Talbot, R.W., J.E. Dibb, E.M. Scheuer, Y. Kondo, M. Koike, H.B. Singh, L. Salas, Y. Fukui, J.O. Ballenthin, R.F. Meads, T.M. Miller, D.E. Hunton, A.A. Viggiano, D.R. Blake, N.J. Blake, E. Atlas, F. Flocke, D.J. Jacob, and L. Jaeglé

Geophys. Res. Lett., 26, 3057-3060, 1999.

Abstract

The SASS Ozone and Nitrogen Oxides Experiment (SONEX) over the North Atlantic during October/November 1998 offered an excellent opportunity to examine the budget of total reactive nitrogen (NO_y) in the upper troposphere (8-12 km altitude). The median measured NO_y mixing ratio was 425 parts per trillion volume (pptv). Two different methods were used to measure HNO₃: (1) the mist chamber technique and (2) chemical ionization mass spectrometry. Two merged data sets using these HNO₃ measurements were used to calculate NO_y by summing the reactive niteogen species (a combination of measured plus modeled results) and comparing the resultant values to measured NO_y (gold catalytic reduction method). Both comparisons showed good agreement in the two quantities (slope > 0.9 and r² 0.9). Thus, the total reactive nitrogen budget in the upper troposphere over the North Atlantic can be explained in a general manner as a simple mixture of NO_x (NO + NO₂), HNO₃, and PAN. Median values of NO_x/NO_y were 0.25, HNO₃/NO_y = 0.35 and PAN/NO_y = 0.17. Particulate NO₃⁻ and alkylnitrates combined composed <10% of NO_y. At this point in time the magnitude of uncertainties in both measured and modeled quantities limit our ability to critically evaluate the reactive nitrogen budget in the remote troposphere.