjusted to account for different number of explanatory
terms at each location.
is much weaker. Dawson et al. (2007) found for the same region an
average sulfate response of 34 and 1.6 ngm�3 K�1 in summer and in
winter, respectively, an order of magnitude smaller than our coef-
ficients. This suggests that the observed correlation of sulfate with
Fig. 6. (a) Average differences in deseasonalized total PM2.5 concentrations on stag-
nant vs. non-stagnant days, based on deseasonalized and detrended 1998e2008
observations. Stagnation is defined followingWang and Angell (1999). Only differences
with 95% confidence (p-value < 0.05) are shown. (b) Number of stagnant days per year
averaged over 1998e2008.



Fig. 7. Correlations of PM2.5 components with surface air temperature. Figure shows multiple linear regression coefficients b1, normalized to annual mean concentrations of Fig. 3.
Values are for deseasonalized and detrended variables and are only shown when significant with 95% confidence (p-value < 0.05).
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temperature is mainly determined by joint association with
southerly flow, stagnation, and ventilation of pollution by cold
fronts, rather than by chemistry.

The strong positive correlation that we find for nitrate in the
North and California contrasts with CTM sensitivity studies indi-
cating a strong negative dependence of nitrate on temperature due
to increased volatilization of ammonium nitrate (Aw and Kleeman,
2003; Dawson et al., 2007; Kleeman, 2008). Part of the explanation
could be the joint association with stagnation and cold fronts. Also,
these CTM sensitivity studies did not account for the increase in
agricultural NH3 and NOx emissions with increasing temperature
(Bouwman et al., 2002; Pinder et al., 2004; Aneja et al., 2008).
Nitrate formation in most of the US is limited by the supply of NH3
(Park et al., 2004). In the Great Plains where nitrate formation is
limited by the supply of nitric acid (Park et al., 2004), the positive
correlation may reflect the temperature dependence of soil NOx

emissions (Bertram et al., 2005).
OC and EC increase with temperature nearly everywhere,

although generally more weakly than sulfate. The weaker correla-
tion of inert EC vs. sulfatemight suggest a chemical influence on the
sulfate correlation, but the EC measurements are also subject to
larger errors (Chow et al., 2004; Flanagan et al., 2006). The OC
correlation is mostly driven by the summer months
(170 ng m�3 K�1), which may reflect biogenic volatile organic
compound (VOC) emissions and wildfires; the correlation is much
weaker in winter. The Dawson et al. (2007) CTM sensitivity study
found an average OC response of �14 ng m�3 K�1 in summer and
�13 ng m�3 K�1 in winter driven by volatility, but they did not
account for variability of biogenic VOC emissions or wildfires.
3.3. PM2.5 components vs. relative humidity

Fig. 8 shows the deseasonalized relationships of the major PM2.5

components with RH, as measured by the MLR coefficient b2 in Eq.
(2). The coefficients for sulfate and nitrate are generally positive.
For sulfate this likely reflects the dominant source from in-cloud
SO2 oxidation and the associationwith moist southerly flow shown
by the wind patterns in Fig. 4. The stronger positive association of
nitrate with RH likely reflects the RH dependence of the ammo-
nium nitrate formation equilibrium (Stelson and Seinfeld, 1982).
In the agricultural Midwest and Great Plains where ammonia is in
excess, production of nitrate can be largely determined by RH
(Kleeman, 2008), possibly explaining the particularly strong
nitrate-RH correlation there.

We find that OC and EC have a negative association with RH,
most strongly in the Southeast and the West. This explains the
negative association of total PM2.5 with RH in these regions (Fig. 4).
It may reflect the association of low RH with fires, which are major
contributors to carbonaceous aerosols in both regions (Park et al.,
2007), and also the association of high RH with clean marine air.
These factors apparently dominate over any enhanced formation of
OC aerosol in aqueous-phase particles at high RH (Volkamer et al.,
2007; Fu et al., 2009).
3.4. PM2.5 components vs. wind direction

Fig. 9 shows the normalized vector sums of MLR coefficients b8
and b9 in Eq. (2), which indicate the wind direction most strongly
associated with high concentrations of PM components. This
dramatically illustrates the role of SO2 emissions in the Ohio Valley
as a source of sulfate for much of the country. By contrast, nitrate
shows a major influence from the agricultural areas in the Mid-
west and Great Plains with large NH3 emissions. OC has more
distributed sources with some exported influence from the
Southeast and the West, likely reflecting biogenic and fire sources
(Liao et al., 2007; Park et al., 2007). EC shows little correlation with
wind direction except in the Northeast where southwesterly flow
carries polluted air.
4. Implications for the effects of climate change on air quality

The observed relationships between PM2.5 and meteorological
variables presented here offer a test of the reliability of GCMeCTM
simulations in describing the response of PM2.5 to climate change.
Our results point to some potential effects of climate change and
also to some processes that need to be better represented in CTMs.

The most robust projection for 21st-century climate change is
a warming of the surface (Christensen et al., 2007). We find
a strong positive correlation of observed PM2.5 with temperature
driven mainly by sulfate and OC, in contrast to previous CTM



Fig. 8. Same as Fig. 7 but for correlations of PM2.5 components with surface air relative humidity.
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sensitivity studies that perturbed temperature only and found
a negative response (Aw and Kleeman, 2003; Dawson et al.,
2007; Kleeman, 2008). These studies did not account for the
correlation of temperature with stagnation or other meteoro-
logical conditions, which could play an important role in the
observed correlations. But our results also suggest that the
temperature dependence of fires and biogenic (including agri-
cultural) emissions of NH3, NOx, and VOCs may play an impor-
tant role in driving the correlation of PM2.5 with temperature
and need to be resolved in GCMeCTM studies. Changes in
precipitation patterns can obviously affect PM2.5 concentrations,
as reflected in the negative observed correlation. GCM simula-
tions for the 21st-century climate find a consistent increase in
annual mean precipitation in the Northeast and a decrease in
the Southwest, but predictions for the rest of the US are less
consistent (Christensen et al., 2007). Pye et al. (2009) pointed
out that the association of deeper boundary layer mixing with
reduced precipitation might represent a compensating effect on
PM2.5. Models in general find a great sensitivity of PM2.5 to
mixing depth due to dilution (Dawson et al., 2007; Kleeman,
2008). Projections of changes in mixing depth for the
Fig. 9. Correlations of PM2.5 components with wind direction. Figure shows vector sum
concentrations of Fig. 3. Length of arrows (in units of % per unit sine or cosine) indicates m
only shown when significant with 95% confidence (p-value < 0.05).
21st-century climate are inconsistent across different GCMs
(Jacob and Winner, 2009). Mixing depth could either increase or
decrease, depending in particular on the changes in soil mois-
ture (Wu et al., 2008).

Increased stagnation in the future climate would cause a corre-
sponding increase in PM2.5 levels, as shown in Fig. 6. GCMs
consistently find more frequent and prolonged stagnation episodes
at northern mid-latitudes in the future climate (Mickley et al.,
2004; Murazaki and Hess, 2006; Wu et al., 2008). Leibensperger
et al. (2008) found for the East in summer a strong anti-
correlation between the number of stagnant days and the
frequency of mid-latitudes cyclones. They pointed out that mid-
latitude cyclone frequency has been decreasing over the
1980e2006 period and attributed this trend to greenhouse
warming. Extrapolating their 1980e2006 trend in summer cyclone
frequency (�0.15 a�1) to 2050, and using their observed anti-
correlation between cyclone frequency and stagnant days, would
imply 4.5 more stagnant days per summer in the East by 2050.
From our results in Fig. 6, this translates to an average increase of
0.24 mg m�3 in summer mean PM2.5 concentrations with
a maximum increase of 0.93 mg m�3 in the Midwest.
s of multiple linear regression coefficients b8 and b9, normalized to annual mean
agnitude of correlation. Values are for deseasonalized and detrended variables and are
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5. Conclusions

We applied a multiple linear regression (MLR) model to deter-
mine the correlations of total fine particulate matter (PM2.5) and its
major components with meteorological variables using 1998e2008
daily observations over the contiguous US. The data were desea-
sonalized and detrended to focus on synoptic-scale correlations.
Our goals were to improve the understanding of the sensitivity of
PM2.5 to meteorology, and to develop an observational resource
that can test the ability of chemical transport models (CTMs) to
project the sensitivity of PM2.5 to future climate change as simu-
lated by general circulation models (GCMs).

We found that daily variation in meteorology as described by
the MLR including nine predictor variables (temperature, relative
humidity, precipitation, cloud cover, 850-hPa geopotential height,
sea-level pressure tendency, wind speed, EeW and NeS wind
direction) can explain up to 50% of daily PM2.5 variability in the US.
Stagnation is a strong predictor; PM2.5 concentrations in the US are
on average 2.6 mg m�3 higher on a stagnant day vs. non-stagnant
day.

Correlations with temperature, RH, and wind direction differ for
individual PM2.5 components, leading to regional differences in the
correlations for total PM2.5 depending on the relative abundance of
each component. In the case of temperature, correlations of sulfate,
organic carbon (OC), and elemental carbon (EC) are predominantly
positive, reflecting the joint association with stagnation and cold
front ventilation, and with biogenic and fire emissions. Nitrate is
negatively correlated with temperature in the South, as expected
from the volatility of ammonium nitrate, but positively correlated
in California and the Great Plains, which may reflect the tempera-
ture dependence of agricultural NH3 and NOx emissions.

Relative humidity (RH) is positively correlated with sulfate and
nitrate, which may reflect in-cloud sulfate formation and the RH
dependence of ammonium nitrate formation. In contrast, RH is
negatively correlated with OC and elemental carbon (EC), possibly
reflecting sources from fires.

Correlation with vector winds shows that the industrial Mid-
west is a source of sulfate for much of the country, and that nitrate
is generally highest under inflow from agricultural regions
(reflecting NH3 emissions). There is also some association of
elevated OC with flow from regions of elevated biogenic and fire
emissions in the Southeast and the West. Perturbations to wind
patterns from climate change would thus have amajor effect on the
distribution and composition of PM2.5.

Our results point to some potential effects of climate change
(including changes in temperature, precipitation patterns and
stagnation) on future PM air quality, and stress the importance of
adequately representing the temperature dependence of agricul-
tural, biogenic and wildfire emissions in GCMeCTM studies.
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