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Abstract 

Objectives: United States government scientists estimate that COVID-19 may kill tens of 

thousands of Americans. Many of the pre-existing conditions that increase the risk of death in 

those with COVID-19 are the same diseases that are affected by long-term exposure to air 

pollution. We investigated whether long-term average exposure to fine particulate matter (PM2.5) 

is associated with an increased risk of COVID-19 death in the United States. 

Design: A nationwide, cross-sectional study using county-level data. 

Data sources: COVID-19 death counts were collected for more than 3,000 counties in the United 

States (representing 98% of the population) up to April 22, 2020 from Johns Hopkins University, 

Center for Systems Science and Engineering Coronavirus Resource Center. 

Main outcome measures: We fit negative binomial mixed models using county-level COVID-19 

deaths as the outcome and county-level long-term average of PM2.5 as the exposure. In the main 

analysis, we adjusted by 20 potential confounding factors including population size, age 

distribution, population density, time since the beginning of the outbreak, time since state’s 

issuance of stay-at-home order, hospital beds, number of individuals tested, weather, and 

socioeconomic and behavioral variables such as obesity and smoking. We included a random 

intercept by state to account for potential correlation in counties within the same state. We 

conducted more than 68 additional sensitivity analyses. 

Results: We found that an increase of only 1 𝜇g/m3 in PM2.5 is associated with an 8% increase in 

the COVID-19 death rate (95% confidence interval [CI]: 2%, 15%). The results were statistically 

significant and robust to secondary and sensitivity analyses.  

Conclusions: A small increase in long-term exposure to PM2.5 leads to a large increase in the 

COVID-19 death rate. Despite the inherent limitations of the ecological study design, our results 
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underscore the importance of continuing to enforce existing air pollution regulations to protect 

human health both during and after the COVID-19 crisis. The data and code are publicly available 

so our analyses can be updated routinely. 
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Summary Box 

What is already known on this topic 

1. Long-term exposure to PM2.5 is linked to many of the comorbidities that have been 

associated with poor prognosis and death in COVID-19 patients, including cardiovascular 

and lung disease. 

2. PM2.5 exposure is associated with increased risk of severe outcomes in patients with certain 

infectious respiratory diseases, including influenza, pneumonia, and SARS. 

3. Air pollution exposure is known to cause inflammation and cellular damage, and evidence 

suggests that it may suppress early immune response to infection. 

What this study adds 

1. This is the first nationwide study of the relationship between historical exposure to air 

pollution exposure and COVID-19 death rate, relying on data from more than 3,000 

counties in the United States. The results suggest that long-term exposure to PM2.5 is 

associated with higher COVID-19 mortality rates, after adjustment for a wide range of 

socioeconomic, demographic, weather, behavioral, epidemic stage, and healthcare-related 

confounders. 

2. This study relies entirely on publicly available data and fully reproducible, public code to 

facilitate continued investigation of these relationships by the broader scientific community 

as the COVID-19 outbreak evolves and more data become available. 

A small increase in long-term PM2.5 exposure was associated with a substantial increase in the 

county’s COVID-19 mortality rate up to April 22, 2020. 
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Introduction 

The scale of the COVID-19 public health emergency is unmatched in our lifetime and will have 

grave social and economic consequences. The suddenness and global scope of this pandemic has 

raised urgent questions that require coordinated investigation in order to slow the disease’s 

devastation. A critically important public health objective is to identify key modifiable 

environmental factors that may contribute to the severity of the health outcomes (e.g., ICU 

hospitalization and death) among individuals with COVID-19. Data from China and Italy show 

that a majority of COVID-19 deaths occurred in adults aged ≥60 years1 and in persons with serious 

underlying health conditions.2-4 Early age-stratified COVID-19 death rates in the United States, 

reported by the Centers for Disease Control and Prevention (CDC),5 also suggest that persons aged 

≥65 are at highest risk. Additional factors associated with severe disease include male sex and the 

presence of comorbidities including hypertension, obesity, diabetes mellitus, cardiovascular 

disease, and chronic lung disease.6 7 Severe COVID-19 infection is characterized by a high 

inflammatory burden, and it can cause viral pneumonia with additional extrapulmonary 

manifestations and complications including acute respiratory distress syndrome (ARDS),8-13 which 

has a mortality rate ranging from 27% to  45%.14 Studies have also documented high rates of heart 

damage,11 15 cardiac arrhythmias,12 and blood clots16 in COVID-19 patients. Patients with severe 

disease can suffer respiratory failure and failure of other vital systems, leading to death. 

 

Although the epidemiology of COVID-19 is evolving, there is a large overlap between causes of 

death in COVID-19 patients and the conditions caused and/or exacerbated by long-term exposure 

to fine particulate matter (PM2.5). PM2.5 contains microscopic solids or liquid droplets small 

enough that they can be inhaled and cause serious health problems. The Global Burden of Disease 
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Study identified air pollution as a risk factor for total and cardiovascular disease mortality, and it 

is believed to have contributed to nearly 5 million premature deaths worldwide in 2017 alone.17  

On Thursday, March 26, 2020 the US EPA announced a sweeping relaxation of environmental 

rules in response to the coronavirus pandemic, allowing power plants, factories and other facilities 

to determine for themselves if they are able to meet legal requirements on reporting air and water 

pollution. The association between PM2.5 and health, including both infectious and chronic 

respiratory diseases, cardiovascular diseases, neurocognitive disease, and pregnancy outcomes in 

the United States and worldwide is well established.18-24 A recent study by our group also 

documented a statistically significant association between long-term exposures to PM2.5 and ozone 

and risk of ARDS among older adults in the United States.25 Numerous scientific studies reviewed 

by the United States Environmental Protection Agency (US EPA) have linked PM2.5 to a variety 

of health concerns including premature death in people with heart or lung disease, non-fatal heart 

attacks, irregular heartbeats, aggravated asthma, decreased lung function, and increased respiratory 

symptoms such as inflammation, airway irritations, coughing, or difficulty breathing.26 

 

We hypothesize that because long-term exposure to PM2.5 adversely affects the respiratory and 

cardiovascular systems and increases mortality risk,27-29 it also exacerbates the severity of COVID-

19 infection symptoms and worsens the prognosis of COVID-19 patients. In this study, we 

quantified the impact of long-term PM2.5 exposure on COVID-19 mortality rates in United States 

counties. Our study includes 3,087 counties in the United States, covering 98% of the population. 

We leveraged our previous efforts that focused on estimating the long-term effects of PM2.5 on 

mortality among 60 million United States’ Medicare enrollees.20 30 31 We used a well-tested 

research data platform that gathers, harmonizes, and links nationwide air pollution data, census 
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data, and other potential confounding variables with health outcome data. We augmented this 

platform with newly collected COVID-19 data from authoritative data sources.32 All data sources 

used in these analyses, along with fully reproducible code, are publicly available to facilitate 

continued investigation of these relationships as the COVID-19 outbreak evolves and more data 

become available.  

 

Methods  

Table 1 summarizes our data sources and their provenance, including links where the raw data 

can be extracted directly. 

 

COVID-19 deaths 

We obtained COVID-19 death counts for each county in the United States from Johns Hopkins 

University, Center for Systems Science and Engineering Coronavirus Resource Center.32 This 

source provides the most comprehensive county-level COVID-19 data to date reported by the CDC 

and state health departments, including the number of new and cumulative deaths and confirmed 

cases reported in each county across the United States, updated daily. We collected the cumulative 

number of deaths for each county up to and including April 22, 2020. County-level COVID-19 

mortality rates were defined for our analyses as the ratio of COVID-19 deaths to county level 

population size. While individual-level data would have allowed a more rigorous statistical 

analyses, individual-level data on COVID-19 death is currently not available. 

 

Exposure to air pollution 
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We calculated county-level long-term exposure to PM2.5 (averaged from 2000 to 2016) from an 

established exposure prediction model.33 The PM2.5 exposure levels were estimated monthly at 

0.01° × 0.01° grid resolution across the entire continental United States by combining satellite, 

modeled, and monitored PM2.5 data in a geographically weighted regression. These estimates 

have been extensively cross-validated.33 We aggregated these levels spatially by averaging the 

values for all grid points within a zip code and then averaging across zip codes within a county. 

We obtained temporally averaged PM2.5 values (2000‒2016) at the county level by averaging 

estimated PM2.5 values within a given county. We computed the average 2016 PM2.5 exposure 

analogously for each county to use in sensitivity analyses. 

 

Potential confounders 

In the main analysis, we considered the following 19 county-level variables and one state-level 

variable as potential confounders (see also Table 2): days since first COVID-19 case reported (a 

proxy for epidemic stage), population density, percent of population ≥65 years of age, percent of 

the population 45-64 years of age, percent of the population 15-44 years of age, percent living in 

poverty, median household income, percent black, percent Hispanic, percent of the adult 

population with less than a high school education, median house value, percent of owner-occupied 

housing, percent obese, percent current smokers, number of hospital beds per unit population, and 

average daily temperature and relative humidity for summer (June-September) and winter 

(December-February) for each county, and days since issuance of stay-at-home order for each 

state. Note that publicly available daily COVID-19 case counts at the county level were only 

available starting March 22, 2020, so that the measure of days since first COVID-19 case reported 
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was truncated by this date. Additional detail on the creation of all variables used in the analysis is 

available in the Supplementary Materials. 

 

Statistical methods 

We fit a negative binomial mixed model34-36 using COVID-19 deaths as the outcome and PM2.5 as 

the exposure of interest to estimate the association between COVID-19 mortality rate and long-

term PM2.5 exposure, adjusted by covariates. The model included a population size offset and was 

adjusted for all the potential confounders listed above. We also included a random intercept by 

state to account for potential correlation in counties within the same state, due to similar socio-

cultural, behavioral, and healthcare system features and similar COVID-19 response and testing 

policies. Additional modeling details are provided in the Supplementary Materials. We report 

mortality rate ratios (MRR), i.e., exponentiated parameter estimates from the negative binomial 

model, and 95% CI. The MRR for PM2.5 can be interpreted as the relative increase in the COVID-

19 mortality rate associated with a 1 𝜇g/m3 increase in long-term average PM2.5 exposure. We 

carried out all analyses in R statistical software and performed model fitting using the lme4 

package.37 38 

 

Quantifying unmeasured confounding bias 

Because this study is observational and the contributing factors to COVID-19 spread and severity 

remain largely unknown at this early stage of the pandemic, unmeasured confounding is a concern 

in our analyses. The E-value is a commonly used metric to evaluate the potential impact of 

unmeasured confounding on results from an observational study.39 For a pre-specified exposure 

variable of interest (long-term exposure to PM2.5), the E-value quantifies the minimum strength of 
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association that an unmeasured confounder must have, with both the outcome (COVID-19 

mortality rate) and exposure (long-term exposure to PM2.5) conditional to all of the potential 

confounders included in the regression model, to explain away the estimated exposure-outcome 

relationship. We report the E-value for the MRR estimate for PM2.5 under the main model with 20 

potential confounders.  

 

Secondary analyses 

In addition to the main analysis, we conducted six secondary analyses to assess the robustness of 

our results to the confounder set used, outliers, and the model form specification.  

 

First, because the New York metropolitan area has experienced the most severe COVID-19 

outbreak in the United States to date, we anticipated that it would strongly influence our analysis. 

As a result, we repeated the analysis excluding the counties comprising the New York metropolitan 

area, as defined by the Census Bureau. 

 

Second, although in our main analysis we adjusted for days since first COVID-19 case reported to 

capture the size of an outbreak in a given county, this measure is imprecise. To further investigate 

the potential for residual confounding bias (i.e., if counties with high PM2.5 exposure also tend to 

have large outbreaks relative to the population size, then their death rates per unit population could 

appear differentially elevated, inducing a spurious correlation with PM2.5), we also conducted 

analyses excluding counties with fewer than 10 confirmed COVID-19 cases. 

 



11 

 

Third, we omitted an anticipated strong confounder, days since first COVID-19 case reported, 

from the model. Fourth, we additionally adjusted our models for the number of tests performed at 

the state level (see Table 1 for data source) to evaluate how state-level differences in testing 

policies might impact our results. Fifth, we additionally adjusted our models for county-level 

estimated percentage of people with COVID-19 symptoms (see Table 1 for data source) to evaluate 

how the size of the outbreak in each county might impacts our results. Sixth, we introduced PM2.5 

into our models as a categorical variable, categorized at the empirical quintiles, to assess the 

sensitivity of our results to the assumption of a linear effect of PM2.5 on COVID-19 mortality rates. 

 

Sensitivity analyses 

We conducted 68 sensitivity analyses to assess the robustness of our results to data and modeling 

choices. First, we repeated all the analyses using alternative methods to estimate exposure to 

PM2.5.31 Second, we fit the models, modifying the adjustment for confounders, such as using a log 

transformation or categorized versions of some of the covariates. Third, because our study relies 

on observational data, our results could be sensitive to modeling choices (e.g., distributional 

assumptions or assumptions of linearity). We evaluated sensitivity to such choices by considering 

alternative model specifications and by fitting models stratified by county urban-rural status. 

Additional detail about the sensitivity analyses and the results are provided in the Supplementary 

Materials. 

 

Results 

Our study utilized data from 3,087 counties, of which 1,799 (58.3%) had reported zero COVID-

19 deaths at the time of this analysis. Table 2 describes the data used in our analyses. All COVID-
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19 death counts (a total of 45,817 deaths) are cumulative up to April 22, 2020. Figure 1 illustrates 

the spatial variation of long-term average exposure to PM2.5 and COVID-19 death rates (per 1 

million population) by county. Visual inspection suggests higher COVID-19 death rates in the 

Mid-Atlantic, upper Midwest, and Gulf Coast regions. These spatial patterns in COVID-19 death 

rates generally mimic patterns in both high population density and high PM2.5 exposure areas. In 

the Supplementary Materials, we provide additional data diagnostics that justify the use of the 

negative binomial model for our analyses.  

 

In Table 3, we report the estimated regression coefficients for each of the covariates included in 

our main analysis, including PM2.5. We found that the estimated MRR for PM2.5 is 1.08 (1.02, 

1.15). That is, we found that an increase of only 1 𝜇g/m3 in long-term average PM2.5 is associated 

with a statistically significant 8% increase in the COVID-19 death rate. Importantly, we also found 

that population density, days since first COVID-19 case reported, rate of hospital beds, median 

household income, percent with less than a high school education, and percent Black are important 

predictors of COVID-19 death rate. Our results are consistent with previously reported findings 

that Black Americans are at higher risk of COVID-19 mortality than other groups,40 we found  a 

45% (32%, 60%) increase in COVID-19 mortality rate associated with a 1-standard deviation (per 

14.2%) increase in percent Black residents. 

 

For our main analysis, the E-value for the estimated MRR for PM2.5 was 1.37. That is, in order for 

an unmeasured confounder to fully account for the estimated effect of PM2.5 on the COVID-19 

mortality rate, it would have to be associated with both long-term PM2.5 exposure and COVID-19 

mortality by a risk ratio of at least 1.37-fold each, through pathways independent of all covariates 
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already included in the model. If we were to include such a confounder in our models, along with 

all other confounders considered, the estimated MRR for PM2.5 mortality would become 1 (the 

null value). To get a sense of the magnitude of the required confounding effect, we also computed 

the E-value for some of our key measured confounders for comparison. The E-values for days 

since first COVID-19 case reported (1.16), the weather variables (1.02), number of hospital beds 

(1.04) and the behavioral risk factors (1.02) were significantly smaller than the reported E-values 

for the required unmeasured confounder. This suggests that any unmeasured confounder would 

need to have a confounding effect substantially larger than any of our observed confounders in 

order to explain away the relationship between PM2.5 and COVID-19 mortality rate. 

 

In Figure 2, we report the MRR and 95% CI for PM2.5 from all secondary analyses. In these 

analyses, we separately (a) omitted New York metropolitan area; (b) excluded counties with fewer 

than 10 confirmed COVID-19 cases; (c) omitted time since first reported COVID-19 case from 

the model; (d) additionally adjusted the model for number of tests performed; (e) additionally 

adjusted the model for estimated percentage of people with COVID-19 symptoms; and (f) treated 

PM2.5 as a categorical variable. The results of these analyses were consistent with the main 

analysis. For the analysis of the PM2.5 categorized into quintiles, the MRR for the kth can be 

interpreted as the increase in COVID-19 mortality rate associated with a change from the first 

quintile to the kth quintile in long-term PM2.5 exposure. The MRR estimates from this model 

monotonically increased as PM2.5 increased, supporting the assumption of a linear relationship 

between PM2.5 and COVID-19 mortality rates. The results of all sensitivity analyses are provided 

in the Supplementary Materials. 
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Discussion 

This is the first nationwide study in the United States to estimate the relationship between long-

term exposure to PM2.5 and COVID-19 death rates. The results indicate that long-term exposure 

to air pollution increases vulnerability to the most severe COVID-19 outcomes. We found 

statistically significant evidence that an increase of 1 𝜇 g/m3 in long-term PM2.5 exposure is 

associated with an 8% increase in the COVID-19 mortality rate. Our results were adjusted for a 

large set of socioeconomic, demographic, weather, behavioral, epidemic stage, social isolation 

measures, and healthcare-related confounders and demonstrated robustness across a wide range of 

sensitivity analyses.  

 

In our previous study20 of 60 million Americans older than 65 years of age, we found that a 1 

𝜇g/m3 in long-term PM2.5 exposure is associated with a 0.73% increase in the rate of all-cause 

mortality. Therefore, the same small increase in long-term exposure to PM2.5 led to an increase in 

the COVID-19 death rate of a magnitude 11 times that estimated for all-cause mortality.  

 

Our results are consistent with previous findings that air pollution exposure increases severe 

outcomes during infectious disease outbreaks. Ciencewicki and Jaspers19 provide a review of the 

epidemiologic and experimental literature linking air pollution to infectious disease. During the 

2003 outbreak of Severe Acute Respiratory Syndrome (SARS), a type of coronavirus closely 

related to COVID-19, Cui et al41 reported that locations in China with a moderate or high long-

term air pollution index (API) had SARS case fatality rates 126% and 71% higher, respectively, 

than locations with low API. Long-term particulate matter exposure has been associated with 

hospitalizations for pneumonia in the well-controlled quasi-experimental conditions provided by 
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the closing of the Utah Valley Steel Mill,42 and a link between long-term PM2.5 exposure and 

pneumonia and influenza deaths was reported in a well-validated cohort study.28 Several studies 

have reported associations between short-term PM2.5 exposure and poor infectious disease 

outcomes,43 44 including higher hospitalization rates or increased medical encounters for influenza, 

pneumonia, and acute lower respiratory infections. In these studies and in the literature on the 

association between air pollution and chronic disease outcomes, relationships with long-term 

pollution exposure tend to be stronger than relationships with short-term exposure,20 45 46 and the 

large effect estimate in our study is consistent with this trend. 

 

Relationships have also been detected between pollution exposures and severe outcomes in the 

context of past pandemics. Studies found particulate matter exposure to be associated with the 

mortality during the H1N1 influenza pandemic in 2009.47 48 Recent studies have even used historic 

data to show a relationship between air pollution from coal burning and mortality in the 1918 

Spanish influenza pandemic.49 50 

 

Although our study design cannot provide insight into the mechanisms underlying the relationship 

between PM2.5 and COVID-19 mortality, prior studies have shed light on the potential biological 

mechanisms that may explain the relationship between air pollution and viral outcomes.19 PM2.5 

exposure is known to be associated with many of the cardiovascular and respiratory comorbidities 

that dramatically increase the risk of death in COVID-19 patients. We hypothesize that the effects 

captured here are largely mediated by these comorbidities and pre-existing PM-related 

inflammation and cellular damage,46 51 as suggested by a recent commentary.52 Experimental 

studies19 53-56 also suggest that exposure to pollution can suppress early immune responses to the 
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infection, leading to later increases in inflammation and worse prognosis, which may also explain 

our findings. Some studies57-59 have suggested that air pollution can also proliferate the 

transmission of infectious disease. If COVID-19 spread is indeed impacted by air pollution levels, 

which is not yet known, some of the effects detected in our study could be mediated by this factor 

as well.  

 

This analysis provides a timely characterization of the relationship between historical exposure to 

air pollution and COVID-19 deaths in the United States. Research on how modifiable factors may 

exacerbate COVID-19 symptoms and increase mortality risk is essential to guide policies and 

behaviors to minimize fatality related to the outbreak. Our analysis relies on up-to-date population-

level COVID-19 data and well-validated air pollution exposure measures.  

 

Strengths of this analysis include adjusting for a wide range of potential confounders and a 

demonstrated robustness of results to different model choices. Moreover, the analyses rely 

exclusively on data and code that are publicly available. This provides a platform for the scientific 

community to continue updating and expanding these analyses as the pandemic evolves and data 

accumulate. 

 

It is important to acknowledge that this study has limitations, mainly due to the fact that this is an 

ecological study with data available at the county level and that this is a cross-sectional study. 

High quality, nationwide individual-level COVID-19 outcome data are unavailable at this time 

and for the foreseeable future, thus necessitating the use of an ecologic study design for these 

analyses. Due to the potential for ecologic bias, our results should be interpreted in the context of 
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this design and should not be used to make individual-level inferential statements. Also, 

unmeasured confounding bias is a threat to the validity of our conclusions. Unfortunately, in the 

midst of a pandemic it is not feasible to design a study and collect the data at the ideal level of 

spatial and temporal resolution to minimize all sources of bias. Yet, conditional on the data 

available, we have endeavored to adjust for confounding bias by all of the most important factors, 

including population density, time since the beginning of the outbreak, social isolation measures, 

behavior, weather, age structure, ethnicity, access to health care, and socio-economic factors. We 

also conducted 68 additional analyses to assess the robustness of the results to many modelling 

choices. Furthermore, we computed the E-value to demonstrate that the confounding effect of any 

unmeasured confounder would need to be much stronger than that of any of our observed 

confounders in order to explain away the relationship between PM2.5 exposure and COVID-19 

mortality rate. The calculation of the E-value provided reassurance that the presence of a strong 

unmeasured confounder is unlikely; however, this possibility cannot be ruled out completely. 

 

The inability to accurately quantify the number of COVID-19 cases due to limited testing capacity 

presents another potential limitation. We instead used total population size as the denominator for 

our mortality rates, and we additionally adjusted our models for numerous anticipated proxies of 

outbreak size, including time since first reported COVID-19 case, time since stay-at-home order 

was issued, and population density.  

 

To conduct the most rigorous possible studies of air pollution and health using ecologic data, it is 

critical to utilize areal units that minimize within-area exposure variability and maximize between-

area exposure variability.60 61 We anticipated that our use of counties satisfies this criterion, 
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because counties generally represent meaningful boundaries between urban, suburban, and rural 

areas. These population density-related delineations also often correspond to steep gradients in air 

pollution levels, thus maximizing across-unit exposure variability while minimizing within-unit 

variability. We also note that the use of long-term county-level exposure data in our study likely 

led to some degree of exposure misclassification. However, previous literature has found that using 

sub-county scale PM2.5 exposure in studies of mortality tends to either have no impact or to increase 

the strength of the associations between PM2.5 and mortality from various causes.62 

 

Because of the many limitations, this study also provides justification for expanded follow-up 

investigations as more and higher-quality COVID-19 data become available. Such studies would 

include validation of our findings with other data sources and study types, as well as studies of 

biological mechanisms, impacts of PM2.5 exposure timing, and relationships between PM2.5 and 

other COVID-19 outcomes such as hospitalization. The results of this study also underscore the 

importance of continuing to enforce existing air pollution regulations. Based on our results, we 

anticipate a failure to do so could potentially increase the long-term COVID-19 death toll and 

hospitalizations, as well as further burden our healthcare system with other PM2.5-related death 

and disease that would draw resources away from COVID-19 patients. 
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Table 1: Publicly available data sources used in the analysis  

 Source Data 

Outcome: COVID-19 

Deaths  

Johns Hopkins University the 

Center for Systems Science and 

Engineering (JHU-CSSE) 

Coronavirus Resource Center 

(https://coronavirus.jhu.edu/) 

County-level COVID-19 

death count up to and 

including April 22, 2020 

Exposure: PM2.5 

concentrations 

Atmospheric Composition 

Analysis Group 

(https://sites.wustl.edu/acag/) 

0.01° × 0.01° grid resolution 

PM2.5 prediction, averaged 

across the period 2000‒2016 

and averaged across grid cells 

in each county 

Confounders for main 

analysis 

US Census/American 

Community Survey 

(https://www.census.gov/progra

ms-surveys/acs/data.html) 

County-level socioeconomic 

and demographic variables 

for 2012‒2016 

 Robert Wood Johnson 

Foundation County Health 

Rankings 

(https://www.countyhealthranki

ngs.org/) 

County-level behavioral risk 

factor variables for 2020 

 JHU-CSSE Coronavirus 

Resource Center 

Time since first reported 

COVID-19 case 

 Raifman et al, Boston 

University School of Public 

Health, COVID-19 United 

States state policy database 

(www.tinyurl.com/statepolicies) 

Time since issuance of stay-

at-home order 

 Homeland Infrastructure 

Foundation-Level Data (HIFLD) 

(https://hifld-

geoplatform.opendata.arcgis.co

m/datasets/hospitals) 

County-level number of 

hospital beds in 2019 

 Gridmet via Google Earth 

engine  

(https://developers.google.com/e

arth-

engine/datasets/catalog/IDAHO

_EPSCOR_GRIDMET) 

 

4 km × 4 km temperature and 

relative humidity predictions, 

summer and winter averaged 

across the period 2000‒2016 

and averaged across grid cells 

in each county 

https://coronavirus.jhu.edu/
https://www.census.gov/programs-surveys/acs/data.html
https://www.census.gov/programs-surveys/acs/data.html
http://www.tinyurl.com/statepolicies
https://hifld-geoplatform.opendata.arcgis.com/datasets/hospitals
https://hifld-geoplatform.opendata.arcgis.com/datasets/hospitals
https://hifld-geoplatform.opendata.arcgis.com/datasets/hospitals
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_GRIDMET
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_GRIDMET
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_GRIDMET
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_GRIDMET
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Additional confounders for 

secondary analyses 

The COVID tracking project 

(https://covidtracking.com/) 

State level number of 

COVID-19 tests performed 

up to and including April 22, 

2020 

 Carnegie Mellon University 

Delphi Research Center 

(https://covid-

survey.dataforgood.fb.com/) 

Estimated percentage of 

people with COVID-19 

symptoms, based on survey 

data 

 

 

 

  

https://covidtracking.com/
https://covid-survey.dataforgood.fb.com/
https://covid-survey.dataforgood.fb.com/
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Table 2: Characteristics of the study cohort up to and including April 22, 2020, mean 

(standard deviation) 

 
Total 

3,087 counties 

PM2.5 <8 𝜇g/m3 

1,217 counties 

PM2.5≥8 𝜇g/m3 

1,870 counties 

COVID-19 death rate (per 100,000) 3.4 (10.6) 1.6 (5.7) 4.7 (12.7) 

Average PM2.5 (𝜇g/m3) 8.4 (2.5) 5.7 (1.4) 10.1 (1.2) 

Rate of hospital beds (per 100,000) 242 (391.9) 300 (515.2) 204.2 (278) 

Days since first case 23.6 (10.7) 19 (12.6) 26.5 (7.9) 

Days since stay-at-home order 18.3 (12.4) 16.7 (13.6) 19.2 (11.4) 

% Smokers 17.4 (3.5) 15.8 (3.1) 18.5 (3.4) 

% Obese 32.9 (5.4) 31.2 (5.1) 34 (5.3) 

% In poverty 10.5 (5.7) 9.7 (5.7) 11.1 (5.6) 

% Less than high school education 21.2 (10.4) 16.5 (8.7) 24.2 (10.3) 

% Owner-occupied housing 74.2 (8.8) 76 (7.7) 73.1 (9.3) 

% Hispanic 7.6 (12.3) 9.7 (13.7) 6.3 (11.1) 

% Black 8.2 (14.2) 1 (1.8) 12.9 (16.5) 

% ≥65 years of age 16 (4.1) 17.4 (4.5) 15 (3.4) 

% 45-64 years of age 26.4 (3) 26.9 (3.8) 26.1 (2.4) 

% 15-44 years of age 37.6 (6.5) 35.2 (8.2) 39.2 (4.5) 

Population density (person/sq. mi.) 406.7 (1732.6) 132.6 (430.7) 585.1 (2180.6) 

Median household income ($1,000) 49 (13.1) 50.5 (10.9) 48 (14.3) 

Median house value ($1,000) 136 (89.4) 140.4 (87.3) 133.1 (90.6) 

Average summer temperature (°F) 86 (5.7) 83.7 (6.7) 87.4 (4.4) 

Average winter temperature (°F) 45.1 (11.9) 39.4 (11.5) 48.7 (10.7) 

Average summer relative humidity (%) 89 (9.6) 83.2 (11.5) 92.8 (5.5) 

Average winter relative humidity (%) 87.5 (4.8) 87.9 (5.6) 87.2 (4.1) 
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Table 3: Mortality rate ratios (MRR), 95% confidence intervals (CI), and P-values for all 

variables in the main analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 MRR 95% CI P-value 

PM2.5 (𝜇g/m3) 1.08 (1.02, 1.15) 0.01 

Population density (Q2) 0.86 (0.60, 1.23) 0.40 

Population density (Q3) 0.58 (0.40, 0.82) 0.00 

Population density (Q4) 0.47 (0.33, 0.68) 0.00 

Population density (Q5) 0.52 (0.35, 0.77) 0.00 

% Poverty 1.02 (0.93, 1.13) 0.65 

log(Median house value) 1.17 (0.99, 1.39) 0.06 

log(Median household income) 1.28 (1.09, 1.51) 0.00 

% Owner-occupied housing 1.12 (1.02, 1.23) 0.18 

% Less than high school education 1.36 (1.21, 1.52) 0.00 

% Black 1.45 (1.32, 1.60) 0.00 

% Hispanic 1.00 (0.89, 1.12) 0.99 

% ≥65 years of age 1.15 (0.99, 1.33) 0.07 

% 15-44 years of age 0.93 (0.74, 1.17) 0.54 

% 45-64 years of age 0.96 (0.83, 1.12) 0.62 

Days since stay-at-home order 1.28 (0.97, 1.70) 0.08 

Days since first case 2.96 (2.50, 3.51) 0.00 

Rate of hospital beds 1.12 (1.02, 1.23) 0.01 

% Obese 0.94 (0.86, 1.02) 0.14 

% Smokers 1.08 (0.92, 1.26) 0.36 

Average summer temperature (°F) 0.96 (0.79, 1.16) 0.68 

Average winter temperature (°F) 1.18 (0.90, 1.53) 0.22 

Average summer relative humidity (%) 0.84 (0.71, 1.01) 0.07 

Average winter relative humidity (%) 1.00 (0.89, 1.13) 0.99 
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Fig 1: Maps show (a) county-level 17-year long-term average of PM2.5 concentrations (2000‒
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2016) in the United States in 𝜇g/m3, and (b) county-level number of COVID-19 deaths per 1 

million population in the United States up to and including April 22, 2020.  
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Fig 2: Mortality Risk Ratios (MRR) and 95% confidence intervals. Upper panel, MRR can be 

interpreted as percentage increase in the COVID-19 death rate associated with a 1 𝜇g/m3 increase 

in long-term average PM2.5 exposure. The MRR from the main analysis was adjusted for 20 

potential confounders. In addition to the main analysis, results are shown for secondary analyses 

(a) excluding the counties in New York metropolitan area, (b) excluding counties with fewer than 
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10 confirmed COVID-19 cases, (c) omitting time since first reported COVID-19 case from the 

model, (d) adding state-level number of tests performed to the model, (e) adding county-level 

estimated percentage of people with COVID-19 symptoms to the model, and (f) using PM2.5 

exposure categorized at quintiles. All COVID-19 death counts are cumulative counts up to and 

including April 22, 2020. Lower panel, MRR can be interpreted as the percentage increase in the 

COVID-19 death rate associated with each empirical quintile of long-term average PM2.5 exposure 

compared to the baseline quintile (Q1). 
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