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INTRODUCTION: Polarization describes the
path along which light’s electric field vector os-
cillates. An essential quality of electromagnetic
radiation, polarization is often omitted in its
mathematical treatment. Nevertheless, polari-
zation and its measurement are of interest in
almost every area of science, as well as in imag-
ing technology. Traditional cameras are sensitive
to intensity alone, but in a variety of contexts,
knowledge of polarization can reveal features
that are otherwise invisible.Determination of the
full-Stokes vector—the most complete descrip-
tion of light’s polarization—necessitates at least
four individualmeasurements. This results in
optical systems that are often bulky, reliant on
moving parts, and limited in time resolution.

RATIONALE: We introduce a formalism—
matrix Fourier optics—for treating polarization

in paraxial diffractive optics. This formalism is
a powerful generalization of a large body of
past work on optical elements in which polari-
zationmay vary spatially.Moreover, it suggests
a path to realizing many polarization devices
in parallel using a single optical element.We can
then design diffraction gratings whose orders
behave as polarizers for an arbitrarily selected
set of polarization states, a new class of optical
element. The intensity of light on a set of diffrac-
tion orders is then dictated by the polarization
of the illuminating light,making these gratings
immediately applicable to full-Stokes polariza-
tion imaging.

RESULTS:We theoretically investigate these
gratings and develop an optimization scheme
for their design. Our diffraction gratings were
realizedwith dielectricmetasurfaces inwhich

subwavelength, anisotropic structures provide
for tunable polarization control at visible fre-
quencies. Characterization of the fabricated
gratings shows that they perform as designed.
Notably, an arbitrary set of polarizations may
be analyzed by a single unit cell, in contrast to
past approaches that relied on interlacing of
several individually designed diffraction grat-
ings, increasing the flexibility of these devices.
These gratings enable a snapshot, full-Stokes

polarization camera—a
camera acquiring images
in which the full polar-
ization state is known at
each pixel—with no tradi-
tional polarization optics
and nomoving parts (see

panel A of the figure). Polarized light from a
photographic scene is incident on the grating
inside of a camera. The polarization is “sorted”
by the specially designed subwavelengthmeta-
surface grating.When combinedwith imaging
optics (a lens) and a sensor, four copies of the
image corresponding to four diffraction orders
are formed on the imaging sensor. These copies
have each, effectively, passed through a differ-
ent polarizer whose functions are embedded
in the metasurface. The four images can be
analyzed pixel-wise to reconstruct the four-
element Stokes vector across the scene. Several
examples are shown at 532 nm, both indoors
and outdoors. The figure depicts an example
photograph of two injection-molded plastic
pieces, a ruler and a spoon (illuminated by a
linearly polarized backlight), that show in-
built stresses (see panels C to E of the figure)
that are not evident in a traditional photo-
graph (panel B). The camera is compact, re-
quiring only the grating (which is flat and
monolithically integrated, handling all the
polarization analysis in the system), a lens,
and a conventional CMOS (complementary
metal–oxide–semiconductor) sensor.

CONCLUSION:Metasurfaces can therefore
simplify and compactify the footprint of optical
systems relying on polarization optics. Our de-
sign formalism suggests future research direc-
tions in polarization optics.Moreover, it enables
a snapshot, full-Stokes polarization imaging sys-
temwith nomoving parts, no bulk polarization
optics, and no specially patterned camera pixels
that is not altogether more complicated than a
conventional imaging system. Our hardware
may enable the adoption of polarization imag-
ing inapplications (remote sensing, atmospheric
science, machine vision, and even onboard au-
tonomous vehicles)where its complexitymight
otherwise prove prohibitive.▪
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Metasurface-based polarization camera. (A) Photographic scenes contain polarized light
that is invisible to traditional, intensity-based imaging, which may reveal hidden features. Our
camera uses a metasurface (inset) that directs incident light depending on its polarization,
forming four copies of an image that permit polarization reconstruction. (B to E) A plastic ruler
and spoon are photographed with the camera. (B) A monochrome intensity image (given by
the S0 component of the Stokes vector) does not reveal the rich polarization information
stemming from stress-birefringence readily evident in (C) to (E), which show a raw exposure,
azimuth of the polarization ellipse, and the S3 component of the Stokes vector that describes
circular polarization content, respectively.
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Recent developments have enabled the practical realization of optical elements in
which the polarization of light may vary spatially. We present an extension of Fourier
optics—matrix Fourier optics—for understanding these devices and apply it to the design
and realization of metasurface gratings implementing arbitrary, parallel polarization
analysis.We show how these gratings enable a compact, full-Stokes polarization camera
without standard polarization optics. Our single-shot polarization camera requires no
moving parts, specially patterned pixels, or conventional polarization optics and may
enable the widespread adoption of polarization imaging in machine vision, remote
sensing, and other areas.

P
olarization refers to the path traversed by
light’s electric field vector. As a fundamen-
tal characteristic of light, polarization and
its measurement are of great interest in
almost all areas of science and in imaging

technology as well. Traditionally, polarization is
spoken of as a property of a beam of light. How-
ever, advances in the last few decades in holo-
graphic media, micro- and nanofabrication, and
other areas have enabled the practical realiza-
tion of optical elements with tailored, spatially
varying polarization properties, even on a sub-
wavelength scale, at optical frequencies. In these
devices, the polarization state of light can be
varied controllably, point-to-point across an op-
tical element.
Work of this nature now has an extensive lit-

erature across several disciplines of optics under
various names, including diffractive optics (1, 2),
polarization holography (3–6), and nanophoton-
ics (metasurfaces) (7, 8), in addition to apprecia-
ble attention from the liquid crystal community
(9, 10). These devices exhibit different behavior
depending on the polarization of illuminating
light, so a natural question that arises is how they
can be designed to implementmany polarization-
dependent functions in parallel.
We consider a generalization of work in this

area, which we call matrix Fourier optics, that
suggests new design strategies for the design of
polarization optics not previously achievable in
a single element. In particular, we apply it to the
design of metasurface diffraction gratings that

can analyze several arbitrarily specified polariza-
tion states in parallel.

Matrix Fourier optics

We present a general way of viewing diffrac-
tion from a polarization-dependent obstacle. In
the plane-wave expansion (or angular spectrum)
picture of optics, an electromagnetic disturbance
U ðx; yÞ in a plane can be considered as being
formed from the interference of many plane
waves incident at different angles. An individual
plane wave in this set is characterized by its in-
plane wave-vector ðkx; kyÞ and a weight given by
the Fourier transform of the optical field as

Aðkx; kyÞ ¼∬
þ∞

�∞U ðx; yÞeiðkxxþkyyÞdx dy ð1Þ

Each plane wave with its weightAðkx; kyÞ can
be individually propagated forward in space to
form the field at a different position (Fig. 1A).
This formalism can treat light’s interaction with
simple obstacles. If a planar obstacle having
a transmission function tðx; yÞ (e.g., Young’s
double slit, or a diffraction grating) is illuminated
by an incident field of magnitude E0 (which may
also be spatially-varying), the field immediately
following the obstacle, tðx; yÞE0, can be handled
in this way.
This intuitive understanding of optical wave

propagation is the basis of the field broadly known
as Fourier optics (11) and underpinsmuch ofmod-
ern optical physics, including imaging and holog-
raphy. Notably, however, this picture is a scalar
one and does not include light’s polarization.
Nonetheless, it is possible to conceive of optical
elements in which polarization-dependent prop-
erties vary as a function of space. Then, instead of
the scalar transmission function tðx; yÞ, we may

consider that an optical element is associated
withamatrix-valued function ~Jðx; yÞ.Here, ~Jðx; yÞ
denotes the local Jones matrix (12), the way in
which the Jones polarization vector is modified,
at each point. (In this work, matrix quantities are
denoted by a tilde.)
We consider that such an optical element

with a Jones matrix profile ~Jðx; yÞ is illuminated
by a field described by the Jones vector ket
jE0i (in acknowledgment of its polarized nature).
The field immediately after the obstacle is then
given by ~Jðx; yÞjE0i. This field, too, can be prop-
agated by plane-wave expansion as given by the
Fourier transform

jAðkx; kyÞi
¼∬

þ∞

�∞
~Jðx; yÞjE0ieiðkxxþkyyÞdx dy ð2Þ

which is now vector-valued. If the incident wave
is a normally incident, uniformplane-wave, it will
carry no space-dependence and can be removed
from the integral. The only integral to be eval-
uated, then, is given by

~A ðkx; kyÞ ¼∬
þ∞

�∞
~J ðx; yÞeiðkxxþkyyÞdx dy ð3Þ

which is a Fourier integral distributed across
each of the four elements of the 2 × 2 Jones
matrix yielding a Fourier coefficient ~A ðkx; kyÞ
which is itself a Jones matrix (Fig. 1B).
This matrix Fourier transform is physically

significant. Instead of an amplitude and phase,
as in traditional Fourier optics, a given direc-
tion ðkx; kyÞ is associated with a polarization-
dependent behavior given by the Jones matrix
operator ~Aðkx; kyÞ. In a sense, this description
decouples the optical element described by
~Jðx; yÞ from the polarization of the illuminating
light: The interaction of all possible incident
polarizations with ~Jðx; yÞ is handled at once by
the matrix Fourier transform ~A ðkx; kyÞ.
In this work, we specialize to polarization-

dependent diffraction gratings—that is, elements
in which ~Jðx; yÞ is a periodic function and the
angular spectrum ~Aðkx; kyÞ is discrete, yielding
diffraction orders. Diffraction gratings simply
reveal the consequences of this matrix Fourier
optics, in particular, that it can be inverted and
used as a design strategy for multifunctional
polarization optics. Suppose there is a set of
desired polarization devices to be realized (e.g.,
polarizers, waveplates, optically active elements,
or any behavior that can be described by a Jones
matrix) having the Jones matrices f~Jkg and a set
of diffraction orders f‘g . The Fourier series
expansion

~J ðx; yÞ ¼
X
k
→
∈f‘g

~Jke
iðkxxþkyyÞ ð4Þ

represents a single optical element realizing all
of these (potentially complicated) polarization-
dependent functions in parallel with each order
implementing its own polarization device (Fig. 1C).
In the case of a grating, the Fourier transform
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Eq. 3 becomes a Fourier series in Eq. 4 with the
optical elements f~Jkg as coefficients. We refer to
such a diffraction grating as a matrix grating.
This way of viewing polarization-dependent

diffraction has not seen wide acknowledgment
or use in the literature of polarization [with
some limited exceptions in diffractive optics
(13, 14) and polarization ray-tracing (15, 16)].
In a common strategy, optical elements—especially
in the field of metasurfaces—are often designed
so that when a given polarization is incident, the
output polarization state is uniform across the
element and a scalar phase profile is imparted.
When the orthogonal polarization is incident,
the output polarization state is again uniform
and a second phase profile is experienced. In this
way, optical elementswith different functions for
chosen linear, circular, and arbitrary elliptical po-
larization bases (7, 8, 17) can be realized. Notably,
what is widely referred to as the “geometric” or
“Pancharatnam-Berry” phase, at least as it relates
to this problem, is a subcase of that approach,
being used to create scalar phase profiles for
circularly polarized light (2, 9, 18–21). In other
past work, polarization is understood to vary
with space, but a particular incident polariza-
tion state is assumed (22, 23). These past design
strategies are subcases of the matrix approach
presented here.

Parallel polarization analysis by unitary
polarization gratings

The formalism presented in the last section is
general. Equation 4 provides a prescription for
the realization of a diffractive element imple-
menting arbitrary polarization behavior, but
does not specify the nature of the desired opti-
cal functions (contained in f~Jkg) or how the re-
sulting ~Jðx; yÞ should be practically realized.
We focus on cases in whichf~Jkg, the behaviors

implemented by the grating orders, are polariza-
tion analyzers. This choice is not a fundamental
one, but it is highly relevant for practical appli-
cations: Analyzers are perhaps the most fun-
damental polarization element and, moreover,
devices that project light onto different states of
polarization are of practical use in polarimetry,
the measurement of light’s polarization state
(24). A diffraction orderk behaving as a polarizer
can be described by a Jonesmatrix that is a dyadic
(outer product) expressed as

~Jk ¼ akjpkihqkj ð5Þ

Equation 5 describes a Jones matrix analyzing
for the chosen Jones vector jqki in accordance
with Malus’ law: When jqki is incident, inten-
sity transmission is maximum. If instead the or-
thogonal polarizationjq⊥kiwithhq⊥kjqki ¼ 0arrives,
the output light is quenched. The light emerging
from ~Jk will carry the polarization state jpki. (A
traditional polarizer familiar from laboratory ex-
perience has jpki ¼ jqki). Finally,ak is a complex
(scalar-valued) weight.
Once the desired analyzers f~Jkg are specified

(Eq. 5), the grating ~Jðx; yÞ can be derived by Eq. 4.
What physical optical element should implement

the resulting ~Jðx; yÞ? A highly convenient real-
ization medium takes the form of metasurfaces
(25, 26)—subwavelength-spaced arrays of nano-
photonic phase shifters—composed of dielectric
pillars possessing formbirefringence (7,8). Locally,
the Jones matrix of these metasurfaces may be
well-approximatedby a linearly birefringentwave-
plate (8) given by

~Jðx; yÞ ¼
Rðqðx; yÞÞ

�
eifxðx;yÞ 0
0 eifyðx;yÞ

�
Rð�qðx; yÞÞ ð6Þ

Stated differently, such a metasurface can re-
alize a sampled matrix grating where ~Jðx; yÞ is
locally of the form of Eq. 6. The use of dielectric
metasurfaces obeying Eq. 6 is, again, not a fun-
damental choice, but an especially convenient
one: fx, fy, and q are all easily and continuously
adjusted by varying the dimensions and angular
orientation of a simple dielectric pillar, easily
fabricated lithographically (R is a 2 × 2 rotation
matrix). We refer to metagratings structured
from these elements simply as “gratings,” but in
contrast to more generic diffraction gratings,
it should be understood that the gratings here
possess special polarization properties owing to
their subwavelength features.
By inspection, Eq. 6 describes a Jones matrix

that is (i) unitary everywhere—that is, ~J
† ~J ¼ 1

for all ðx; yÞ, with 1 the 2 × 2 identity matrix—
and more specifically, (ii) linearly birefringent,
having linear polarizations as its eigenvectors
for all ðx; yÞ.
From the completely general matrix picture

presented we have made two specific choices that
the diffraction orders of the grating should behave
as analyzers and that the grating should locally re-

semble Eq. 6, implying the above two constraints.
But are these choices mathematically consistent
with one another? That is, for a general set of dif-
fraction orders f‘g implementing the polariza-
tion analyzers ~Jk ¼ akjpkihqkj for k ∈ f‘g, will
the ~Jðx; yÞmandated by Eq. 4 obey the form of
Eq. 6 for all ðx; yÞ?
This question is a matrix analog of extensive

work conducted on phase-only gratings (27, 28).
We show in the supplementary text (section S1)
that the linear birefringence required by Eq. 6 im-
plies that the ~Jk must be symmetric mandating
that each take the form ~Jk ¼ akjq�kihqkj. That is,
the output polarization of each analyzer must be
the complex conjugate of the Jones vector being
analyzed for; this is equivalent to a mirroring
about the equatorial plane of the Poincaré sphere,
a change in sign of the third (chiral) Stokes com-
ponent. Physically, this means that the analyzer
leaves the polarization ellipse’s shape unchanged
while reversing the handedness of its rotation, a
generalization of a key conclusion of (7) and (8).
Accepting this constraint guarantees linear

birefringence (that is, matrix symmetry) for all
ðx; yÞ, but not necessarily unitarity everywhere.
This unitarity restriction in particular implies
that, if we insist on a matrix grating with exactly
n orders that are polarization state analyzers, the
form of Eq. 6 can only be matched everywhere
if n = 2 and the polarizations analyzed for are
strictly orthogonal (as proven in supplementary
text section S1) (17).

Design strategy and optimization

If we insist on using a single-layer metasurface
obeying Eq. 6 everywhere, then wemay not have
all light confined to an arbitrary set of diffraction
orders acting as polarization state analyzers. But
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Fig. 1. Matrix Fourier Optics.
(A) A scalar optical field Uðx; yÞ
has a plane-wave expansion
Aðkx; kyÞ obtained by Fourier
transform (F ) that permits its
propagation forward in space.
(B) An obstacle implementing

a 2 × 2 Jonesmatrix ~Jðx; yÞ that
varies with space (and thus
contains four scalar functions,
which are schematically repre-
sented as different planes
here) has a Fourier-domain

representation ~Aðkx; kyÞ that is
also a Jones matrix. ~Aðkx; kyÞ
encodes the behavior of direc-
tion ðkx; kyÞ as a function of
incident polarization. (C) If
~Jðx; yÞ represents a periodic
grating, its orders are
described by Jones matrix

coefficients ~Jðkx ;kyÞ, each
describing an independent
polarization device, for
instance, a configuration of
birefringent plates.The grating implements many such devices in parallel.
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what if some light is allowed to leak into other
diffraction orders? Then, the ~Jk of some orders
could behave as analyzers for arbitrary polar-
ization states with a limited amount of leakage
into other diffraction orders (implementing their
own ~Jk) so that the overall grating formed in Eq. 4
is still unitary everywhere. In other words, the
grating can function as a coupled system inwhich
neighboring diffraction orders compensate for
desired polarization-dependent behavior on a
selected few in a way that preserves overall uni-
tarity for all ðx; yÞ.
Here, we seek to design a grating ~Jðx; yÞ that

locally obeys Eq. 6 with a set of diffraction orders
f‘g each having ~Jk that are analyzers for an
arbitrarily specified set of polarization states
fjqkig as defined in Eq. 5 with as little light as
possible leaking into diffraction orders out-
side off‘g. This is a question of optimization. We
define the quantities Ikq ¼ hqkj~J †

k
~J kjqki , the

power on diffraction order k when the pre-
ferred polarization jqki is incident, and Ikq⊥ ¼
hq⊥kj~J†k~Jkjq⊥ki, the power on diffraction order k
when the orthogonal polarization jq⊥ki with

hq⊥kjqki ¼ 0 is incident. The sum
X
k∈f‘g

Ikq should

be maximized to keep as much light as possible
in the orders of interest. Simultaneously, the
contrast of each order given by h ¼ ðIkq � Ikq⊥ Þ=
ðIkq þ Ikq⊥ Þ—the polarization sensitivity of the order
to the desired polarization jqki—should be as
close to unity as possible to constrain the ~Jk to
act as the desired analyzers (in the sense of Eq. 5).
This can be addressed with gradient-descent.
We reserve detailed discussion of this optimiza-
tion to the supplementary text [sections S1 and
S2, where we also describe a path to an analyt-
ical formof the solution using variationalmethods
(17, 27, 28)].
Many previous works have considered dif-

fraction gratings capable of splitting, and thus
analyzing, light on the basis of its polarization
state. However, these works have generally taken
a scalar approach, seeking to impart opposite
blazed grating phase profiles on orthogonal po-
larization states. Consequently, several individ-
ually designed gratingsmust be interlaced (often
called “spatialmultiplexing” or “shared aperture”)
(29–32) or, equivalently, cascaded in series (1, 33)
to create a grating whose orders analyze for any
more than two polarization states. This is in-
herently problematic: These configurations can-
not implement polarimetrywith any less than six
measurements (whereas four is the minimum
required), compromising sensor space.Moreover,
the polarization states of the analyzers cannot be
arbitrarily specified. Interlacing different gratings
also introduces unwanted periodicity, mandating
loss of light to out-of-plane diffraction. Thematrix
approach of this work shows that interlacing is
not necessary—all functions can be integrated
into a single grating—and moreover, affords
possibilities not achievable by interlacing. The
tetrahedron grating that we will present, as a sim-
ple example, is not possible by simple interlacing
as none of its four analyzer states are orthogonal
to any of the others.

Experiment
Tetrahedron grating design
Gratings implementing parallel polarization anal-
ysis are of practical interest for Stokes polarime-
try (24, 34) which requires a minimum of four
projective polarization state measurements. For
maximum fidelity of Stokes vector reconstruction,
these four states should be as distinct from one
another as possible, accomplished by choosing
analyzer states corresponding to a tetrahedron
inscribed in the Poincaré sphere (polarization
state space) (35–37). We use the matrix formal-

ism and optimization scheme described above
to design a two-dimensional diffraction grating
analyzing for these four polarization states on
its innermost four orders. The leftmost panel
of Fig. 2A gives a map of these orders and the
polarization ellipses ðfjqkigÞ they are designed
to analyze for in k-space. These diffraction
orders and desired polarization states can be fed
into the aforementioned optimization, yielding a
numerical ~J ðx; yÞ that is locally of the form of
Eq. 6 (unitary and linearly birefringent). It is
then straightforward to map the locally required
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Fig. 2. Matrix gratings for
arbitrary parallel polarization
analysis. (A) A 2D grating
unit cell is designed to analyze
four polarization states
corresponding to a tetrahedron
inscribed in the Poincaré
sphere. On the left is a map of
the diffraction orders and
the polarization ellipses they
analyze in k-space.The designed
11 × 11 element grating unit
cell containing TiO2 rectangular
pillars implementing this at
l ¼ 532 nm is shown in design
(middle) and as-fabricated
[scanning electron micrograph
(SEM), right]. Scale bar, 1 mm.
(B) The grating is illuminated by
light whose polarization is
varied while recording the
output polarization on a single
diffraction order with a full-
Stokes polarimeter permitting
reconstruction of the order’s
4 × 4 experimental Mueller

matrix ~Mðm;nÞ. (C) The
polarization contrast of each
order is shown. Each order
is labeled by the polarization
ellipse it analyzes, and results
from the analytical grating
design (as-optimized, red), a
full-wave simulation of the
grating (blue), and experiment
(green) are given. (D) The
polarizations analyzed by each
order [for which they have
the contrasts given in (C)] of
the tetrahedron grating are
shown on the Poincaré sphere
alongside a tetrahedron
indicating the desired analyzer
polarizations as predicted by the optimization, a full-wave simulation, and as-measured. (E) A set of
1024 uniformly sampled input polarization states on the Poincaré sphere can be operated on by

an experimentally determined Mueller matrix ~Mðm;nÞ to form a distorted set of states depicting output

polarization as a function of input. Each sphere on the right represents the behavior of one of the
four engineered grating orders, whose designed analyzer polarizations are shown. On each, a blue
arrow denotes the measured analyzer polarization jqðm;nÞi from (C), a red arrow the equator-mirrored

polarization jq�
ðm;nÞi, and a green arrow the average output polarization over all points which, according

to the formalism here, should overlap with the red one. (In some cases, the overlap of red and green
arrows is too close to permit visual discrimination.)
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Jones matrix (fx , fy , q) to geometries of actual
structures by referring to a library of such struc-
tures in a material platform/wavelength regime
of interest (8).
In this work, that material platform is TiO2

pillars fabricated with an e-beam lithography
and atomic layer deposition technique exten-
sively documented elsewhere (38). This permits
operation at technologically important visible
wavelengths, aiding the camera application dis-
cussed below. We stress, however, that neither
TiO2 nor visible wavelengths are central to this
work. The grating unit cells presented here have
11 such elements to a side with an interelement
separation of 420 nm so that the diffraction angle
atl ¼ 532 nm isqDe6:6°(paraxial). The subwave-
length spacing of the pillar elements themselves
assures that radiative orders may only stem from
the collective unit cell of 11 × 11 elements. The
grating unit cell designed by optimization for the
tetrahedron case is shown in Fig. 2A (top and
bottom, respectively), both in design and as-
fabricated (electron micrograph, right). This
unit cell is tessellated hundreds of times to create
a grating.

Mueller matrix polarimetry and results
In polarization optics, the Jones and Mueller
matrices describe polarization-dependent behav-
ior. Of the two, only theMuellermatrix is directly
observable, being a description of optical inten-
sities rather than electric fields. To that end, we
perform Mueller matrix polarimetry, that is, the
experimental determination of the 4 × 4Mueller
matrix ~Mðm;nÞ of each of the four grating orders
ðm;nÞ of interest (as a 2D grating, the orders are
labeled by two integer indices). The grating is
illuminated with laser light at l ¼ 532 nm in
several (at least four) different input polarization
states with known Stokes vectors fS→ing. As the
polarization switches between the different known
inputs, a full-Stokes polarimeter canbe placed on
the order of interest to record the corresponding
output Stokes vectors, fS→outg. The matrix ~M ðm;nÞ
linking fS→ing to fS→outg can then be numerically
determined from the data in the least-squares
sense. This is sketched in Fig. 2B and discussed in
more detail in supplementary text section S3 (17).
In analyzing the results, it is difficult tomake a

direct comparison of matrix quantities. Instead,
because each order of interest is designed to act

as a polarization analyzer, it makes sense to ask
the following questions: Do the orders act as
analyzers? For which polarizations? And, with
what efficiency?
The first question is addressed by Fig. 2C,

which plots the polarization contrast of each
diffraction order. Each group of bars in Fig. 2C
corresponds to the diffraction order designed to
analyze for the polarization ellipse shown below
it. Each group contains three color-coded bars:
one for the numerically optimized ~Jðx; yÞ, one
for a full-wave simulation, and one for measure-
ment. On the left of Fig. 2D, the contrast (the
normalized difference between the intensity on
that order when its preferred polarization is inci-
dent versus the orthogonal one) is plotted. An
ideal polarizer would have 100% contrast. The
numerically optimized result predicts near per-
fection (100%). In a simulation of the grating
design, the contrast decreases somewhat, and
then again as measured in actuality. However,
the four orders of the measured grating all show
polarization contrasts in excess of 90%—the de-
signed orders of the grating do act as polarizers
(analyzers).
Second, it must be verified that the orders act

as analyzers for the polarization states specified
in the design. In Fig. 2D, the polarization states
for which each grating order has maximum out-
put intensity (as-optimized, in simulation, and
as-measured) are plotted on the Poincaré sphere
alongside the tetrahedron representing the goal
of the design. It can be seen that these analyzer
polarizations are close to their desired counter-
parts (there are no notable mixups in Fig. 2D,
whereby one analyzer polarization lands very far
away appearing to be closer to another, falsely
exaggerating correspondence).
Figure 2, C and D, shows that the metasur-

face grating implements four arbitrarily specified
analyzers in parallel with no polarizers or wave-
plates, lending validity to the matrix approach
underlying its design.We address the question of
efficiency in the supplementary text (section S3)
(17). The grating’s diffraction efficiency cannot be
quantifiedwith a single number—it is polarization
dependent. Averaged over all possible input polar-
izations, efficiency in terms of power diffracted
into the four orders of interest over incident power
exceeds 50%, high enough to enable practical use.
The data contained in Fig. 2, C and D, are de-

rived from the first row of the Mueller matrix,
which dictates the intensity S0 of the outgoing
beam. The remainder of the Mueller matrix con-
trols the output beam’s polarization state. This
can be visualized by individually operating on a
set of input Stokes vectors that uniformly sample
the Poincaré sphere (1024 dots) with each order’s
measured Mueller matrix ~M ðm;nÞ and plotting
the set of Stokes vectors that result as a new,
distorted set of dots. This is shown for each of the
four orders of interest in Fig. 2E on four spheres.
If each behaved as a perfect analyzer (compare to
Eq. 5), all polarizations would be mapped into a
single point in the distorted diagram at the state
corresponding to jpki. The grating is not perfect
in experimental reality, so the spheres in Fig. 2E
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Fig. 3. Metagrating full-
Stokes polarization
camera. (A) A matrix
metagrating (as in Fig. 2) is
integrated with an aspheric
lens to image four diffraction
orders onto four quadrants
of a CMOS imaging sensor.
A ray trace of one diffraction
order is shown. The camera is
designed to image far-away
objects, so each color
corresponds to different
parallel ray bundles incident
on the grating from different
angles over a T5° FOV. Not
shown: A 10-nm bandpass
filter at 532 nm and an aper-
ture in front of the grating to
limit the FOV to prevent
overlap of the four subimages.
(B) Each copy of the image
on each quadrant has been
analyzed along a different
polarization. Pixel-wise
differences in intensity can be
used to synthesize a single
polarization image of the
scene in which the full Stokes
vector is known at each point.
(C) A clearer side view of
the ray trace in (A). Blue,
orange, and green correspond
to ray bundles incident at +5°, 0°, and −5°, respectively. (D) Optical microscope image of the grating
sample, which is 1.5 mm in diameter and shows Fresnel zones owing to the weak, polarization-
independent lensing effect imposed on top of the metagrating. An SEM inset shows the subwavelength,
form-birefringent TiO2 pillars comprising the metasurface. (E) The imaging system in (A) can be
packaged into a practical, portable prototype with adjustable focus. The essential part of the camera,
as shown in (C), is about 2 cm long.The prototype here is larger for ease of optomechanical mounting.
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contain points distributed over the entire sphere;
the extent to which these points are concentrated
in one direction and extremely sparse elsewhere
illustrates that each diffraction order does in-
deed act as an analyzer. For each grating order in
Fig. 2E, a blue arrow corresponds to the polariza-
tion being analyzed (copied fromFig. 2D) (jqðm;nÞi
in the notation of Eq. 5). A green arrow shows
the polarization on the grating order averaged
over the set of incident polarizations. Finally, a
red arrow depicts jq�ðm;nÞi , which has flipped
handedness with respect to jqðm;nÞi and is thus
mirrored about the equator of the sphere. Ac-
cording to the picture presented above, the linear
birefringence of the grating elements implies
that the output must necessarily take on the
form of jq�ðm;nÞi. This aspect of the theory is sup-
ported by the close overlap of the red and green
arrows in each plot of Fig. 2E.
In the supplementary text, results are given

for a second grating, an octahedron grating, in
which six diffraction orders act as analyzers (17).

Full-Stokes polarization imaging

We now apply these matrix gratings in an area
of great practical interest. If paired with four de-
tectors, the tetrahedron grating presented above

could function as a single-component, compact,
and integrated full-Stokes polarimeter (a sensor
to measure the polarization state of a beam), an
area where metagratings (29–32) and integrated
approaches (39, 40) have recently attracted con-
siderable interest (34). However, for a variety of
applications (41–44), a polarization camera, or
imaging polarimeter, is of even more utility. A
polarization camera captures the Stokes vector
at each point in an image. In the case of the four-
element Stokes vector, this necessitates four
independent image acquisitions along indepen-
dent polarization directions, whichmay be taken
sequentially in time (“division-of-time,” limiting
temporal resolution and often requiringmoving
parts), by patterning a focal plane array with
micropolarizers (“division-of-focal-plane,” requir-
ing expensive fabrication, usually without of-
fering full-Stokes vector determination, and
mandating loss of photons to absorptive micro-
polarizer elements), or by simultaneous capture
of the image along four paths each with indepen-
dent polarization optics (“division-of-amplitude,”
substantially increasing system bulk and com-
plexity) (41).
Grating-based approaches are not new to po-

larimetry (24, 45) (and imaging polarimetry),

particularly in the liquid crystal (46) and, more
recently, metasurface literatures (29–32). Owing
to the limitations of previous approaches, how-
ever, multiple gratings—either cascaded in series
or patterned adjacent to one another—are re-
quired to implement the measurements neces-
sary for full-Stokes vector determination. The
matrix gratings here are free from this complica-
tion and full-Stokes imaging can be implemented
with a single polarization element, promising
wide-ranging applications inmachine vision and
remote sensing.

Design of an imaging system

The task here is to integrate a metagrating into a
photographic imaging system. The tetrahedron
grating described above is chosen because it
offers full-Stokes determination with only four
measurements, the minimum necessary. We
developed an imaging system composed of this
grating (implemented with a TiO2 metasurface
as above) followed by an aspheric lens ( f= 20mm,
whose choice is discussed in supplementary text
section S4) and a standard monochrome com-
plementarymetal–oxide–semiconductor (CMOS)
imaging sensor. This is depicted in Fig. 3A.
Relative to Fig. 2A, the grating is rotated by 45°
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Fig. 4. Full-Stokes polarization imagery. Indoor (A to C) and outdoor
(D and E) photography with the camera depicted in Fig. 3. In each
case, the raw unprocessed exposure, S0 (the traditional monochrome
intensity image), the azimuth of the polarization ellipse [in degrees,
given by arctanðS2=S1Þ], and the degree of polarization (DOP, given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2
1 þ S2

2 þ S2
3

q
=S0) are shown. See text for detail on each case. Indoor

images were acquired with exposures on the order of 100 ms, outdoor
images with exposures on the order of 10 ms. In both cases, polarization
imagery can be acquired at video framerate. The bright disk in the center
of each raw exposure is zero-order light that does not interact with the
grating and thus forms a defocused image of the scene. All images are at a

single color (green, l e 532 nm).

RESEARCH | RESEARCH ARTICLE
on M

ay 24, 2020
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


so that each of its orders forms an image of the
scene on one quadrant of the imaging sensor.
Each quadrant then contains a version of the
photograph analyzed along its characteristic
polarization—these images can be simultaneously
acquired and the Stokes vector S

→
reconstructed

pixel-wise (Fig. 3B), forming a monochromatic
polarization image.
Simple ray tracing is used to optimize all as-

pects of the system: the separation of the grating
and the asphere, the separation of the asphere
and the imaging sensor, and finally, the grating
period (and thus, the diffraction angle qD). The
goal of the optimization is to take parallel ray
bundles over aT5° field-of-view (FOV)—which are
assumed to emerge from a very distant object—
and focus them within the bounds of a quad-
rant of the sensor. An azimuthally symmetric,
polarization-independent (scalar) phase profile
is added on top of the matrix grating during the
design and is experienced by all diffraction orders.
This produces a weak lensing effect that aids in
imaging. The design focuses on just one grating
order. However, the other three will be imaged to
their respective quadrants by default because the
system is rotationally symmetric.
A real ray trace of the imaging system is shown

in Fig. 3A with a clearer side view in Fig. 3C. The
ray colors correspond to parallel bundles inci-
dent at different angles on the matrix grating.
The optimized grating hasN = 10 elements at a
420-nm pitch, yieldingqD ¼ 7:3° at l ¼ 532 nm.

In Fig. 3D a microscope image of the 1.5-mm
sample is shown. The sample is surrounded by
metal to block stray light and displays Fresnel
zones stemming from the weak lensing imparted
on top of the grating (whose periodicity is too
small to see at this magnification).
Finally, the entire system can be packaged

into a prototype for practical use in polarization
photography as shown in Fig. 3E with variable
focus. The size of this prototype is much larger
than is strictly necessary to permit easy opto-
mechanical mounting—as is shown in Fig. 3C,
the functional part of the system is only ~2 cm
long. An aperture in front of the camera permits
control of the FOV so that the four copies of the
image do not overlap, and a 10-nm bandpass
filter at 532 nm behind the sample prevents the
dispersive nature of the grating from interfering
with imaging. This is important to note— if a
broad band of illuminating wavelengths were
introduced to the imaging system, the grating
would effectively smear the images together, with
spatial and spectral information colocated on the
sensor. The bandwidth of dye filters used in con-
ventional color sensors (~100 nm for the Bayer
filter) is too wide to effectively address this. For
color or hyperspectral polarization imaging, a
different approach could be employed, such as the
use of a tunable filter at the input or incorporation
of the grating into a pushbroom scanning system
where only one space dimension is acquired at a
time (as is common in remote sensing).

Polarization imaging
The metagrating camera can then be used for
practical full-Stokes photography. The raw sen-
sor acquisition approximates Fig. 3B. To form a
polarization image, the four image copiesmust be
aligned (registered) to one another, forming the
vector I

→ ¼ ½ I0 I1 I2 I3 �T of measured intensity
from the four quadrants at each pixel. If the po-
larizations analyzed for by each diffraction order
are precisely known (calibration), the Stokes vec-
tor at each pixel can be computed as S

→ ¼ A�1 I
→
,

where A is a matrix whose rows are these ana-
lyzer Stokes vectors. Image registration and polar-
imetric calibration are addressed simultaneously
with an angle-dependentmethod (supplementary
text section S4) (17).
In a polarization image,S

→ ¼ ½ S0 S1 S2 S3 �T is
known at each pixel, which does not admit easy
visualization. Instead, images can be formed from
scalar quantities derived from the Stokes vector.
In the literature of polarization imaging, two pa-
rameters of the polarization ellipse are commonly
used. The first is the azimuth angle,arctanðS2=S1Þ,
which yields the physical orientation of the po-
larization ellipse. The second is the degree of
polarization, given by p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S21 þ S22 þ S23
p

=S0,
which quantifies the degree to which light is (or
is not) fully polarized. Finally, an image can be
formed of justS0 which, as the intensity of the
light, yields a traditionalmonochromephotograph.
In Fig. 4, exemplar photographs captured by

the polarization imaging system are shown. For
each, images of the raw acquisition on the sen-
sor, S0, the azimuth angle, and the degree of
polarization (DOP) are shown. In all of these
images, the illuminating light is unpolarized
and diffuse, that is, incident from all directions.
The indoor images in Fig. 4 are taken under
diffuse light-emitting diode illumination,whereas
outdoor images are acquired in broad daylight.
In the raw exposures, a bright disk in the cen-
ter represents zero-order light that does not
interact with the grating and thus forms a de-
focused version of the image (some stray light is
also present).
Next, we describe each example. Figure 4A

constitutes a simple test—a paper frame holding
eight sheets of polarizing film whose axes are
arranged radially outward with image-forming
light allowed to transmit from behind. A tra-
ditional photograph sees no difference between
the sheets (S0), but an image of the azimuth ac-
curately reveals their angular orientations.More-
over, the DOP image shows that light passing
through the sheets is highly polarized relative to
the surrounding surface.
Figure 4, B to E, examine the polarization de-

pendence of specular reflection (47). Unpolarized
light becomes partially polarized upon specular
reflection in a direction perpendicular to the
plane of incidence. In Fig. 4B, a conventional
plastic soda bottle is imaged head-on. From
an intensity image (S0 ), the bottle’s curved
shape could not be ascertained a posteriori.
The azimuth image, however, displays smooth,
continuous change around the top of the bottle
evidencing its conical shape and could be used
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Fig. 5. Polarization imaging of S3. Example imagery from the camera making explicit use of S3, part
of its full-Stokes capability. All images are acquired with a backlight linearly polarized at 45°. In each
example, raw sensor acquisition, S0 (traditional intensity image), and S3 are shown. (A) 3D glasses
are seen to contain opposite circular polarizers, invisible to the traditional intensity image. (B and C) A
laser-cut acrylic piece is stressed by hand-squeezing and displays stress birefringence evident in the
S3 image. (D) An injection-molded plastic part (a tape dispenser) has complex, in-built stresses
that are visible in the S3 channel of the polarization image. Edge artifacts in these images and those
in Fig. 4 are discussed in the supplementary text (section S4) (17).
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in three-dimensional (3D) reconstruction; in-
deed, the polarized nature of specular reflection
has been used as a means of depth imaging
(47–50). Figure 4C illustrates the same concept
for a more complicated object— the face of one
of the authors. Its 3D nature is not discernible
from the S0 image (as opposed to, say, a mere
printed photograph of a face), but the azimuth
image traces its contour and could be used in
3D facial reconstruction.
Figure 4, D and E, depict outdoor scenes. In

Fig. 4D, a bicycle is seen parked on a grassy
field after rain on the Harvard campus. In front
of it is a boundary between grass and asphalt, as
well as a puddle. In the azimuth image, a strong
delineation is seen between the wet pavement,
where the polarization direction is well-defined
parallel to the ground, and the grass and puddle,
where the azimuth is somewhat random because
the reflection is diffuse. Moreover, the azimuth
reveals the presence of an asphalt walkway in
the rear of the image, which is difficult to see in
the intensity image. In Fig. 4E, a row of cars is
photographed. Cars illuminated by sunlight are a
favorite target in polarization imaging literature
because the windshields tend to yield strong
polarization signatures. This is seen for all three
cars in the azimuth image, where thewindshields
and auto bodies have definite polarization azi-
muths and in the DOP image where the wind-
shields are highly polarized relative to the rest
of the car and background.
We note, however, that the examples in Fig. 4

make only indirect use of S3, the chiral Stokes
component, through the DOP. Many existing po-
larization cameras, particularly using the division-
of-focal-plane approach, are unable to measure
S3 (42). Figure 5, however, directly demonstrates
the full-Stokes capability of the camera. In Fig. 5,
objects are illuminated from behind by light
linearly polarized at 45° from a liquid crystal
computer display. In each case, the raw sensor
acquisition, S0, and S3 are shown. Figure 5A de-
picts a pair of 3D glasses whose frames contain
opposite circular polarizers. This is not visible
in the traditional intensity image S0, but is
readily seen in theS3 image where each lens has
a T1 value. In Fig. 5B, a piece of acrylic is held in
front of the camera, displaying little chiral com-
ponent. Upon squeezing (Fig. 5C), no change is
perceptible in the traditional photograph, but
considerable information is now visible in S3
stemming from stress birefringence (the photo-
elastic effect). This is also evident in Fig. 5D
where an injection molded plastic part—a tape
dispenser—displays an in-built, complicated
distribution of stress in S3 not visible with tra-
ditional photography. Visualization of stress fields
is an important application of polarization imag-
ing, one that is readily accomplished with the
camera presented here.
These examples demonstrate powerful appli-

cations in machine vision, remote sensing, and
other areas. The camera presented here requires
no conventional polarization optics, offers simul-
taneous data acquisition with no moving parts,
does not require an imaging sensor specially

patterned with micropolarizers, and is compact
and potentially mass-producible. Moreover, the
camera’s simplicity—just a single grating with an
imaging lens—suggests that these gratings could
be designed around existing, conventional imag-
ing systems to create polarization-sensitive ones.

Conclusion

Wehave introducedageneralpictureofpolarization-
dependent diffraction frompolarization-sensitive
obstacles. This matrix Fourier optics describes
optical elements that can enactmanypolarization-
dependent functions in their diffraction patterns.
In this work, we applied this picture to the case
of periodic gratings analyzing arbitrary polar-
izations in parallel, characterized these gratings,
and showed how they enable a polarization cam-
erawithno additional polarization optics,moving
parts, or specialized sensors. Practical polarization
photography with this camera was demonstrated.
Our work generalizes a large body of research

in polarization-sensitive diffractive optics and
metasurfaces. Its emphasis is on the collective
behavior of many elements at once as expressed
in the Fourier transform, rather than the point-
by-point consideration of each element alone,
and thus advances design strategies in these
areas beyond simple phase profiles. Moreover,
this work suggests several interesting directions
of research in multifunctional polarization op-
tics. For instance, although polarization analyzers
(polarizers) have been studied here, the matrix
approach is quite general: Gratings implement-
ing a wide variety of polarization operators on
their orders [e.g., waveplates, optically active
media, and possibly more exotic behavior (51)]
could be envisioned. The constraint of linearly
birefringent elements is by no means fundamen-
tal, andwith the freedomafforded by lithographic
fabrication, elements with more complex polar-
ization responses (52) or multilayer structures
could be used to realize these behaviors. This
work illustrates the ability of metasurfaces to
markedly simplify the architecture of systems
using polarization optics. Gratings enabled by
the approach here present a simpler means of
full-Stokes polarization imaging that can be eas-
ily extended to other imaging systems and wave-
lengths. These compact, lightweight, and passive
devices could enable the widespread adoption of
polarization imaging.
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provide a simplified route for polarization imaging.
full-Stokes compact polarization camera without conventional polarization optics and without moving parts. The results 

 designed a metasurface-basedet al.a polarizer and analyzer setup rotating to reveal the degree of polarization). Rubin 
(withinformation from a scene. Conventional polarimeters can be bulky and usually consist of mechanically moving parts 

Imaging the polarization of light scattered from an object provides an additional degree of freedom for gaining
A metasurface polarization camera
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