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Abstract. We use 2009-2011 space-borne methane obser-
vations from the Greenhouse Gases Observing SATellite
(GOSAT) to estimate global and North American methane
emissions with 4° x 5° and up to 50 km x 50 km spatial res-
olution, respectively. GEOS-Chem and GOSAT data are first
evaluated with atmospheric methane observations from sur-
face and tower networks (NOAA/ESRL, TCCON) and air-
craft (NOAA/ESRL, HIPPO), using the GEOS-Chem chem-
ical transport model as a platform to facilitate comparison
of GOSAT with in situ data. This identifies a high-latitude
bias between the GOSAT data and GEOS-Chem that we cor-
rect via quadratic regression. Our global adjoint-based in-
version yields a total methane source of 539 Tga~! with
some important regional corrections to the EDGARvV4.2 in-
ventory used as a prior. Results serve as dynamic bound-

ary conditions for an analytical inversion of North American
methane emissions using radial basis functions to achieve
high resolution of large sources and provide error characteri-
zation. We infer a US anthropogenic methane source of 40.2—
42.7 Tga~1, as compared to 24.9-27.0 Tga~! in the EDGAR
and EPA bottom-up inventories, and 30.0-44.5 Tga~! in re-
cent inverse studies. Our estimate is supported by indepen-
dent surface and aircraft data and by previous inverse stud-
ies for California. We find that the emissions are highest in
the southern—central US, the Central Valley of California,
and Florida wetlands; large isolated point sources such as
the US Four Corners also contribute. Using prior informa-
tion on source locations, we attribute 29-44 % of US anthro-
pogenic methane emissions to livestock, 22—-31 % to oil/gas,
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20 % to landfills/wastewater, and 11-15 % to coal. Wetlands
contribute an additional 9.0-10.1 Tga™.

1 Introduction

Methane (CH4) emissions have contributed 0.97 Wm~2 in
global radiative forcing of climate since pre-industrial times,
second only to CO, with 1.7Wm~2 (IPCC, 2013). As
a short-lived climate forcing agent (lifetime ~ 10 years),
methane may provide a lever for slowing near-term cli-
mate change (Ramanathan and Xu, 2010; Shindell et al.,
2012). Major anthropogenic sources include natural gas and
petroleum production and use, coal mining, waste (land-
fills and wastewater treatment), livestock, and rice cultiva-
tion. Wetlands are the largest natural source. The present-
day global emission of methane is 5504+ 60 Tga~!, con-
strained by knowledge of the global tropospheric hydroxyl
radical (OH) concentration from the methylchloroform bud-
get (Prather et al., 2012). However, allocation by source types
and regions is very uncertain (Dlugokencky et al., 2011).
Here we use GOSAT space-borne observations for 2009-
2011 to improve our understanding of global and North
American methane emissions using a high-resolution inver-
sion technique (Turner and Jacob, 2015).

The US Environmental Protection Agency (EPA) produces
national emission inventories for anthropogenic methane,
with a total of 27.0 Tga—! in 2012 including 34% from
livestock, 29 % from oil/gas extraction and use, 21 % from
waste, and 11 % from coal mining (EPA, 2014). Inverse stud-
ies using observations of atmospheric methane concentra-
tions suggest that the EPA inventory may be too low by up
to a factor of 2, although they differ as to the magnitude
and cause of the underestimate (Katzenstein et al., 2003;
Kort et al., 2008; Xiao et al., 2008; Karion et al., 2013;
Miller et al., 2013; Wecht et al., 2014a; Caulton et al., 2014).
There is strong national and international interest in regu-
lating methane emissions (President’s Climate Action Plan,
2013; President’s Climate Action Plan, 2014; Climate and
Clean Air Coalition, 2014), particularly in the context of
increasing natural gas exploitation and fracking, but uncer-
tainty in the emission inventory makes regulation problem-
atic.

Space-borne observations of atmospheric methane con-
centrations in the shortwave infrared (SWIR) are a unique
resource for constraining methane emissions because of the
dense and continuous data that they provide. SWIR instru-
ments measure column concentrations with near-uniform
vertical sensitivity down to the surface. Data are available
from the SCIAMACHY instrument for 2003-2012 (Franken-
berg et al., 2005, 2011) and from the TANSO-FTS instru-
ment aboard GOSAT for 2009—present (Butz et al., 2011;
Parker et al., 2011; hereafter we refer to the instrument as
“GOSAT”). GOSAT has higher precision and pixel resolu-
tion than SCIAMACHY (0.6 % and 10 km x 10km vs. 1.5 %
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and 30 km x 60 km), but the observations are not as dense.
The GOSAT retrievals are in good agreement with surface-
based column measurements (Parker et al., 2011; Butz et al.,
2011; Schepers et al., 2012; Fraser et al., 2013; Monteil et al.,
2013; Cressot et al., 2014; Alexe et al., 2015).

Previous inversions of methane emissions using satel-
lite data have mainly focused on the global scale, opti-
mizing emissions with coarse spatial resolution (Bergam-
aschi et al., 2007, 2009, 2013; Fraser et al., 2013; Mon-
teil et al., 2013; Cressot et al., 2014; Alexe et al., 2015).
This limits the interpretation of the results because emis-
sions from different source types have large spatial over-
lap (Fung et al., 1991). Spatial overlap is reduced at higher
resolution; thus, optimizing emissions at high spatial resolu-
tion can help improve source attribution. Wecht et al. (2014a)
used SCIAMACHY data for July—August 2004 in a higher-
resolution (~ 100 km x 100 km) inversion of methane emis-
sions in North America, but they were unable to achieve such
aresolution using GOSAT because of the sparser data (Wecht
et al., 2014b).

Here we use three years (2009-2011) of GOSAT data
to constrain global and North American methane emissions
with high spatial resolution, exploiting both the longer record
and a new analytical inversion method where the state vec-
tor of emissions is defined optimally from a set of radial ba-
sis functions (Turner and Jacob, 2015). We begin by evalu-
ating the GOSAT retrievals with surface, aircraft, and total
column observations using the GEOS-Chem chemical trans-
port model (CTM; described in the Appendix) as an inter-
comparison platform. This identifies a high-latitude bias be-
tween GOSAT and GEOS-Chem that we correct. We then use
GOSAT observations to constrain global methane sources
with the GEOS-Chem model and its adjoint at 4° x 5°
resolution, and apply the results as boundary conditions
to optimize North American methane sources with up to
50 km x 50 km resolution and error characterization.

2 GOSAT observations and bias correction

GOSAT (Kuze et al., 2009) was launched in January 2009 by
the Japan Aerospace Exploration Agency (JAXA). Methane
abundance is determined by analysis of the spectrum of
backscattered solar radiances in the SWIR near 1.6um.
Data are available from April 2009 on. GOSAT is in Sun-
synchronous low earth orbit with an Equator overpass of
12:45-13:15LT. The instrument observes five cross-track
nadir pixels (three cross-track pixels after August 2010) with
a footprint diameter of 10.5km, a cross-track spacing of
about 100 km, an along-track spacing of 90-280 km, and a 3-
day revisit time. We use the version 4 proxy methane re-
trievals from Parker et al. (2011) that pass all quality flags
(http://www.leos.le.ac.uk/GHG/data/styled/index.html). The
retrievals provide a weighted column average dry-mole frac-
tion of CHa4, XcH,, with averaging kernels to describe the

www.atmos-chem-phys.net/15/7049/2015/


http://www.leos.le.ac.uk/GHG/data/styled/index.html

A. J. Turner et al.: Estimating methane emissions with GOSAT 7051

vertical weighting. The averaging kernels show near-uniform
vertical sensitivity in the troposphere and decreasing sensi-
tivity above the tropopause (see Butz et al., 2010). The esti-
mated single-retrieval precision is scene-dependent and aver-
ages 13.3ppb or 0.8 % (Parker et al., 2011).

Figure 1 shows the mean methane concentrations for
June 2009-December 2011 observed by GOSAT and used
in this work. There are 590675 global observations includ-
ing 74687 for the North American window of our high-
resolution inversion. The GOSAT sampling strategy of con-
sistently revisiting the same locations provides a high density
of observations over the sampled locations, but the coverage
is not continuous (gray areas in Fig. 1). There are data over
oceans from Sun glint retrievals (Butz et al., 2011) but not
in the Parker et al. (2011) product used here. Methane con-
centrations are highest over East Asia where rice, livestock,
and fossil fuels contribute large sources. They are also high
over the eastern US. Low concentrations over elevated ter-
rain (Tibetan Plateau, western US) reflect in part a larger rel-
ative contribution of the stratosphere to the column-average
mixing ratio. We see from Fig. 1 that relevant spatial differ-
ences in methane mixing ratio for our inversion are of the
order of 10 ppb. With a mean single-scene instrument preci-
sion of 13.3 ppb, reducible by temporal or spatial averaging,
GOSAT cannot resolve day-to-day variability of emissions,
but can strongly constrain a multi-year average.

Previous studies have validated the GOSAT data with
surface-based FTIR methane column abundances from the
Total Carbon Column Observing Network (TCCON; Wunch
et al., 2011). These studies have generally found GOSAT
retrievals to be within their stated precisions (Parker et al.,
2011). Schepers et al. (2012) pointed out that a full valida-
tion of the GOSAT retrievals would require a more extensive
validation network than is available from TCCON. Satellite
observations by solar backscatter tend to be subject to high-
latitude biases because of large solar zenith angles, resulting
in longer path lengths and higher interference with clouds.
Monteil et al. (2013) did not include a latitudinal bias cor-
rection in their inverse analysis of GOSAT data, but Cressot
et al. (2014) used a bias correction based on the geometric air
mass factor and Fraser et al. (2013) added a latitudinal bias
correction that was fitted as part of the inversion.

The Parker et al. (2011) retrieval uses CO> as a proxy for
the light path to minimize common spectral artifacts from
aerosol scattering and instrument effects (Frankenberg et al.,
2005; Butz et al., 2010):

*
CHy

XcH, = Xco,. 1)

X(*:Oz
where X("EH4 and XEOZ are the dry-air mole fractions re-
trieved from GOSAT under the assumption of a non-
scattering atmosphere and Xco, is the column-average dry-
air mole fraction of CO,, estimated from the LMDZ global
CTM with 3.75° x 2.5° spatial resolution. This could lead to
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Figure 1. Mean GOSAT observations of the weighted column-
average methane dry-mole fraction (Xcp,) for June 2009-
December 2011, globally and for North America. The data are ver-
sion 4 proxy methane retrievals from Parker et al. (2011) that pass
all quality flags (http://www.leos.le.ac.uk/GHG/data/styled/index.
html).

localized bias in areas of concentrated CO, sources. We de-
termined the extent of the bias by replacing Xco, in Eq. (1)
with (sparser) Xco, data from a full-physics GOSAT re-
trieval. This indicates a 14 ppb low bias in Los Angeles but
much weaker biases on regional scales.

Here we examined the consistency of GOSAT with
a large body of independent surface and aircraft mea-
surements of methane concentrations by using the GEOS-
Chem CTM with prior methane emissions (Table 1 and
Figs. Al and A2) as an intercomparison platform. Ta-
ble 2 gives summary comparison statistics and more de-
tails are in the Appendix (Figs. A3-A5). Global com-
parisons with HIPPO 1I-V aircraft profiles across the Pa-
cific (http://hippo.ornl.gov; Wofsy, 2011), the NOAA co-
operative flask sampling network (http://www.esrl.noaa.gov/
gmd/ccgg/flask.php), and the TCCON network (http://tccon.
ornl.gov, GGG2014 version; Washenfelder et al., 2006;
Deutscher et al., 2010; Wunch et al., 2010, 2011; Messer-
schmidt et al., 2011, 2012; Geibel et al., 2012) show that
GEOS-Chem accurately simulates the global features of the
methane distribution including the meridional gradient in dif-
ferent seasons, with no significant bias across multiple years
and seasons (Figs. A3-A5). One would then expect simi-
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Table 1. 2009-2011 methane emissions?.
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Source type Contiguous US North America Global
Prior  Posterior? Prior  Posterior? Prior  Posterior
Total 31.4 51.3-525 63.3 88.5-91.3 537 539
Wetlands 5.9 9.0-10.1 20.4  22.9-23.7 164 169
Livestock 8.9 12.6-17.0 145  20.0-25.7 111 116
Oil/gas 5.4 8.7-13.4 108 15.5-22.3 69 67
Wiaste® 55 8.0-8.5 9.7 13.4-145 60 65
Coal 4.0 4.7-6.5 4.3 5.0-6.8 47 30
Rice 0.4 0.8-0.9 0.5 0.9-1.0 38 45
Open fires 0.1 0.1 1.0 0.9 17 16
Otherd 11 1.6-1.7 2.2 3.0-3.3 31 32
Natural® 7.5 9.8-11.1 25.0 25.1-26.2 176 181
Anthropogenicf 25.0 40.2-42.7 419 62.3-66.2 361 358

@ Emissions are in Tg a~L. Prior emissions are mainly from EDGARV4.2 for anthropogenic sources and

Pickett-Heaps et al. (2011) for wetlands (see Appendix).

b Range from two inversions with different assumptions for prior error (see text).

¢ Including landfills and waste water.

d Including fuel combustion, termites, and soil absorption.

€ Including wetlands, open fires, termites, and soil absorption.
f Including livestock, oil/gas, waste, coal, rice, and fuel combustion.

lar agreement in the comparison of GEOS-Chem to GOSAT.
Comparing GEOS-Chem at 4° x 5° over North America with
TCCON, the NOAA/ESRL Global Greenhouse Gas Refer-
ence Network (surface flasks, tall tower network, and ver-
tical profiles from the aircraft program) (http://www.esrl.
noaa.gov/gmd/ccgg/flask.php; Andrews et al., 2014; Biraud
etal., 2013) shows weaker correlations (R? = 0.40-0.60) and
the reduced-major-axis regression slopes (0.67-0.75) sug-
gest a ~ 30 % prior underestimate of North American emis-
sions. Reduction of this bias will provide an independent
check on our inversion results.

Figure 2 compares the GOSAT methane observations
(XcH,) to GEOS-Chem values sampled at the location and
time of the observations, and with local averaging kernels
applied. There is a latitudinal background pattern in the dif-
ference between GEOS-Chem and GOSAT. The bias be-
comes significant at latitudes poleward of 50°. Since GEOS-
Chem is unbiased in its simulation of the tropospheric merid-
ional gradient relative to the surface and aircraft data (Ta-
ble 2, Fig. A3), we attribute the high-latitude bias to errors
in either the GOSAT retrieval or GEOS-Chem stratospheric
methane. Bias corrections that are a function of latitude or
air mass factor (solar zenith angle) should be able to cor-
rect for this. However, a bias in the GOSAT data would be
expected to correlate better with the air mass factor, while
a bias in the model stratosphere may correlate better with
latitude. We find latitude to be a better bias predictor based
on the Bayesian information criterion (quadratic regression
in Fig. 2c). This suggests a potential bias in the GEOS-Chem
simulation of methane in the polar stratosphere, which war-
rants further investigation with observations such as TCCON
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partial columns (Saad et al., 2014; Wang et al., 2014). In any
case, we remove the bias using the quadratic regression and
Fig. 2d shows the resulting mean differences between GEOS-
Chem and GOSAT after this bias correction. The differences
point to errors in the GEOS-Chem prior emissions that we
will correct in the inversion.

3 Global inversion of methane emissions

We use the bias-corrected GOSAT data to infer global
methane emissions at 4° x 5° resolution with an adjoint-
based four-dimensional variational data assimilation sys-
tem (Henze et al., 2007; Wecht et al., 2012, 2014a). The sys-
tem minimizes a cost function (7) with Gaussian errors,

1
VORPE Kx)? S5 (y — Kx)

+%(xa—x)TSa_l(xa—x). @
Here x, is the vector of prior emissions (see Table 1 and
Fig. Al), y is the vector of GOSAT observations, K = dy/dx
is the Jacobian matrix of the GEOS-Chem methane simula-
tion used as a forward model, and S, and So are the prior and
observational error covariance matrices, respectively.

The state vector consists of scaling factors for emissions at
4° % 5° resolution for June 2009-December 2011. The prior
emissions are mainly from the EDGARV4.2 inventory for
anthropogenic sources (European Commission, 2011), and
Pickett-Heaps et al. (2011) for wetlands. Table 1 gives a sum-
mary and further details are in the Appendix. The error co-
variance matrices are taken to be diagonal, implying no error

www.atmos-chem-phys.net/15/7049/2015/
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Table 2. GEOS-Chem comparison to 2009-2011 suborbital methane observations?.

Observations R?2 Slope® Mean Bias®
Prior  Posterior Prior  Posterior Prior  Posterior

Global

HIPPO (I1-V) 0.94 0.94 0.97 0.95 4.2 4.4

TCCON 0.82 0.83 0.94 0.98 6.4 8.1

NOAAJ/ESRL surface flasks 0.66 0.66 1.08 1.04 16.1 14.1

North America

NOAA/ESRL tall tower network  0.40 0.48 0.72 1.03 —-13.3 3.1

NOAAV/ESRL aircraft program 0.54 0.61 0.75 0.94 -0.2 6.7

NOAAJ/ESRL surface flasks 0.60 0.67 0.67 1.01 -5.6 7.1

8 GEOS-Chem at 4° x 5° resolution globally and 1/2° x 2/3° resolution for North America, using either prior emissions (Table 1 and
Figs. A3 and A4) or posterior emissions optimized with the inversion. Further details on the comparisons are in Figs. A3-A5. NOAA
observations are from the NOAA/ESRL Greenhouse Gas Reference Network. References for the observations are given in the text.

b Slope (in ppb ppb~1) is from a reduced-major-axis (RMA) regression.

¢ Mean bias is the mean difference (in ppb) between model and observations.

(a) Mean GEOS-Chem — GOSAT difference
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Figure 2. Comparison of the GOSAT observations from Fig. 1 to the GEOS-Chem model with prior emissions. (a and b) show the mean
bias and residual standard deviation for the model—satellite difference. (c) shows the model-satellite difference as a function of latitude
for individual observations along with the data density (contours), and a quadratic regression (red line; x in degrees latitude, y in ppb) as
an estimate of the bias. The regression excludes grid squares with residual standard deviation in excess of 20 ppb as model bias in prior
emissions could dominate the difference. (d) is the same as (a) but using the bias correction from (c).

correlation on the 4° x 5° grid. We assume 50 % error vari-
ance on the prior for 4° x 5° grid cells as in Monteil et al.
(2013).

Observational error variances are estimated following
Heald et al. (2004) by using residual standard deviations of
the differences between observations and the GEOS-Chem
simulation with prior emissions, as shown in Fig. 2b. As

www.atmos-chem-phys.net/15/7049/2015/

shown by Heald et al. (2004), this residual error provides an
estimate of the total observational error needed for the inver-
sion, summing the contributions from instrument retrieval,
representation, and model transport errors. We find that the
resulting observational error variances are lower than the lo-
cal retrieval error variances reported by Parker et al. (2011)
for 58 % of the observations, and in those cases we use the
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latter instead. The implication is that the Parker et al. (2011)
error estimates may be too high but provide a conservative
estimate of the observational error.

The GEOS-Chem forward model and its adjoint are as de-
scribed by Wecht et al. (2014a). We optimize methane emis-
sions from 1 June 2009 to 1 January 2012. The forward
model is initialized on 1 January 2009 with concentrations
from Wecht et al. (2014a). There is no significant global bias
in the simulation, as discussed above. The 5-month spin-up
allows for the establishment of gradients driven by synoptic
motions and effectively removes the influence of the initial
conditions.

Figure 3 shows the prior and posterior 2009-2011 emis-
sions. We evaluated the posterior emissions in a GEOS-
Chem forward simulation by comparison with the global in-
dependent observational data sets of Table 2. The prior sim-
ulation showed high correlation and little bias. The posterior
simulation shows similar results. The increase in mean bias
relative to the TCCON data is not significant. As pointed out
above, the global data sets mainly test the global emissions
and large-scale meridional gradients. Since we used them
previously to justify a bias correction in the comparison be-
tween GEOS-Chem and GOSAT, they do not provide a true
independent test of the inversion results. Nevertheless, we
see that the inversion does not degrade the successful sim-
ulation of the background meridional gradient in the prior
GEOS-Chem simulation.

The total posterior methane emission is 539 Tga~!, un-
changed from the prior (537 Tga—1). This source is within
the 5481% Tga~! range of current estimates reported by
Kirschke et al. (2013) and IPCC (2013). However, we find
large regional differences compared to the prior. Emissions
from China are revised downward by 50% from 29.2 to
14.7 Tga~1, consistent with Bergamaschi et al. (2013), who
find that EDGARv4.2 Chinese coal emissions are too large.
This overestimate in Chinese methane emissions is also seen
by Bruhwiler et al. (2014), who assimilated the 2000-2010
NOAA surface observations into CarbonTracker using an en-
semble Kalman filter. Emissions in India are also too high,
while emissions in Southeast Asia are too low. Emissions
from wetlands in central Africa are too high. Emissions in
northern South America are too low. Corrections in North
America are discussed in the next section.

We inferred the contributions from different source types
to our posterior emissions by assuming that the prior inven-
tory correctly partitions the methane by source type (see Ap-
pendix and Table 1) in each 4° x 5° grid cell. This does not
assume that the global distribution of source types is cor-
rect in the prior, only that the local identification of domi-
nant sources is. We find only modest changes to the global
partitioning by source types, with the exception of coal and
rice, partly reflecting regional offsets. For example, wetland
emissions increase globally by only 5Tga~! but decrease
by 24Tga~! in the African wetlands, while increasing by
10Tga~? in northern South America.

Atmos. Chem. Phys., 15, 7049-7069, 2015
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Figure 3. Optimization of methane emissions for 2009-2011 at
4° x 5° horizontal resolution using GOSAT observations. The pan-
els show prior emissions, posterior emissions, and the ratio between
the two.

4 North American inversion of methane emissions

We optimize methane emissions over North America by us-
ing the nested GEOS-Chem simulation at 1/2° x 2/3° hori-
zontal resolution (~ 50 km x 50 km) over the North Amer-
ican window in Fig. 1. Time-dependent boundary condi-
tions for this nested simulation are from the global model
at 4° x 5° horizontal resolution using the posterior emissions
derived above. We only solve for the spatial distribution of
emissions, assuming that the prior temporal distribution is

www.atmos-chem-phys.net/15/7049/2015/
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Figure 4. Methane emissions in North America in 2009-2011. The left panels show the prior and posterior emissions and the bottom right
panel shows the scaling factors. The top right panel shows the diagonal elements of the averaging kernel matrix for the methane emission
inversion. The degrees of freedom for signal (DOFS) is the trace of the averaging kernel matrix.

correct (aseasonal except for wetlands and open fires; see
Appendix).

Following Turner and Jacob (2015), the dimension of the
emissions state vector for the nested North American inver-
sion is optimally reduced from the native 1/2° x 2/3° reso-
lution (n = 7366) in order to (1) improve the observational
constraints on individual state vector elements and (2) en-
able an analytical inversion with full error characterization.
This is done by aggregating similar state vector elements
with a Gaussian mixture model (Bishop, 2007). We find that
an optimal reduction with negligibly small aggregation error
can be achieved using 369 radial basis functions (RBFs) with
Gaussian kernels. The RBFs are constructed from estimation
of the factors driving error correlations between the native-
resolution state vector elements including spatial proximity,
correction from one iteration of an adjoint-based inversion
at 1/2° x 2/3° resolution, and prior source type distributions.
Including the correction from the adjoint-based inversion al-
lows us to account for sources not included in the prior. Each
1/2° x 2/3° native-resolution grid square is projected onto an
aggregated state vector using the RBFs. This preserves na-
tive resolution where needed (in particular for large point
sources) and aggregates large regions where emissions are
uniformly small.

Our optimal estimate of North American emissions was
obtained by analytical solution to Eq. (2) (cf. Rodgers, 2000),
using the Jacobian matrix K constructed column by column
for the aggregated state vector. This analytical approach pro-
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vides the posterior covariance matrix Sand averaging kernel
matrix A as part of the solution and thus fully characterizes
the errors and information content of the inversion results.
The observational error covariance matrix is assumed di-
agonal with terms specified as the larger of the residual er-
ror variance and the retrieval error variance, same as for the
global inversion. The prior error covariance matrix is as-
sumed diagonal because the radial basis functions are de-
signed to capture spatial correlations in the emissions. We
assume 100 % error on emissions at the native 1/2° x 2/3°
resolution. For RBFs encompassing larger spatial regions, we
assume that the error is reduced following the central limit
theorem:
Safii} = s—a,
jWisj

©)

where S ;i) is the ith diagonal of Sy, s4 is the prior uncer-
tainty at the native resolution (100 %), and the summation
is for the weights of the ith RBF over all 1/2° x 2/3° grid
squares (index j). This error reduction assumes that the er-
rors on the native-resolution grid cells are independent and
identically distributed, which may be overly optimistic. We
examined the sensitivity to this assumption by conducting an
alternate inversion with a relative error of 30 % for all state
vector elements, similar to the approach taken by Wecht et al.
(2014a) using a hierarchial clustering method for the state
vector.
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Figure 4 shows the prior and posterior 2009-2011 emis-
sions. Total posterior emissions in North America (Table 1)
are 44% higher than the prior, with large increases in the
southern—central US and weak decreases for the Canadian
wetlands. Contiguous US emissions are 52Tga™1, 70%
higher than the prior. The broad correction patterns are con-
sistent with the coarse global results in Fig. 3 that used
a completely different inversion method. Our sensitivity in-
version assuming 30 % prior error on all state vector elements
yields the same North American and contiguous US totals to
within 3 %.

We evaluated the posterior emissions in a GEOS-Chem
simulation over North America by comparison to the inde-
pendent observations from Table 2. We find great improve-
ment in the ability of the model to reproduce these observa-
tions, as illustrated by the scatterplots of Fig. 5. The reduced-
major-axis (RMA) regression slopes improve from 0.72 to
1.03 for the NOAA/ESRL tall tower network, from 0.75 to
0.94 for the NOAA/ESRL aircraft profiles, and from 0.67 to
1.01 for the NOAA surface flasks.

Another independent evaluation of our posterior emis-
sions is the estimate for California. California’s methane
emissions have been extensively studied with aircraft and
ground-based observations over the past few years in order
to address statewide greenhouse gas regulation targets (Zhao
et al., 2009; Wunch et al., 2009; Hsu et al., 2010; Peischl
et al., 2012; Wennberg et al., 2012; Jeong et al., 2012, 2013;
Peischl et al., 2013; Santoni et al., 2015; Wecht et al., 2014b).
Figure 6 shows that our posterior emissions are 20 % higher
than the EDGARV4.2 prior inventory for the state of Cali-
fornia and 50 % lower for the Southern California Air Basin
(SoCAB). Other studies constrained with dense aircraft and
ground-based observations are consistent with ours. Our esti-
mate for SOCAB could be biased low due to an underestimate
of local CO; in the GOSAT retrieval (see Sect. 2). Wecht
et al. (2014b) previously found that GOSAT observations
were not sufficiently dense to constrain methane emissions
in California. However, they only used a 2-month record and
tried to constrain emissions at 1/2° x 2/3° resolution, incur-
ring large smoothing error. By using a longer time record
and an optimally defined state vector, we achieve much bet-
ter success.

Figure 4 (top right panel) shows the averaging kernel sen-
sitivities for the North American methane emission inver-
sion, defined as the diagonals of the averaging kernel matrix.
The inversion has 39 degrees of freedom for signal (DOFs),
meaning that we can exactly constrain 39 pieces of informa-
tion in the distribution of methane emissions. This informa-
tion is spread over the continent and mixed with prior con-
straints as described by the averaging kernel matrix. We can
use the averaging kernel sensitivities in Fig. 4 to determine
which regions are most responsive to the inversion. These
include California, the Canadian wetlands, and the south-
eastern and central US. Large isolated point sources such as
the US Four Corners (a large source of coalbed methane at
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Figure 5. Evaluation of the GOSAT inversion of methane emis-
sions for North America with independent data sets. The scatter-
plots show comparisons of GEOS-Chem (1/2° x 2/3° resolution)
methane concentrations with observations from the NOAA/ESRL
tall tower network (red), NOAA/ESRL aircraft program (blue),
and the NOAA/ESRL surface flask network (orange), using prior
emissions (top) and posterior emissions (bottom). The 1:1 lines
(dashed) and reduced-major-axis (RMA, solid) linear regressions
are also shown. RMA regression parameters are shown inset and
correspond to the statistics of Table 2.

the corner of Arizona, New Mexico, Colorado, and Utah) are
also strongly sensitive to the inversion.

We see from Fig. 4 that the prior underestimate of North
American methane emissions is largely due to the central
US, the Canadian Oil Sands, central Mexico, California, and
Florida. Various large point sources such as the US Four Cor-
ners also contribute. We also find regions where the prior is
too high, including the Hudson Bay Lowlands, SOCAB, and
parts of Appalachia. This suggests that oil/gas and livestock
emissions are higher than given in EDGARVA4.2, while coal
emissions are lower. The overestimate in SOCAB is likely be-
cause EDGARv4.2 uses urban and rural population as a spa-
tial proxy for landfills and waste water (Wunch et al., 2009).
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Figure 6. Methane emissions for the state of California (top)
and for the Southern California Air Basin (SoCAB; bottom). Our
posterior emissions (this work) are compared to prior emissions
(EDGARV4.2) and to previous inverse estimates constrained by
surface and aircraft observations. SOCAB is defined following
Wennberg et al. (2012) as the domain 33.5-34.5° N, 117-119° W.

The underestimate in Florida is most likely due to wetland
sources.

As with the global inversion, we infer the contributions
from different methane source types by assuming that the
prior inventory correctly attributes the source types in a given
1/2° x 2/3° grid cell. Again, this does not assume that the
prior distribution is correct, only that the identification of lo-
cally dominant sources is correct. Results are shown in Fig. 7.
We see that the increase relative to the prior is mainly driven
by anthropogenic sources. This can be compared to the US
EPA anthropogenic inventory (EPA, 2014), which is based
on more detailed bottom-up information than EDGARV4.2
but is only available as a national total. We find an anthro-
pogenic source for the contiguous US of 40.2-42.7 Tga 1,
as compared to 27.0 Tga~! in the US EPA inventory. The
largest differences are for the oil/gas and livestock sectors.
Depending on the assumptions made regarding the prior er-
ror, oil/gas emissions from our inversion are 13—-74 % higher
than the EPA estimate and contribute 17-26 % of contigu-
ous US methane emissions. Livestock emissions are 36-85 %
higher than the EPA estimate and contribute 24-33 % of con-
tiguous US methane emissions. Waste and coal emissions are
also higher in our posterior estimate than in the EPA inven-
tory.

www.atmos-chem-phys.net/15/7049/2015/

5 Comparison to previous inverse studies

Several past inverse analyses have estimated methane emis-
sions in the contiguous US with differing conclusions, in
particular the work of Miller et al. (2013) and Wecht et al.
(2014a). Miller et al. (2013) used in situ observations for
2007-2008 from ground stations and aircraft. They found the
EPA inventory to be underestimated by a factor of 1.5 na-
tionally, with the largest underestimates in fossil fuel source
regions. This is in contrast to Wecht et al. (2014a), who used
July—August 2004 observations from SCIAMACHY. They
found that the EPA inventory was underestimated by only
10 %, with the major discrepancy being livestock emissions
underestimated by 40 %.

Our continental-scale inversion yields a total US methane
emission of 52.4Tga~! and an anthropogenic source of
42.8 Tga~L. The general spatial pattern of the posterior emis-
sions is similar to those of Miller et al. (2013) and Wecht
et al. (2014a), but the total methane emissions found here are
more similar to Miller et al. (2013), who found US total and
anthropogenic emissions of 47.2 and 44.5 Tga~1. The cor-
responding values obtained by Wecht et al. (2014a) are 38.8
and 30.0 Tga™1, significantly lower.

Our work finds a larger natural methane source in the con-
tiguous US than Miller et al. (2013), who used a fixed prior
wetland source of 2.7 Tga~! that was subtracted from the
measurements. Our prior and posterior emissions are 5.9 and
9.0-10.1 Tga~1, respectively, mostly located in Louisiana
and Florida and more consistent with Wecht et al. (2014a).
Quantifying the wetlands source is important because it sub-
tracts from the anthropogenic source estimate inferred from
the inversion. In particular, our anthropogenic source of
methane in the contiguous US would be larger than that of
Miller et al. (2013) if we had not corrected for the larger wet-
land source.

Kort et al. (2014) found the Four Corners to be the largest
single methane source in the continental US (0.59 Tga—1) on
the basis of SCIAMACHY observations and TCCON obser-
vations, with a magnitude 3.5 times larger than EDGARV4.2
and 1.8 times larger than reported by the US EPA Green-
house Gas Reporting Program (EPA, 2014). This is in con-
trast to Miller et al. (2013), who found the US Four Corners
to be overestimated in EDGARV4.2 but only had weak con-
straints for that region. Our work finds methane emissions
from the US Four Corners to be 0.45-1.39 Tga~! and 3-9
times larger than in the EDGARV4.2 inventory, consistent
with the finding of Kort et al. (2014).

Miller et al. (2013) attributed most of the underestimate in
the US EPA methane inventory to fossil fuel, while Wecht
et al. (2014a) attributed it to livestock. We find in our inver-
sion that the source attribution is highly dependent on the
specification of the prior error covariance matrix, as shown
in Fig. 7. Our standard inversion that adjusts the prior error
for the RBF weights (Eq. 3) attributes 31 % of US anthro-
pogenic emissions to oil/gas and 29 % to livestock, so that
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Figure 7. Methane emissions in the contiguous US. The left panel shows our best estimates of total and anthropogenic emissions (this work)
compared to the prior (EDGARV4.2 for anthropogenic sources, Pickett-Heaps et al. (2011) for wetlands) and the previous inverse studies
of Wecht et al. (2014a) and Miller et al. (2013). The right panel partitions US anthropogenic emissions by source types and compares our
results (this work) to EDGARVA4.2 and to the 2012 EPA inventory (EPA, 2014). Error bars on sectoral emissions for our results are defined
by the sensitivity inversion with 30 % prior uncertainty for all state vector elements.

most of the EPA underestimate is for oil/gas. However, an
inversion without this prior error adjustment (error bars in
Fig. 7) finds the underestimate to be mainly from livestock.
This is because the RBFs associated with livestock emis-
sions tend to cover larger areas of correlated emissions than
the point sources associated with oil/gas. An inversion with
equal error weighting for different state vector elements will
tend to favor correction of the larger elements associated with
livestock. With current prior knowledge it is thus difficult to
conclusively attribute the US EPA underestimate to oil/gas
or livestock emissions. This limitation could be addressed by
a better prior knowledge of the spatial distribution of source
types or by the use of correlative information (e.g., observa-
tions of ethane originating from oil/gas) in the inversion.

6 Conclusions

We used 31 months of GOSAT satellite observations of
methane columns (June 2009-December 2011) to constrain
methane emissions at high spatial resolution in North Amer-
ica with an inversion based on the GEOS-Chem chemical
transport model. We first conducted a global adjoint-based
inversion at 4° x 5° resolution and used the resulting opti-
mized fluxes as dynamic boundary conditions for a nested
inversion with resolution up to 50 km x 50 km over North
America.

We began by evaluating the GOSAT observations with
a large ensemble of aircraft and surface data (HIPPO,
NOAA/ESRL surface flasks, NOAA/ESRL aircraft, TC-
CON), using GEOS-Chem