
Formaldehyde (HCHO) As a Hazardous Air Pollutant: Mapping
Surface Air Concentrations from Satellite and Inferring Cancer Risks
in the United States
Lei Zhu,*,† Daniel J. Jacob,†,‡ Frank N. Keutsch,†,§ Loretta J. Mickley,† Richard Scheffe,∥
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ABSTRACT: Formaldehyde (HCHO) is the most important carcinogen in outdoor air
among the 187 hazardous air pollutants (HAPs) identified by the U.S. Environmental
Protection Agency (EPA), not including ozone and particulate matter. However, surface
observations of HCHO are sparse and the EPA monitoring network could be prone to
positive interferences. Here we use 2005−2016 summertime HCHO column data from
the OMI satellite instrument, validated with high-quality aircraft data and oversampled
on a 5 × 5 km2 grid, to map surface air HCHO concentrations across the contiguous
U.S. OMI-derived summertime HCHO values are converted to annual averages using
the GEOS-Chem chemical transport model. Results are in good agreement with high-
quality summertime observations from urban sites (−2% bias, r = 0.95) but a factor of
1.9 lower than annual means from the EPA network. We thus estimate that up to 6600−
12 500 people in the U.S. will develop cancer over their lifetimes by exposure to outdoor
HCHO. The main HCHO source in the U.S. is atmospheric oxidation of biogenic isoprene, but the corresponding HCHO yield
decreases as the concentration of nitrogen oxides (NOx ≡ NO + NO2) decreases. A GEOS-Chem sensitivity simulation indicates
that HCHO levels would decrease by 20−30% in the absence of U.S. anthropogenic NOx emissions. Thus, NOx emission
controls to improve ozone air quality have a significant cobenefit in reducing HCHO-related cancer risks.

■ INTRODUCTION

Formaldehyde (HCHO) in outdoor air is a known carcinogen.
Exposure to a mean HCHO concentration of 1 μg m−3 (about
0.7 ppb at STP) over one’s lifetime will cause up to 13 people
in a million to develop lung and nasopharyngeal cancer
according to the U.S. Environmental Protection Agency
(EPA).1 HCHO is one of 187 hazardous air pollutants
(HAPs) identified by the EPA1 to cause cancer or other
serious health impacts in ambient outside air. It is by far the
most important HAP in terms of health risks, accounting for
over 50% of the total HAPs-related cancer risks in the U.S.2

The second most important HAP is benzene (∼10%). Unlike
most other HAPs, HCHO is not mainly associated with local
anthropogenic hotspots but instead is widely present across the
U.S. as a product of the oxidation of volatile organic

compounds (VOCs) including in particular biogenic isoprene.3

The HAPs sampling network in the U.S. provides information
about human health exposure near the monitor location but it
is limited to urban/industrial sites.2 Here we use 12 years of
HCHO observations from the OMI satellite instrument4 with 5
× 5 km2 spatial resolution enabled by an oversampling
technique5 to map HCHO surface air concentrations over the
contiguous U.S. and infer cancer risks on a national scale.
EPA reports HCHO as an ambient air toxic using data from

300−400 sites operated by states, local agencies, and tribes
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(SLTs network), including ∼50 national air toxics trends sites
(NATTS network). HCHO is collected by 2,4-dinitrophenyl-
hydrazine (DNPH) coated cartridges and then analyzed by
high-performance liquid chromatography (HPLC), known as
the EPA compendium method TO-11A.6 HCHO measured
using this method has potential interferences by ozone7 and
NO2.

8,9 High-quality HCHO measurements in surface air are
available only from occasional field campaigns.10−13 Satellites
provide a continuously operating high spatial resolution data
set. HCHO satellite data over the U.S. were recently validated
using aircraft observations.14 Although satellites only measure
total HCHO columns (molecules per cm2 of surface), the bulk
of that column is in the boundary layer14−16 and surface
concentrations can therefore be inferred.
HCHO columns have been observed continuously from

space since GOME17 (1996−2003) and SCIAMACHY18

(2003−2012). Observations are presently available from
OMI4,19 (2004−), GOME2A20 (2006−), OMPS21,22 (2011−)
and GOME2B19 (2012−) with better data quality during
summertime when signals are stronger. These satellite sensors
scan the whole earth every 1−2 days, OMI provides the most
suitable data for HCHO mapping due to its daily global
coverage, long data record, and fine pixel resolution (13 × 24
km2 at nadir). Its spatial resolution can be further refined by
oversampling, as described below.

■ MATERIALS AND METHODS
EPA Surface HCHO Observations. We obtain surface

HCHO observations from the EPA SLTs network, available at
https://www.epa.gov/outdoor-air-quality-data. EPA SLTs sites
report 24 h average HCHO concentrations every 6 days. Here
we select sites with full yearly coverage (at least 12 samples per
quarter) for at least 9 years of the 2005−2016 period. 48 SLTs
sites meet the above criteria and their locations are shown in
the top panel of Figure 1. Also shown in Figure 1 are monthly
mean surface HCHO concentrations averaged over those 48
sites. Surface HCHO peaks during summertime and this likely
reflects higher biogenic VOC emissions.23

OMI Observations. OMI is a UV/vis nadir solar back-
scatter spectrometer launched in 2004 on the Aura satellite in a
polar sun-synchronous orbit.24 It observes the whole globe
daily at 13:30 local time (LT). We use OMI HCHO Version
2.0 (Collection 3) retrievals from the Smithsonian Astrophys-
ical Observatory (OMI-SAO),4 available at http://disc.sci.gsfc.
nasa.gov/Aura/data-holdings/OMI/omhcho_v003.shtml. The
data archive extends from 2005 to present. We select data for
June−August 2005−2016 that (1) pass all the fitting and
statistical quality checks (MainDataQualityFlag = 0), (2) have
cloud fraction less than 0.3 and solar zenith angle less than 60°,
and (3) are not affected by the instrumental “row anomaly”
(http://projects.knmi.nl/omi/research/product/rowanomaly-
background). The single-scene precision is 1 × 1016 molecules
cm−2,4 which corresponds to about 2 ppb in a 2 km deep well-
mixed boundary layer. The precision can be improved by
multiscene averaging.25,26 We only use the summertime data
when HCHO columns are highest and detectable from space.
HCHO columns in winter are generally below the detection
limit due to (1) low biogenic VOC emissions, and (2) low OH
concentrations delaying the oxidation of anthropogenic VOCs
to HCHO and thus spatially smearing the HCHO signal.5,23

Zhu et al.14 validated the OMI-SAO product with high-
quality HCHO aircraft measurements from the SEAC4RS flight
campaign27 over the Southeast U.S. in August−September

2013. Aircraft measurements during SEAC4RS were made in
situ from 0.3 to 12 km altitude by two independent laser
instruments: CAMS28 and ISAF.29 The two instruments were
extremely consistent throughout the campaign with correlation
coefficient of 0.99 for 1 min averages. Mean HCHO measured
by ISAF was 10% higher than CAMS. The horizontal patterns
from the satellite retrievals were highly correlated with the
aircraft and consistent with a dominant source from biogenic
isoprene.16 However, the retrievals were biased low by 37%
relative to the CAMS aircraft data, which Zhu et al.14 attributed
to errors in spectral fitting and in assumed surface reflectivity.
Independent aircraft validation30,31 of OMI-SAO retrievals
finds similar mean biases: −51% for the DC-3 campaign over
the central U.S. in May−June, 2012, and −42% for the
DISCOVER-AQ campaign including deployments in Baltimore
(July 2007), central California (January 2013) and Houston
(August 2013). There is no evident spatial or temporal pattern
in the biases, implying that they may be removed by applying
uniform correction factors.14 Here we apply a uniform
correction factor of 1.59 to the OMI-SAO retrieval to correct
the −37% bias relative to CAMS in SEAC4RS.

Oversampling Method. Relating concentrations to
population exposure requires the highest spatial resolution
possible. Temporal resolution is less critical since the HCHO
cancer risk is based on a lifetime-averaged exposure. Here we
oversample the OMI HCHO data to increase spatial resolution
to 5 × 5 km2 through temporal averaging. Oversampling takes

Figure 1. Annual and monthly mean 2005−2016 HCHO concen-
trations from the EPA surface network (SLTs). Top panel shows the
network site locations and the annual mean data. Only sites with at
least 9 years of complete data for the 2005−2016 period are used (see
text for details). Bottom panel shows monthly mean HCHO
concentrations spatially averaged across those sites (black, with
standard deviations shown as vertical bars). GEOS-Chem model values
sampled at the same sites are shown in red.
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advantage of shifting pixel locations and sizes in day-to-day
observations32,33 to achieve a spatial resolution finer than pixel
size as a temporal average. Oversampling of OMI observations
to achieve an effective spatial resolution of a few km has been
used previously on urban/regional scales for HCHO,5

SO2,
33−36 and NO2.

33,36 The common assumption in all
these studies has been to view individual satellite observations
as uniformly representative of a circle around the pixel center,
with the circle radius optimized to balance smoothing and
noise. This approach is somewhat arbitrary and computation-
ally demanding.
Here we developed an improved and faster oversampling

method enabling application over the entire contiguous U.S.
Consider a satellite pixel p with HCHO column Ω(p). The
overlap area between the pixel p and oversampling grid cell i is
A(p,i). Grid cell i collects N(i) overlapping satellite pixel data
points over the oversampling period, from which an average
column for that grid cell is calculated. We assume that the
averaging weight for each individual satellite observation is
proportional to the ratio of the overlap area A(p,i) to the pixel
area S(p) and inversely proportional to the absolute error
standard deviation σ(p) of that observation as reported in the
OMI-SAO product. S(p) varies by a factor of 10 from ∼300
km2 at nadir to ∼3000 km2 at the outermost swath-angle.24,37

σ(p) can vary by a factor of 6 from 0.2 × 1016 molecules cm−2

for background conditions to 1.2 × 1016 molecules cm−2 in
high-concentration regions.4 The area- and error-weighted
average column for grid cell i is then derived as
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∑ Ω
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Besides being computationally fast, this method has the
advantage that it fully uses and appropriately weighs the
information from all individual satellite observations.
We applied our oversampling method to the OMI

observations to produce a 12-year (June−August 2005−
2016) summer average map of HCHO columns with 0.05° ×
0.05° (≈ 5 × 5 km2) grid resolution. Figure 2 shows the result.
Values are highest over the Southeast U.S. and are due to
oxidation of biogenic isoprene.3,38 The Southeast data were
previously validated with the SEAC4RS aircraft observations
described above. The HCHO column peaks in the urban areas
of Atlanta, Birmingham, and Houston, which could reflect
industrial and vehicle sources.5,25,39−41 However, these peaks
are relatively modest on top of the biogenic enhancement.
More detailed inspection of the Atlanta maximum (bottom
panel of Figure 2) suggests a source from ring road traffic.
Summertime HCHO hotspots in the western U.S. are mostly
due to fires as biogenic emissions in that part of the country are
generally lower than in the eastern U.S. Satellite retrievals of
HCHO columns in fire plumes are highly uncertain because of
strong sensitivity to plume rise and to light extinction by the
smoke particles.42

Deriving Annual Mean Surface HCHO Concentrations.
We use the summer mean 0.05° × 0.05° satellite data for
HCHO columns in combination with eq 2 to derive the annual
mean surface concentrations required for cancer risk assess-
ments:

γ γ γ̅ = Ω̅C i i i i i( ) ( ) ( ) ( ) ( )1 2 3 (2)

Here C̅(i) is the annual mean surface air concentration in 0.05°
× 0.05° grid cell i, Ω̅(i) is the summer mean oversampled OMI
column in that grid cell (Figure 2), γ1(i) is the ratio of midday
surface air to column concentrations in summer, γ2(i) is the
ratio of 24-h average to midday concentrations in summer, and
γ3(i) is the ratio of annual to summer mean concentrations. We
use a GEOS-Chem chemical transport model to infer γ1 and γ3,
and surface observations to infer γ2. GEOS-Chem is driven by
GEOS-5 assimilated meteorological fields43 produced at 0.25°
× 0.3125° resolution by the NASA Global Modeling and
Assimilation Office (GMAO). It is applied here in a 2010
simulation with 2° × 2.5° horizontal resolution, and results for
γ1 and γ3 are assumed to apply to the 2005−2016 period
(interannual variability in the model is small).
GEOS-Chem has been used previously in several studies to

simulate HCHO over the U.S. including comparisons to
satellite and in situ observations.3,16,44,45 Zhu et al.14 and Miller
et al.45 find that GEOS-Chem provides an unbiased simulation
of SEAC4RS and SENEX aircraft observations in the boundary
layer over the Southeast U.S. in summer, including horizontal
patterns and mean vertical profiles. GEOS-Chem is biased by
−32% compared to WINTER aircraft observations46 below 300
m over the Northeast U.S. in winter. Our own work shows a
wintertime low bias in comparison with EPA SLTs sites (Figure
1 bottom panel), resulting in a mean −37% bias on an annual
mean basis. As pointed out above, there may be positive
interferences in the EPA data. In addition, the EPA sites are
located near urban/industrial sources that the model may not
be able to resolve particularly under wintertime stratified
conditions. We will consider this bias in the error analysis.

Figure 2. Mean OMI HCHO columns over the contiguous U.S. for
June−August 2005−2016 with oversampling on a 0.05° × 0.05° (≈ 5
× 5 km2) grid. The bottom panel zooms in on the ∼100 × 100 km2

Atlanta area with a different scale. The black circle indicates the
Atlanta city center.
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In order to convert HCHO columns to surface concen-
trations (scaling factor γ1), we sample daily surface HCHO
concentrations and total columns from the June−August model
output at the OMI overpass time (13:00−14:00 LT; midday
here and elsewhere). Figure 3 shows the resulting summer

midday mean surface concentrations. The spatial patterns in the
OMI data are retained because the GEOS-Chem scaling factors
are fairly uniform. Figure 4 compares this product with local

measurements from summertime research field campaigns at
several urban sites11,47 and in Houston (B. Rappenglück,
unpublished data). There is good agreement with no significant
bias averaged across all sites (−2.0 ± 18%), and successful
simulation of variability between cities (r = 0.95). This provides
support for the uniform correction factor of 1.59 applied to the
OMI-SAO retrieval. A larger correction factor would result in
bias in the simulation of the data in Figure 4.
To convert midday to 24 h averaged surface air HCHO

concentrations (scaling factor γ2), we use ground-site HCHO
measurements from the three field campaigns where such high-
quality data have been reported to our knowledge: (1) CalNex

(May−June 2010, Pasadena, California), (2) SOAS (June−July
2013, Brent, Alabama), and (3) SLAQRS (August−September
2013, East St. Louis, Illinois).10,12,13 Figure 5 shows the diurnal

variations in HCHO concentrations measured at those three
sites. Pasadena and East St. Louis are urban, Brent is rural.
HCHO is depleted during the night because of dry
deposition.48 The 24 h average to midday value ratio is
consistent among the three sites: 0.64 (Pasadena), 0.77
(Brent), 0.79 (East St. Louis). It is not clear that these
differences reflect geographical specificity, therefore we apply a
single scaling factor γ2 = 0.73 throughout the U.S. to convert
midday to 24 h average summer concentrations.
Finally, we use GEOS-Chem to convert these summertime

24 h averages to annual 24 h averages (scaling factor γ3; Figure
6). Surface HCHO concentrations in GEOS-Chem have strong

Figure 3. OMI-derived summer midday HCHO concentrations in
surface air. Values are 2005−2016 averages for June−August at 13:00−
14:00 local time.

Figure 4. Summer mean midday HCHO concentrations at urban sites.
OMI-derived values for 2005−2016 are compared to local measure-
ments in different years. Measurements for Houston are from the
Moody Tower in August 2006 and 2010 (B. Rappenglück,
unpublished data). Measurements for New York City are from Lin
et al.11 Measurements for Atlanta, Philadelphia, and Nashville are from
Dasgupta et al.47 Error bars represent ±1 standard deviation in the
measurements.

Figure 5. Diurnal variation of summertime HCHO concentrations in
surface air. Observations are from three field campaigns including
CalNex (May−June 2010)10 in Pasadena, California; SOAS (June−
July 2013)13 in Brent, Alabama; and SLAQRS (August−September
2013)12 in East St. Louis, Illinois. Error bars are standard deviations in
the hourly averaged data. Red lines are 24 h averages.

Figure 6. Ratios of annual to summer (JJA) mean HCHO
concentrations in surface air. Values are from the GEOS-Chem model.
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seasonal variations driven mostly by biogenic emissions, with
annual to summertime average ratios of 0.4−0.5 in the
Southeast U.S. and 0.6−0.7 in the West. GEOS-Chem may
underestimate wintertime concentrations, as pointed out above,
in which case γ3 would be biased low. This will be accounted
for in error analysis of the results.
Estimating Cancer Risks. EPA uses the inhalation unit risk

estimate (URE) to quantify the cancer risks of HCHO and
other HAPs.1 The URE represents the upper bound for the
increased cancer risk from inhalation exposure to an air
concentration of 1 μg m−3 over an individual’s lifetime. Based
on the upper confidence limit of the fitted dose−response
curve, the inhalation URE for HCHO is estimated to be 1.3 ×
10−5 (μg m−3)−1 by the Agency’s Integrated Risk Information
System (IRIS).1,2 This means that individuals exposed to a
mean HCHO concentration of 1 μg m−3 (about 0.7 ppb) have
a chance of up to 13 in a million to develop cancer over their
lifetime from this HCHO exposure. Risk is assumed to increase
linearly with HCHO concentration.

■ RESULTS AND DISCUSSION
Annual Mean Surface HCHO Concentrations. Figure 7

shows the annual mean HCHO concentrations in surface air

across the U.S. as derived from eq 2. We find that these OMI-
derived values are on average 47% lower than at the EPA SLTs
sites of Figure 1. As discussed above, the difference could be
due to (1) excessive GEOS-Chem seasonal scaling in
converting OMI summer to annual means, (2) positive artifacts
in the EPA data, (3) local influences in the EPA data not
resolved by OMI. We superimpose on Figure 7 the EPA 2005−
2016 data (same data as Figure 1), decreased by a factor of 1.9
to account for the mean bias relative to the OMI-derived
product. This shows that the geographical patterns are
consistent between the two data sets, with correlation
coefficient r = 0.59 in the East (>−95° longitude) and r =
0.56 in the West. The factor of 1.9 bias will be used in the

section below as representing the range of uncertainty in annual
mean HCHO concentrations.

National Cancer Risks from Outdoor HCHO Exposure.
Figure 7 shows the distribution of cancer risks in the U.S.
inferred from the OMI-derived mean surface HCHO
concentrations, based on the EPA URE given as an upper
bound and a conversion factor of 1.23 μg m−3 ppb−1 at 298 K
and 1 atm. We estimate the total national cancer risk from
HCHO exposure by convolving the OMI-derived distribution
of cancer risks in Figure 7 with gridded 0.05° × 0.05°
population data for 2015.49 We infer in this manner that up to
6600 people in the U.S. will develop cancer at some point in
their lives due to exposure to outdoor HCHO. If annual mean
HCHO concentrations are scaled up by 1.9 to match the EPA
SLTs data then the upper bound for the number of cancer rates
correspondingly increases. Thus, the upper bound for lifelong
cancer occurrences due to exposure to outdoor HCHO over
the U.S. is in the range 6600−12500, i.e., one person in
25 500−48 300 from a U.S. population of 319 million. This
cancer risk is well above the 1 in 106 level generally considered
as the threshold of tolerable risk.50,51 Based on a U.S. life
expectancy of 78.7 years (2012), it translates into 84−160
cancer cases per year in the U.S. caused by exposure to outdoor
HCHO.

Co-Benefit of NOx Emission Controls for Reducing
HCHO-Related Cancer Risks. HCHO in the U.S. originates
mostly from the oxidation of biogenic isoprene emitted by
vegetation, and thus would seem largely uncontrollable.
However, the HCHO yield from isoprene oxidation is higher
in the presence of nitrogen oxide radicals (NOx ≡ NO +
NO2)

52,53 and NOx in the U.S. is mainly anthropogenic. The
dependence of the HCHO yield on NOx levels is nonlinear,

45,53

and there is uncertainty regarding current U.S. NOx
emissions,54 thus any quantitative policy-relevant estimate
based on incremental decrease in NOx emission would be
very uncertain. We conducted a sensitivity GEOS-Chem
simulation with no anthropogenic NOx emissions and found
that HCHO annual mean surface concentrations in the U.S.
decrease by 10−30% depending on location. Convolving this
decrease with the U.S. population map, we find that cancer risks
from outdoor HCHO decrease by 20%. Thus, the increment in
HCHO cancer risks due to anthropogenic NOx is 4.1−7.8
person in 106, which by itself is above the tolerable threshold of
1 in 106. Anthropogenic NOx emissions in the U.S. have
decreased by 2.1% a−1 over 1991−2013 in response to
regulations to improve ozone air quality and attain NO2 air
quality standards.55 Such efforts to mitigate NOx emissions thus
have a significant cobenefit in also reducing HCHO-related
cancer risks.
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