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Supporting information 

 

A. Fire prediction methods – a review 

As shown in Table S1, there are three main approaches for the prediction of wildfire. 

Among them, regression is the most widely used, with the goal of deriving a relationship 

between fire parameters (e.g., area burned or probability) and meteorological, 

hydrological, and geographic variables. Different forms of regression have been adopted, 

such as stepwise (Flannigan et al., 2005; McCoy and Burn, 2005; Amiro et al., 2009; 

Spracklen et al., 2009), exponential (Drever et al., 2009), and logistic regression 

(Krawchuk et al., 2009b; Westerling et al., 2011) as well as Multivariate Adaptive 

Regression Spline (MARS) (Balshi et al., 2009). The regression approach usually has a 

reasonable predictive capability, with R2 ranging from 0.3 to 0.8. It is numerically 

efficient because it usually employs monthly or seasonal variables averaged over a large 

spatial scale (e.g., Flannigan et al., 2005; Littell et al., 2009). Obtaining satisfactory fits 

(or correlations) usually requires aggregating area burned data into large ecoregions (e.g., 

Flannigan et al., 2005; Amiro et al., 2009; Spracklen et al., 2009), smoothing the 

meteorological data (e.g., Littell et al., 2009; Rasilla et al., 2010), or adopting a series of 

complex multiplicative relationships (e.g., Drever et al., 2009; Westerling et al., 2011). 

The regression methods also have significant limitations. For the stepwise regression 

method, which selects predictors based on their correlations with the predictand, the more 

potential predictors used, the more robust the fit. However, an increase in the number of 

terms may also result in some terms closely correlating with each other. Such collinearity 

not only makes it difficult to isolate contributions from individual factors (Moritz et al., 

2012), but also may result in mathematical instability in future projections (Philippi, 

1993). Another limitation is that a change in the length of the time series or use of a 

different meteorological dataset may lead to a different order of terms in the regression fit 

(e.g. Littell et al., 2009), causing very different projections using meteorological output 

from a GCM. Other regression methods, such as MARS or a probabilistic approach, may 

avoid collinearity among predictors, but have their own limitations. For example, the 

MARS technique can develop good regression fits on small spatial scales, but 

interpretation of these fits may be challenging due to the complicated functional forms 
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for the predictor variables and the large number of functions. The probabilistic method 

has good potential for predicting fire frequency; however, transforming the calculated 

frequency to area burned requires making many assumptions (Westerling et al., 2011). 

Parameterizations or process-based fire models adopt uniform functions for all grid 

cells in a model or region (e.g. Cardoso et al., 2003; Arora and Boer, 2005; Crevoisier et 

al., 2007; Pechony and Shindell, 2009). The parameterization usually employs nonlinear 

relations between fire and environmental variables, in contrast to regression methods that 

often assume linear responses. However, most previous parameterizations have proven 

difficult to evaluate, especially on a global scale, in part due to a paucity of observations. 

For example, Kloster et al. (2010) used two satellite products to evaluate simulations of 

area burned, but noted that there are large discrepancies between the two products, 

making validation difficult on a global scale. In addition, the prediction of area burned is 

especially challenging for parameterizations. Some models capture reasonable patterns of 

fire probability or fire occurrence, but show large biases for area burned (e.g., Crevoisier 

et al., 2007). Also, the constants in some of the parameterization functions are determined 

a posteriori based on empirical or statistical fits, which limits their application to regions 

where observed fire data are available (e.g., Crevoisier et al., 2007). 

Both the regression method and the parameterizations neglect the effects of wildfires 

on the biosphere, as well as the impact of climate change on vegetation type and extent.  

DGVMs may address these shortcomings by dynamically simulating fire activity (e.g., 

Kloster et al., 2010; Thonicke et al., 2010). DGVM projections of fire activity allow for 

the feedbacks among climate, biosphere and fires and can be used to quantify the 

contributions of different factors to trends in fire activity (Kloster et al., 2012). However, 

the fire schemes implemented in DGVMs are relatively simple compared to other 

elements of these models (Krawchuk et al., 2009a). In addition, vegetation type simulated 

in DGVMs show large inter-model variability on both regional and global scales 

(Bachelet et al., 2003; Purves and Pacala, 2008), and the simulated fire patterns can show 

large biases over North America (Kelley et al., 2012). DGVMs are computationally 

expensive, so that driving a DGVM with output from an array of GCMs would be a large 

undertaking.  
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Clearly, different approaches have their strengths and weaknesses. We choose to 

apply both a regression and a parameterization method to depict the response of area 

burned to the changing climate. These two approaches have contrasting advantages, and 

their application helps to quantify the uncertainties in the fire projections. Use of a 

DGVM is not practical for this work since our goal is to develop efficient methods to 

quantify both the magnitude and uncertainty of fire activity in 15 climate models. 

 

B. Canadian Fire Weather Index system 

The Canadian Fire Weather Index system (CFWIS, Van Wagner, 1987) calculates 

seven fire indexes that characterize the impact of temperature, fuel moisture, and wind 

speed on fire behavior (http://cwfis.cfs.nrcan.gc.ca/background/summary/fwi). The Fine 

Fuel Moisture Code (FFMC), Duff Moisture Code (DMC), and Drought Code (DC) 

indicate moisture levels for litter fuels, loosely compacted organic layers of moderate 

depth, and deep organic layers. The Initial Spread Index (ISI), Build-up Index (BUI), and 

Fire Weather Index (FWI) represent the rate of fire spread, fuel availability, and fire 

intensity. These indexes are calculated from the three fuel moisture codes and their values 

rise as the fire danger increases. The Daily Severity Rating (DSR) is an exponential 

function of the FWI, indicating the difficulty in controlling fires. These fire indexes were 

used as potential predictors in previous regression studies (e.g. Flannigan et al., 2005; 

Amiro et al., 2009). There are other fire index systems, such as U.S. National Forest Fire 

Danger Rating System, which also provide quantification of fire-weather relationships. 

However, these systems require hourly meteorological data as input (National Wildfire 

Coordinating Group, 2005), which are not available in either the site-based observations 

or the climate model output used in this study. 

To calculate CFWIS indexes, we use daily data from the Global Surface Summary of 

the Day (GSOD, http://www.ncdc.noaa.gov/cgi-bin/res40.pl?page=gsod.html), which 

provides 18 daily surface meteorological elements for over 1600 stations in the western 

U.S. We select a given station if at least two-thirds of its records are available between 

1978 and 2004, resulting in 234 sites distributed fairly evenly over western U.S. We use 

the daily mean and maximum temperature, dew point temperature, precipitation, and 

mean wind speed, and we calculate daily mean relative humidity (RH) from the daily 
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mean temperature and dew point temperature. The above variables are binned into 

ecoregions after the elevation correction described in Spracklen et al. (2009). 

 

C. Additional evaluations of regressions 

To quantify the stability of our regressions, we apply “leave-one-out” cross-

validation, which estimates regression coefficients based on all the data except for one 

point and makes a prediction for that point each round. The R2 from the cross-validation 

remains as high as 0.46-0.49 in two forest ecoregions but shows a low value of 0.13 in 

California Coastal Shrub. Observations show that extreme events dominate the total area 

burned over a period of several years (Fig. 3). Fire models, however, tend to have 

difficulty capturing these extreme events (Bachelet et al., 2005; Crevoisier et al., 2007; 

Balshi et al., 2009; Spracklen et al., 2009; Westerling et al., 2011), possibly because they 

omit some nonlinear responses. For example, Westerling et al. (2011) underestimated 

area burned for the 1988 Yellowstone fire by 60%, even though they obtained a very 

good estimate (R2= 0.83) of fire occurrence in a given year based on several assumptions 

in their regressions. To test the model representation of extreme fire events, we examine 

the model predictions for the top three large fire years in each ecoregion. The regressions 

underestimate area burned by 20-60% for these extreme years. In the two forest 

ecoregions, area burned during extreme years is underestimated by 20-40%.   

 

D. Additional evaluations of the parameterization 

Fig. S1 compares the modeled spatial pattern of the annual mean area burned to 

observations. The parameterization reproduces the large values in the Pacific Northwest, 

Nevada Mountains /Semi-desert, and California Coastal Shrub ecoregions, but 

underestimates area burned by 80% in central Idaho, a region with abundant fuel loads. 

The area burned in grasslands, such as eastern Colorado, Wyoming, and eastern Montana, 

is overestimated by 70%. The spatial correlation coefficient between the parameterization 

and observation is low, 0.33 for 331 grid points, because of these deficiencies.  

Fig. S2 compares the simulated seasonality of area burned with observations in each 

ecoregion. The prediction reproduces the seasonality in the Desert Southwest, Nevada 

Mountains/Semi-desert, Rocky Mountains Forest, and Eastern Rocky Mountains/Great 
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Plains, mainly because area burned in these regions follows the seasonality of 

temperature, relative humidity, and precipitation. The parameterization overestimates the 

area burned in September in the Pacific Northwest but fails to capture the October peak 

in the California Costal Shrub region, where the Santa Ana winds enhance wildfire 

activity (Schroeder et al., 1964).  

 

E. Evaluations of present-day prediction with GCM meteorology 

For the regressions, the median GCM-driven result matches the observed area burned 

within ±11%, except for the Rocky Mountains Forest where area burned is overestimated 

by 45% (Table 3). For the western United States, area burned is overestimated by 16%. 

There is a relatively small spread in the ratio of predicted to observed area burned for the 

GCM results for Desert Southwest and Nevada Mountains /Semi-desert, but a large 

spread for the Rocky Mountains Forest (Fig. S3a). Since the mean meteorological fields 

from the GCMs have been scaled with mean observations, the spread in the predictions is 

larger in ecoregions for which the leading term in the regression is one of the fire weather 

indexes (Table 1).  

For the parameterization, there is also good agreement with observed area burned for 

median GCM results, with the largest discrepancy in Eastern Rocky Mountains/Great 

Plains, where this method underestimates area burned by 24% (Table 4). The spread of 

the predictions with the parameterization (Fig. S3b) is generally larger than that with the 

regression method because of the exponential relationship between area burned and 

meteorological variables. The predictions exhibit a large spread in the Pacific Northwest 

and Rocky Mountains Forest, with two models as outliers (Fig. S3b). These models 

predict extreme weather conditions (e.g., very low relative humidity and/or high 

temperature) for some days, leading to very high values for area burned.  

 

F. Ensemble projection of future climate change 

Fig. S4 shows projected median changes in key meteorological fields, calculated from 

the 15 climate models under the A1B scenario. Median temperatures over the western 

United States increase by 2.0°C in winter and by 2.4°C in summer by midcentury, 

relative to the present day. In winter, precipitation increases by 0.2 mm day-1 at latitudes 
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poleward of 40°N, and by 0.4 mm day-1 in the Pacific Northwest. This result is consistent 

with the projected weakening of the meridional temperature gradient, which leads to a 

poleward shift of mid-latitude storm tracks and precipitation (Yin, 2005). In particular, an 

intensified Aleutian Low in the 2050s atmosphere strengthens storm tracks in winter and 

increases moisture transport to mid-to-high latitudes (Salathe, 2006). A decline in 

precipitation in western U.S. in JJA and the southern U.S. in DJF is consistent with a 

poleward expansion of the subtropical subsiding branch of the Hadley circulation in the 

future atmosphere (Hu et al., 2007; Lu et al., 2007). In summer, the GCMs project a 

median decrease of 0.06 mm day-1 in precipitation (Fig. S4d). Specific humidity increases 

by 0.3 g kg-1 in winter and 0.8 g kg-1 in summer, at least in part because of the higher 

temperatures. However, the annual mean relative humidity decreases by 1% over the 

western United States. 

The predicted changes in summer mean temperature, precipitation, and relative 

humidity for the climate models are shown in Fig. S5. In all ecoregions, median 

temperatures increase at least by 2 °C. Although there is a large spread among models, 

the change in temperature is significant (p <0.05). The median values of precipitation 

decrease by ~0.1 mm day-1 in the Pacific Northwest, Nevada Mountains/ Semi-desert, 

and Rocky Mountains Forest, but show little change elsewhere. Median relative humidity 

decreases by 0.6-0.8% over the western U.S., except in California Coastal Shrub 

ecoregion where the median increases by 0.4%. 

  

G. Estimate of future fuel consumption 

We explored whether changes in vegetation would affect fuel consumption on a time 

scale of 50 years using the Lund-Potsdam-Jena (LPJ) DGVM (Prentice et al., 2000; Sitch 

et al., 2003). This model simulates the changes in vegetation type in response to changes 

in climate and CO2 on a global scale. Monthly meteorological anomalies, including 

temperature, precipitation, and cloud fraction from the GISS GCM3 were used to drive 

the LPJ model at resolution of 1°×1° for 1980-2050 (Wu et al., 2012). The averages 

during 1990-2000 are used for the present day and those for 2040-2050 for midcentury.  

The LPJ DGVM does not simulate fuel consumption, although it calculates the total 

carbon in plants and soil. The model simulates six different vegetation types over western 
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U.S. and C3 perennial grass is the most dominant one (Table S2). We build a regression 

between the six vegetation cover fractions from LPJ DGVM and the fuel consumption 

from FCCS on the basis of grid boxes. We use the regression coefficient as the 

consumption value for each kind of plant. As Table S2 shows, two types of needleleaved 

trees cover only 21% of the land surface but account for over 60% of the total fuel 

consumption at present day. On the other hand, the carbon consumption from grassland 

accounts for less than 3% of present-day values.  

With the estimated coefficients and the projected changes in cover fraction (Table 

S2), we found little change (<0.1%) in fuel consumption averaged over the western U.S. 

by the midcentury. Our results are consistent with those from Zhang et al. (2010), who 

investigated the response of FCCS fuel load in the southern United States to future 

climate and found small changes by midcentury. However, meteorological changes and 

increasing CO2 levels could together lead to large regional changes in fuel consumption. 

The LPJ model projects some desert amelioration in southwestern area, consistent with 

Bachelet et al. (2001). For this project, we assume that fuel consumption throughout the 

western U.S. remains constant, an approach that likely leads to an underestimate of future 

fire emissions in populous regions such as the southern California. Calculation of a 

detailed ecosystem response to the future climate generated by the full array of CMIP3 

models is, however, beyond the scope of the current project. 

 

H. Gridded area burned from the projections 

The regressions provide the total area burned during the fire season, while the 

parameterization provides gridded area burned (1º×1º) on a daily scale. As noted in 

section D of this SI, the predicted spatial pattern does not match that observed very well 

at the grid box level, and this translates into errors in biomass burned. The 

parameterization performs better on the scale of ecoregions (Fig. 5), so we sum the 1º×1º 

grids within each ecosystem, and then disaggregate them as described below for use in 

the CTM. 

We spatially allocate area burned within each ecoregion with a random approach, 

building on the work in Spracklen et al. (2009). For the regressions, we first convert the 

median values of the predicted annual area burned (Table 3) to monthly values using the 
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observed seasonality during 1980-2004 in each ecoregion, assuming that the seasonality 

does not change from present day to midcentury. For the parameterization, we calculate 

the monthly total area burned over each ecoregion based on the daily gridded predictions 

from each GCM, and use these to derive the ensemble medians. Spracklen et al. (2009) 

showed that for all ecoregions, 70% of area burned occurs in 5-25% of the grid boxes in 

the ecoregion (Fig. 7 in Spracklen et al. (2009)) and therefore placed 70% of the 

predicted area burned randomly in 10% of grid cells in each ecoregion.  

However, the observed area burned is not randomly distributed over the ecosystems 

within each ecoregion, as shown in Table S3. We distribute the area burned according to 

the present-day fractions among the ecosystems, and distribute them randomly within 

each sub-unit. For California Coastal Shrub and Nevada Mountains /Semi-desert 

ecoregions where the parameterization has no predictive capability, we simply apply 

present-day area burned to the calculation of future biomass burned. These ecoregions 

account for only 14% of the total biomass consumption over the western United States 

(Table 6). As a result, using constant, present-day emissions there should not greatly 

affect our predictions. The random method minimizes the possibility of reburning in grid 

squares. To evaluate the potential error in assuming no reburning, we conduct the same 

sensitivity test as in Spracklen et al. (2009): we assume no regrowth of vegetation after a 

fire and reset fuels to zero. Using the future area burned predicted by the 

parameterization, we calculate 22% less fuel burned in this extreme case than in the case 

with constant fuel load for 2046-2055 over 50 years. 
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Table S1 Studies projecting future area burned in North America 

Fire model Region Scenario and period # GCMs 
Projected 
changes  

Reference 

Regression Canada 2×CO2 vs. 1×CO2 3 + 40% 
Flannigan and Van 
Wagner (1991) 

Regression USA 2×CO2 vs. 1×CO2 1 + 78% Price and Rind (1994) 

DGVM a USA 1995-2100 vs. 1895-1994  2 + 4-31%  Bachelet et al. (2003) 

Regression Western Canada 
3×CO2 (2080-2100) vs. 1×CO2 
(1975-1990) 

1 + 14-137%  de Groot et al. (2003) 

Parameterization 
USA (northern 
California) 

2×CO2 vs. 1×CO2 1 + 50% Fried et al. (2004) 

DGVM USA (Alaska) 2050-2100 vs. 1950-2000 2 + 17-39% Bachelet et al. (2005) 

Regression Canada 
3×CO2 (2080-2099) vs. 1×CO2 
(1959-1997) 

2 + 74-118% Flannigan et al. (2005) 

Regression Canada (Yukon) 
Multiple scenarios  
at 2040-2069 vs. 1961-1990  

8 
+ 33% (mean) 
+ 227 (max) 

McCoy and Burn (2005) 

Parameterization Canada (Alberta) 
2×CO2 (2040-2049)or 3×CO2 
(2080-2089) vs. 1×CO2 

1 + 13% or 29% Tymstra et al. (2007) 

DGVM USA (California) 2050-2099 vs. 1895-2003 2 + 9-15%  Lenihan et al. (2008) 

Regression Canada 2×CO2 or 3×CO2 vs. 1×CO2  1 + 34% or 93% Amiro et al. (2009) 

Regression 
Alaska and west 
Canada 

A2 and B2 scenarios  
at 2041-2050 vs. 1991-2000 

1 + 100% Balshi et al. (2009) 

Regression Canada (Quebec) 
A1B, A2, B1, and B2 scenarios 
 at 2100 vs. 1959-1999 

2 + 20-700%  Drever et al. (2009) 

Regression Canada (Alberta) 
2×CO2 (2040-2049) or 3×CO2 
(2080-2089) vs. 1×CO2 

1 
+ 90% or 
160% 

Krawchuk et al. (2009b) 

Regression Western USA 
A1B scenario  
at 2046-2055 vs. 1996-2005 

1 + 54% Spracklen et al. (2009) 

DGVM 
USA (Pacific 
Northwest) 

A2 scenario  
at 2070-2099 vs. 1971-2000 

3 + 76-310% Rogers et al. (2011) 

Regression 
USA 
(Yellowstone) 

A2 scenario 
At 2035-2064 vs. 1961-1990 

3 + 230-900% Westerling et al. (2011) 

a DGVM: Dynamic Global Vegetation Model 
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Table S2 Simulated changes in the vegetation cover fraction by LPJ DGVM 
 

Vegetation types in LPJ DGVM 
Estimated Fuel 
Consumption a 

(Kg DM m-2) 

Cover fraction (%) 

2000 2050 

Temperate needleleaved evergreen tree 6.46 6.7 7.7 

Temperate broadleaved evergreen tree 2.98 2.7 3.3 

Temperate broadleaved summergreen tree 1.84 17.5 22.9 

Boreal needleleaved evergreen tree 3.75 14.4 10.6 

Boreal summergreen tree 2.3 8.0 6.2 

C3 perennial grass 0.1 38.3 41.0 
 
a Estimated as the coefficients cn in regression 

6

,
1
n n i i

n
c F T

=

=∑ , where Fn,i is the cover 

fraction for vegetation type n on grid i and Ti is the FCCS fuel consumption (including 
live and dead fuels) on the same grid. 
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Table S3 Area and area burned fraction of each Bailey ecosystem a to the corresponding 
aggregated ecoregion b during 1980-2004. 
 

Ecoregions 
Area 
Frac (%) 

Area burned 
Frac (%) 

 Ecoregions 
Area 
Frac (%) 

Area burned 
Frac (%) 

Pacific Northwest    Nevada /Semi-desert   

242 8 0  341 38 36 

m242 42 33  m341 14 10 

m261 50 67  342 48 54 

Cal. Coastal Shrub    Rocky Mnts Forest   

262 29 16  m331 46 24 

m262 41 68  m332 36 59 

261 30 16  m333 18 17 

Desert Southwest    Great Plains   

322 31 34  331 79 98 

321 21 20  315 21 2 

m313 19 24     

313 29 22     

 
a Refer to http://www.fs.fed.us/rm/ecoregions/products/ for the spatial distribution of 
each Bailey ecosystem in western United States. 
b Refer to Fig. 2 in Spracklen et al. (2009) for the relations between Bailey ecosystems 
and the aggregated ecoregions.  
 

 
 

 



 12 

References 

Amiro, B. D., Cantin, A., Flannigan, M. D., and de Groot, W. J., 2009. Future emissions 

from Canadian boreal forest fires. Canadian Journal of Forest Research 39, 383-395, 

doi:10.1139/X08-154. 

Arora, V. K., and Boer, G. J., 2005. Fire as an interactive component of dynamic 

vegetation models. J. Geophys. Res. 110, G02008, doi:10.1029/2005jg000042. 

Bachelet, D., Neilson, R. P., Lenihan, J. M., and Drapek, R. J., 2001. Climate change 

effects on vegetation distribution and carbon budget in the United States. Ecosystems 

4, 164-185. 

Bachelet, D., Neilson, R. P., Hickler, T., Drapek, R. J., Lenihan, J. M., Sykes, M. T., 

Smith, B., Sitch, S., and Thonicke, K., 2003. Simulating past and future dynamics of 

natural ecosystems in the United States. Global Biogeochemical Cycles 17, 

doi:10.1029/2001gb001508. 

Bachelet, D., Lenihan, J., Neilson, R., Drapek, R., and Kittel, T., 2005. Simulating the 

response of natural ecosystems and their fire regimes to climatic variability in Alaska. 

Canadian Journal of Forest Research 35, 2244-2257, doi:10.1139/X05-086. 

Balshi, M. S., McGuirez, A. D., Duffy, P., Flannigan, M., Walsh, J., and Melillo, J., 

2009. Assessing the response of area burned to changing climate in western boreal 

North America using a Multivariate Adaptive Regression Splines (MARS) approach. 

Global Change Biology 15, 578-600, doi:10.1111/J.1365-2486.2008.01679.X. 

Cardoso, M. F., Hurtt, G. C., Moore, B., Nobre, C. A., and Prins, E. M., 2003. Projecting 

future fire activity in Amazonia. Global Change Biology 9, 656-669, 

doi:10.1046/j.1365-2486.2003.00607.x. 

Crevoisier, C., Shevliakova, E., Gloor, M., Wirth, C., and Pacala, S., 2007. Drivers of fire 

in the boreal forests: Data constrained design of a prognostic model of burned area for 

use in dynamic global vegetation models. Journal of Geophysical Research 112, 

D24112, doi:10.1029/2006jd008372. 

de Groot, W. J., Bothwell, P. M., Carlsson, D. H., and Logan, K. A., 2003. Simulating the 

effects of future fire regimes on western Canadian boreal forests. Journal of 

Vegetation Science 14, 355-364. 



 13 

Drever, C. R., Bergeron, Y., Drever, M. C., Flannigan, M., Logan, T., and Messier, C., 

2009. Effects of climate on occurrence and size of large fires in a northern hardwood 

landscape: historical trends, forecasts, and implications for climate change in 

Temiscamingue, Quebec. Applied Vegetation Science 12, 261-272. 

Flannigan, M. D., and Van Wagner, C. E., 1991. Climate Change and Wildfire in Canada. 

Canadian Journal of Forest Research 21, 66-72. 

Flannigan, M. D., Logan, K. A., Amiro, B. D., Skinner, W. R., and Stocks, B. J., 2005. 

Future area burned in Canada. Climatic Change 72, 1-16, doi:10.1007/S10584-005-

5935-Y. 

Fried, J. S., Torn, M. S., and Mills, E., 2004. The impact of climate change on wildfire 

severity: A regional forecast for northern California. Climatic Change 64, 169-191. 

Hu, Y., and Fu, Q., 2007. Observed poleward expansion of the Hadley circulation since 

1979. Atmospheric Chemistry and Physics 7, 5229-5236. 

Lu, J., Vecchi, G. A., and Reichler, T., 2007. Expansion of the Hadley cell under global 

warming. Geophysical Research Letter 34, doi:10.1029/2006GL028443. 

Kelley, D. I., Prentice, I. C., Harrison, S. P., Wang, H., Simard, M., Fisher, J. B., and 

Willis, K. O., 2012. A comprehensive benchmarking system for evaluating global 

vegetation models. Biogeosciences Discuss 9, 15723-15785, doi:10.5194/bgd-9-

15723-2012. 

Kloster, S., Mahowald, N. M., Randerson, J. T., Thornton, P. E., Hoffman, F. M., Levis, 

S., Lawrence, P. J., Feddema, J. J., Oleson, K. W., and Lawrence, D. M., 2010. Fire 

dynamics during the 20th century simulated by the Community Land Model. 

Biogeosciences 7, 1877-1902, doi:10.5194/bgd-7-565-2010. 

Kloster, S., Mahowald, N. M., Randerson, J. T., and Lawrence, P. J., 2012. The impacts 

of climate, land use, and demography on fires during the 21st century simulated by 

CLM-CN. Biogeosciences 9, 509-525, doi:10.5194/Bg-9-509-2012. 

Krawchuk, M. A., Moritz, M. A., Parisien, M. A., Van Dorn, J., and Hayhoe, K., 2009a. 

Global pyrogeography: macro-scaled statistical models for understanding the current 

and future distribution of fire. Plos One 4, e5102, doi:10.1371/journal.pone.0005102. 

Krawchuk, M. A., Cumming, S. G., and Flannigan, M. D., 2009b. Predicted changes in 

fire weather suggest increases in lightning fire initiation and future area burned in the 



 14 

mixedwood boreal forest. Climatic Change 92, 83-97, doi:10.1007/S10584-008-9460-

7. 

Lenihan, J. M., Bachelet, D., Neilson, R. P., and Drapek, R., 2008. Response of 

vegetation distribution, ecosystem productivity, and fire to climate change scenarios 

for California. Climatic Change 87, S215-S230, doi:10.1007/S10584-007-9362-0. 

Littell, J. S., McKenzie, D., Peterson, D. L., and Westerling, A. L., 2009. Climate and 

wildfire area burned in western U. S. ecoprovinces, 1916-2003. Ecological 

Applications 19, 1003-1021. 

McCoy, V. M., and Burn, C. R., 2005. Potential alteration by climate change of the 

forest-fire regime in the Boreal forest of central Yukon Territory. Arctic 58, 276-285. 

Moritz, M. A., Parisien, M.-A., Batllori, E., Krawchuk, M. A., Dorn, J. V., Ganz, D. J., 

and Hayhoe, K., 2012. Climate change and disruptions to global fire activity. 

Ecosphere 3, doi:10.1890/ES11-00345.1. 

National Wildfire Coordinating Group, 2005. National Fire Danger Rating System 

Weather Station Standards, 30 pp. (Available online: http://gacc.nifc.gov/oscc/ 

administrative/policy_reports/myfiles/NFDRS_final_revmay05.pdf) 

Pechony, O., and Shindell, D. T., 2009. Fire parameterization on a global scale. Journal 

of Geophysical Research 114, D16115, doi:10.1029/2009jd011927. 

Philippi, T. E., 1993. Multiple regression: Herbivory, In: Scheiner, S., and Gurevitch, J. 

(Ed.), Design and Analysis of Ecological Experiments, Chapman & Hall, New York. 

Prentice, I. C., Heimann, M., and Sitch, S., 2000. The carbon balance of the terrestrial 

biosphere: Ecosystem models and atmospheric observations. Ecological Applications 

10, 1553-1573. 

Price, C., and Rind, D., 1994. The Impact of a 2 x CO2 Climate on Lightning-Caused 

Fires. J. Clim. 7, 1484-1494. 

Purves, D., and Pacala, S., 2008. Predictive models of forest dynamics. Science 320, 

1452-1453, doi:10.1126/Science.1155359. 

Rasilla, D. F., Garcia-Codron, J. C., Carracedo, V., and Diego, C., 2010. Circulation 

patterns, wildfire risk and wildfire occurrence at continental Spain. Physics and 

Chemistry of the Earth 35, 553-560, doi:10.1016/J.Pce.2009.09.003. 



 15 

Rogers, B. M., Neilson, R. P., Drapek, R., Lenihan, J. M., Wells, J. R., Bachelet, D., and 

Law, B. E., 2011. Impacts of climate change on fire regimes and carbon stocks of the 

U.S. Pacific Northwest. Journal of Geophysical Research 116, 

doi:10.1029/2011jg001695. 

Salathe, E. P., 2006. Influences of a shift in North Pacific storm tracks on western North 

American precipitation under global warming. Geophysical Research Letter 33, 

doi:10.1029/2006GL026882. 

Schroeder, M., Glovinsky, M., Hendricks, V., Hood, F., Hull, M., Jacobson, H., 

Kirkpatrick, R., Krueger, D., Mallory, L., Oertel, A., Reese, R., Sergius, L., and 

Syverson, C., 1964. Synoptic weather types associated with critical fire weather, 

Pacific Southwest Forest and Range Experiment Station, Berkeley, CA. 

Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., 

Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S., 2003. Evaluation 

of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ 

dynamic global vegetation model. Global Change Biology 9, 161-185. 

Spracklen, D. V., Mickley, L. J., Logan, J. A., Hudman, R. C., Yevich, R., Flannigan, M. 

D., and Westerling, A. L., 2009. Impacts of climate change from 2000 to 2050 on 

wildfire activity and carbonaceous aerosol concentrations in the western United States. 

Journal of Geophysical Research 114, D20301, doi:10.1029/2008jd010966. 

Thonicke, K., Spessa, A., Prentice, I. C., Harrison, S. P., Dong, L., and Carmona-

Moreno, C., 2010. The influence of vegetation, fire spread and fire behaviour on 

biomass burning and trace gas emissions: results from a process-based model. 

Biogeosciences 7, 1991-2011, doi:10.5194/Bg-7-1991-2010. 

Tymstra, C., Flannigan, M. D., Armitage, O. B., and Logan, K., 2007. Impact of climate 

change on area burned in Alberta's boreal forest. International Journal of Wildland Fire 

16, 153-160, doi:10.1071/Wf06084. 

Van Wagner, C. E., 1987. The development and structure of the Canadian forest fire 

weather index system, Canadian Forest Service, Forest Technical Report 35, Ottawa, 

Canada. 

Westerling, A. L., Turner, M. G., Smithwick, E. A. H., Romme, W. H., and Ryan, M. G., 

2011. Continued warming could transform Greater Yellowstone fire regimes by mid-



 16 

21st century. Proceedings of the National Academy of Sciences 108, 13165-13170, 

doi:10.1073/Pnas.1110199108. 

Wu, S., Mickley, L. J., Kaplan, J. O., and Jacob, D. J., 2012. Impacts of changes in land 

use and land cover on atmospheric chemistry and air quality over the 21st century. 

Atmospheric Chemistry and Physics 12, 1597-1609, doi:10.5194/acp-12-1597-2012. 

Yin, J. H., 2005. A consistent poleward shift of the storm tracks in simulations of 21st 

century climate. Geophysical Research Letter 32, doi:10.1029/2005GL023684. 

Zhang, C., Tian, H., Wang, Y., Zeng, T., and Liu, Y., 2010. Predicting response of fuel 

load to future changes in climate and atmospheric composition in the Southern United 

States. Forest Ecology and Management 260, 556-564, 

doi:10.1016/j.foreco.2010.05.012. 

 
 

 



 17 

 

 

 

 

(a) Observation (8.2×105)

  

(b) Parameterization (9.1×105)
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Fig. S1. Log10 of annual mean (a) observed and (b) simulated area burned (ha) averaged 

from 1980 to 2004. The simulated result is from the parameterization.   
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Fig. S2. Seasonality of simulated (blue dashed lines) and observed (red solid lines) area 

burned (104 ha) in each ecoregion. Simulations are from the parameterization. Each point 

represents the monthly mean for 1980-2004.  
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Fig. S3. (a) Ratios of predicted to observed present-day area burned. The simulated 

results are from the regressions. (b) Same as (a) but for results from the parameterization. 

The ecoregions are: PNW, Pacific Northwest; CCS, California Coastal Shrub; DSW, 

Desert Southwest; NMS, Nevada Mountains /Semi-desert; RMF, Rocky Mountains 

Forest; ERM, Eastern Rocky Mountains /Great Plains. Different symbols are used for 

each model. The short bold lines are the median ratios. No results are shown for the 

California Coastal Shrub and Nevada Mountains /Semi-desert regions in (b) because the 

parameterization does not reproduce the interannual variations of area burned there. 
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Fig. S4. Median changes in seasonal mean meteorological fields from 15 climate models 

following the A1B scenario for 2046-2065, relative to present-day (20C3M, 1981-2000) 

over western U.S. The left panels are for winter, the right panels for summer, with 

temperature, precipitation and relative humidity from top to bottom. 
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Fig. S5. Projected changes in (a) temperature, (b) precipitation, and (c) relative humidity 

for six ecoregions in summer by midcentury for 15 climate models. The ecoregions are: 

PNW, Pacific Northwest; CCS, California Coastal Shrub; DSW, Desert Southwest; NMS, 

Nevada Mountains /Semi-desert; RMF, Rocky Mountains Forest; ERM, Eastern Rocky 

Mountains /Great Plains. Different symbols are used for each model. The short bold lines 

are the median values. 
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