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S.1 Data

Health data

The Johns Hopkins University Center for Systems Science and Engineering created and

maintains a platform hosting worldwide coronavirus case and death count data at the na-

tional and sub-national level that are updated in real time. For the US, these data are

provided by the US Centers for Disease Control and Prevention (CDC) and state goverment

at the county level. As of April 4, 2020, the CDC reports that COVID-19 testing is being

conducted at 95 public health laboratories across the US and territories. To our knowledge,

the CDC has not yet made publicly available information about how COVID-19 deaths are

identified, i.e., whether a death attributed to COVID-19 requires a positive test or can be

based on symptoms alone. Therefore, it remains unclear at this early stage how accurately

COVID-19 death counts are being captured.

Pollution data

We rely on modeled PM2.5 exposure estimates rather than monitored observations alone,

because air pollution monitors are sparsely distributed across the US, with a large majority

of counties not containing a monitor. Our primary PM2.5 modeled exposure estimates are

produced by van Donekelaar et al (2019) (1). They are created by fusing PM2.5 measures

from three different sources: ground-based monitors, GEOS-Chem chemical transport models

(CTM), and satellite observations. In short, CTM and satellite data are combined to estimate

a high-resolution PM2.5 surface across the whole US, then this surface is bias-corrected for

ground-monitor PM2.5 observations using a geographically-weighted regression. The cross-

validated R2 for these models in the US was reported to be 0.61, although the accuracy

varies across regions. For the primary analysis, the gridded data were averaged across the

years 2000-2016 and then were aggregated to the county level using area-weighting. For

sensitivity analyses, we also considered the 2016 county average PM2.5, created using an
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analogous procedure.

To assess the sensitivity of our results to the specific PM2.5 prediction model used to

generate exposure estimates, we also collect the estimated daily PM2.5 modeled exposure at

a high spatio-temporal resolution of 1 km × 1 km grid network across the whole US using

another well-validated ensemble-based prediction model (2). This model used ensemble

learning approaches to combine three machine learning models; a random forest regression,

a gradient boosting machine, and an artificial neural network. These machine learning

algorithms used more than 100 predictor variables from satellite data, land-use information,

weather variables, and output from chemical transport model simulations. We use the same

area-weighting approach to aggregate the gridded data across the years 2000-2016 and then

aggregate to the county level.

Potential Confounders

To adjust for confounding bias in the nationwide observational study, we use county level

variables from numerous public sources. Multiple socioeconomic and demographic variables

were collected from the 2000 and 2010 Census (https://www.census.gov) and the 2005–

2016 American Community Surveys (https://www.census.gov/programs-surveys/acs/).

Specifically, we collect the following nine county level census variables: proportion of resi-

dents older than 65, proportion of Hispanic residents, proportion of Black residents, median

household income, median home value, proportion of residents in poverty, proportion of

residents with a high school diploma, population density, and proportion of residents that

own their house. We also collect two county-level health risk factors from the Behavioral

Risk Factor Surveillance System (BRFSS) (https://www.cdc.gov/brfss/index.html): av-

erage body mass index and smoking rate. We use the BRFSS variables from 2011, as this

is the most recent year with county-level data available. During the course of COVID-19

outbreak, the availability of adequate hospital resources and of testing resources likely in-

fluence COVID-19 outcomes and these may also be more widely available in urban areas
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where PM2.5 is also higher. We collect county-level information on number of hospital beds

available in 2019 from Homeland Infrastructure Foundation-Level Data (HIFLD) and state-

level information on number of COVID-19 tests has been performed up to April 04, 2020

from the COVID tracking project (https://covidtracking.com/). We obtain meteorolog-

ical variables on maximum daily temperature and relative humidity data on 4km x 4km

gridded rasters from Gridmet via Google Earth Engine (https://developers.google.com/

earth-engine/datasets/catalog/IDAHO EPSCOR GRIDMET). We average daily temperature

and relative humidity for the summer (June-September) and winter (December-February)

period respectively across the period 2000-2016 and average across grid rasters in each county.

We also adjust for all four of these weatheer variables in our main models. The data used for

this study are publicly available and sources are listed in Table 1 of the main manuscript.

S.2 Statistical Modeling

We fit zero-inflated Negative Binomial regression models with a state-specific random

intercept (3; 4). Zero-inflated negative binomial models are composed of two sub-models.

The “count sub-model” estimates the association between the covariates and the number of

COVID-19 deaths among counties eligible to experience a COVID-19 death. Letting E [·]

denote an expected value, it takes the form

log(E[COVID-19 deaths]) = βc0 + βc1 PM2.5 + βc2 population density + βc3 percent of

the population older than 65-year old + βc4 percent living in poverty + βc5 median

household income + βc6 percent black + βc7 percent hispanic + βc8 percent of the

adult population with less than a high school education + βc9 median house value +

βc10 percent of owner-occupied housing + βc11 average BMI + βc12 smoking rate + βc13

number of hospital beds + βc14 average summer temperature + βc15 average summer

relative humidity + βc16 average winter temperature + βc17 average winter relative

humidity + βc18 number of COVID-19 tests performed in state + log(population
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size) + random intercept(State)

The “zero sub-model” accounts for the excess or structural zeros in the data that may be

generated by counties not eligible for COVID-19 deaths, e.g., due to the absence of confirmed

COVID-19 cases. It has the form

logit(E[COVID-19 death ineligible]) = βz0 + βz1 PM2.5 + βz2 population density + βz3

percent of the population older than 65-year old + βz4 percent living in poverty + βz5

median household income + βz6 percent black + βz7 percent hispanic + βz8 percent

of the adult population with less than a high school education + βz9 median house

value + βz10 percent of owner-occupied housing + βz11 average BMI + βz12 smoking

rate + βz13 number of hospital beds + βz14 average summer temperature + βz15

average summer relative humidity + βz16 average winter temperature + βz17 average

winter relative humidity + βz18 number of COVID-19 tests performed in state +

random intercept(State)

The βz estimates from the zero sub-model reflect the association between the covariates

and a county’s odds of being a structural zero, i.e., ineligible for a COVID-19 death. For

the count sub-models, we provide the mortality rate ratios (MRR) and 95% CIs for PM2.5,

corresponding to the exponentiated parameter estimate (eβ̂
c
1). The MRR can be interpreted

as the multiplicative increase in the COVID-19 death rate associated with a 1 µg/m3 increase

in long-term average PM2.5 exposure among the counties having the possibility to have

COVID-19 deaths as of April 4, 2020. It is unclear whether the results of the zero sub-model

provide any meaningful insights, as it is likely that the structural zeros in this setting arise

due to the absence of the spread of COVID-19 in a community. It remains unclear whether

PM2.5 could be expected to impact the spread of COVID-19.
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Model Assumption Diagnostics

Over-dispersion

Poisson regression models are a common choice for modeling count data, but the Poisson

distribution is restrictive in that it assumes that the mean is equal to the variance. In our

setting, because most counties have experienced few or no COVID-19 deaths thus far, the

mean of our outcome data is small (µ = 2.29); however the variance is large due to the

large death counts in several outbreak epicenters (σ2 = 1290.10). Among the county with

non-zero deaths, the mean of our outcome data is still relative small (µ = 10.30); however

the variance is large (σ2 = 5724.75). The dispersion parameter for quasi-Poisson family

taken to be 6.95, which indicate a strong over-dispersion. Thus, the Poisson distributional

assumption is likely to be inappropriate. The negative binomial distribution provides more

flexibility by introducing an additional parameter that allows the count outcome variable

with variance larger than mean.

Zero-inflation

The total number of counties included in our main analysis is 3, 080, of which 2, 395 (77.8%)

had not reported any COVID-19 deaths by April 4, 2020. We tested for the zero-inflation by

plotting the expected outcome from a Negative Binomial regression with random effects vs.

the observed outcome in the real data set. Figure S1 shows that there are substantially more

zeros in the observed outcome compared to the expected outcome from a Negative Binomial

regression with random effects. We anticipate that these zeros arise due to the absence of

COVID-19 cases in some counties on/before April 4, 2020, making them ineligible to expe-

rience a COVID-19 death. For these reasons, we chose to fit zero-inflated negative binomial

models to the COVID-19 death data.
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Figure S1: Diagnostic Plot for Zero-inflation. We compare the (log transformed) expected
outcome from a Negative Binomial regression with random effects vs. the observed outcome
in the real data set. Note if Y is zero, then log(Y +1) will still be zero. There are substantially
more zeros in the observed outcome compared to the expected outcome from a Negative
Binomial regression with random effects.
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S.3 Additional Analysis Results

The detailed results are presented in Table S1-S4 and Figure S2. To evaluate the sensitiv-

ity of our results to the approach used to calculate long-term pollution exposure measure, we

repeat our analyses using four relevant sets of exposure data. Using the modeled exposure

estimates of van Donkelaar et al (1), we test the 17-year average concentrations (2000-2016),

i.e., the primary analysis results, and the one-year average concentrations using the most

recent available year (2016), and we refer to the analyses using these exposures as P-1 and

P-2, respectively. Using the modeled exposure estimates of Di et al (2019) (2), we test the

17-year average concentrations (2000-2016) and the one-year average concentrations using

the most recent available year (2016), refered to as P-3 and P-4 respectively. In each analy-

sis, we adjust for the set of potential confounders described in the main text and in Section

S1. The finding that long-term exposure to PM2.5 is positively associated with increased

COVID-19 mortality holds regardless of which pollution data are used. When adjusted for

the full confounder set, analyses give similar point estimates for PM2.5 and attain statis-

tical significance using each of the different pollution data sources. Because the focus of

our study is to assess the cumulative chronic effect of long-term exposure to PM2.5, we use

17-year mean exposure data in our main report.

As described in the main text, for each of these pollution data sources, we also evaluate

the model sensitivity to the set of confounders adjusted for by individually omitting each

of the following from the confounder set: 1) the number of hospital beds in the county;

2) the number of COVID-19 tests performed in each state; 3) behavioral risk factors, i.e.,

population mean BMI and percent of population who are smokers; and 4) meteorological

(weather) variables: the summer (June-September) and winter (December-February) average

of maximum daily temperatures and relative humidity in the county across 17 years (2000-

2016). Effect estimates are presented as mortality rate ratio (MRR) per 1 µg/m3increase in

annual PM2.5. We consistent positive associations between long-term exposure to PM2.5 and

increased mortality for COVID-19 in these analyses, with MRR between 1.06 − 1.15 across
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P-1 models that adjust for different potential confounders (similar results for P-2, P-3, and

P-4). The removal of the number of hospital beds from the confounder set consistently

attenuated the significance of the estimates, suggesting that the number of hospital beds is

a strong confounder.

To evaluate the possible impact of confounding bias due to epidemic outbreak sizes, which

are not accurately captured by current data, we conduct analyses 1) excluding counties in

New York state where the major outbreak is happening 2) excluding counties with less than

10 confirmed COVID-19 cases. In the analysis that excludes counties in New York state,

we still find a statistically significant association between long-term exposure to PM2.5 and

increased mortality for COVID-19 with MRR 1.13 and 95% confidence interval (1.03, 1.22)

for P-1. In the analysis that excludes counties with less than 10 confirmed COVID-19 cases,

we also find a significant positive association with increased mortality of COVID-19 with

magnitude of MRR 1.12 and 95% confidence interval (1.01, 1.22) for P-1.

To evaluate the sensitivity to modeling choices (e.g., distributional assumptions or as-

sumptions of linearity), we conduct sensitivity analyses by 1) treating PM2.5 as a categorical

variable (categorized at empirical quintiles), 2) adjusting for population density as a categor-

ical variable (categorized at empirical quintiles), 3) using a negative binomial model without

accounting for zero-inflation, 4) adjusting for population size as a covariate, rather than as an

offset. In the analysis that treats PM2.5 as a categorical variable, we found the magnitude of

MRRs increase dramatically and monotonically as the quintile of PM2.5 exposures increases

for P-1. Such findings suggest there is no threshold about the effect of long-term exposure

to PM2.5 on COVID-19 mortality. In the analysis that adjusts for population density as a

categorical variable (categorized at empirical quintiles), we again find a significant positive

association with increased COVID-19 mortality with MRR 1.14 for P-1. In the analysis that

uses a negative binomial model without accounting for zero-inflation, we find very similar

results as of our main analyses. In the analysis that adjusts for population size directly,

rather than as an offset, we find long-term exposure to PM2.5 is still significantly positively
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associated with the number of COVID-19 death, although here the MRR refers to the in-

crease in the mortality count ratio of COVID-19 per unit increase of PM2.5, rather than the

increase in the mortality rate ratio.

S.4 Code

library("dplyr")

library("MASS")

library(NBZIMM)

glmm.zinb.off = glmm.zinb(fixed = Deaths ˜ mean_pm25 + scale(poverty)

+ scale(popdensity) +scale(medianhousevalue) +scale(medhouseholdincome)

+ scale(pct_owner_occ) + scale(hispanic) + scale(education) +scale(pct_blk)

+ scale(older_pecent) + scale(beds) + scale(mean_bmi) + scale(smoke_rate)

+ scale(mean_summer_temp) + scale(mean_winter_temp) + scale(mean_summer_rm)

+ scale(mean_winter_rm) + scale(totalTestResults) + offset(log(population)),

random = ˜ 1 | state, data = (aggregate_pm_census_cdc_test_beds))

glmm.zinb.beds = glmm.zinb(fixed = Deaths ˜ mean_pm25 + scale(poverty)

+ scale(popdensity) +scale(medianhousevalue) +scale(medhouseholdincome)

+ scale(pct_owner_occ) + scale(hispanic) + scale(education) +scale(pct_blk)

+ scale(older_pecent) + scale(mean_bmi) + scale(smoke_rate)

+ scale(mean_summer_temp) + scale(mean_winter_temp) + scale(mean_summer_rm)

+ scale(mean_winter_rm) + scale(totalTestResults) + offset(log(population)),

random = ˜ 1 | state, data = (aggregate_pm_census_cdc_test_beds))

glmm.zinb.beds = glmm.zinb(fixed = Deaths ˜ mean_pm25 + scale(poverty)
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+ scale(popdensity) +scale(medianhousevalue) +scale(medhouseholdincome)

+ scale(pct_owner_occ) + scale(hispanic) + scale(education) +scale(pct_blk)

+ scale(older_pecent) + scale(beds) + scale(mean_bmi) + scale(smoke_rate)

+ scale(mean_summer_temp) + scale(mean_winter_temp) + scale(mean_summer_rm)

+ scale(mean_winter_rm) + offset(log(population)),

random = ˜ 1 | state, data = (aggregate_pm_census_cdc_test_beds))

glmm.zinb.beds = glmm.zinb(fixed = Deaths ˜ mean_pm25 + scale(poverty)

+ scale(popdensity) +scale(medianhousevalue) +scale(medhouseholdincome)

+ scale(pct_owner_occ) + scale(hispanic) + scale(education) +scale(pct_blk)

+ scale(older_pecent) + scale(beds)

+ scale(mean_summer_temp) + scale(mean_winter_temp) + scale(mean_summer_rm)

+ scale(mean_winter_rm) + scale(totalTestResults) + offset(log(population)),

random = ˜ 1 | state, data = (aggregate_pm_census_cdc_test_beds))

glmm.zinb.beds = glmm.zinb(fixed = Deaths ˜ mean_pm25 + scale(poverty)

+ scale(popdensity) +scale(medianhousevalue) +scale(medhouseholdincome)

+ scale(pct_owner_occ) + scale(hispanic) + scale(education) +scale(pct_blk)

+ scale(older_pecent) + scale(beds) + scale(mean_bmi) + scale(smoke_rate)

+ scale(totalTestResults) + offset(log(population)),

random = ˜ 1 | state, data = (aggregate_pm_census_cdc_test_beds))

S.5 Figures
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Figure S2: COVID-19 mortality rate ratios (MRR) per 1 µg/m3 increase in PM2.5 and 95%
CI. The main analyses were adjusted for 17 socioeconomic, demographic, behavioral, climate,
and healthcare confounders. We additionally conduct analyses omitting the following vari-
ables from the adjustment set: number of hospital beds, number of COVID-19 tests in each
state, smoking rate and BMI from BRFSS, and seasonal temperature and humidity variables
(weather). We also fit models excluding counties from NY state and excluding counties with
< 10 confirmed cases. We repeat our analyses using four relevant sets of exposure data (P-1,
P-2, P-3 and P-4).
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S.6 Tables

Table S1: Main, secondary and sensitivity analysis results for P-1, i.e., PM2.5 exposure
measured as the 17-year average concentration 2000-2016 by van Donekelaar et al (2019)
(1). Point estimates and 95 % confidence intervals and p-values of the log mortality rate
ratios (MRR).

Analysis N Counties log(MRR) P-Value

Main analysis 1783 counties 0.14(0.05, 0.22) < 0.01
Exclude # beds 2214 counties 0.06(−0.01, 0.13) 0.09
Exclude # tested 1783 counties 0.14(0.05, 0.22) < 0.01
Exclude BRFSS 2272 counties 0.12(0.03, 0.20) 0.01
Exclude weather 1783 counties 0.10(0.03, 0.18) 0.01
Exclude counties in New York 1726 counties 0.12(0.03, 0.20) 0.01
Exclude counties with < 10 confirmed cases 873 counties 0.11(0.01, 0.20) 0.04
Categorize PM2.5 into quintiles 1783 counties

Q1 (0-5.79 µg/m3) 0
Q2 (5.79-8.05 µg/m3) 0.36(−0.13, 0.85) 0.15
Q3 (8.05-9.53 µg/m3) 0.65(0.11, 1.19) 0.02
Q4 (9.53-10.74 µg/m3) 0.89(0.31, 1.46) < 0.01
Q5 (10.74+ µg/m3) 1.23(0.60, 1.85) < 0.01

Categorize population density into quintiles 1783 counties 0.13(0.03, 0.22) 0.01
Use standard Negative Binomial model 1783 counties 0.14(0.05, 0.23) < 0.01
Adjust log(population) as covariate 1783 counties 0.19(0.10, 0.28) < 0.01
Adjust population as covariate 1783 counties 0.37(0.28, 0.46) < 0.01
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Table S2: Main, secondary and sensitivity analysis results for P-2, i.e., PM2.5 exposure
measured as 2016 average by van Donekelaar et al (2019) (1). Point estimates and 95 %
confidence intervals for the log mortality rate ratios (MRR).

Analysis N counties log(MRR) P-Value

Main analysis 1783 counties 0.12(0.02, 0.22) 0.02
Exclude # beds 2214 counties 0.03(−0.05, 0.11) 0.50
Exclude # tested 1783 counties 0.12(0.02, 0.22) 0.02
Exclude BRFSS 2227 counties 0.10(0.01, 0.20) 0.04
Exclude weather 1783 counties 0.09(0.00, 0.18) 0.06
Exclude counties in New York 1726 counties 0.12(0.02, 0.22) 0.02
Exclude counties with < 10 confirmed cases 716 counties 0.09(−0.03, 0.21) 0.12
Categorize PM2.5 into quintiles 1783 counties

Q1 (0-4.11 µg/m3) 0
Q2 (4.11-5.61 µg/m3) −0.46(−0.91,−0.01) 0.04
Q3 (5.61-6.82 µg/m3) 0.00(−0.49, 0.49) 1.00
Q4 (6.82-7.85 µg/m3) 0.12(−0.39, 0.64) 0.65
Q5 (7.85+ µg/m3) 0.28(−0.27, 0.83) 0.32

Categorize population density into quintiles 1783 counties 0.10(0.00, 0.21) 0.06
Use standard Negative Binomial model 1783 counties 0.13(0.03, 0.23) 0.01
Adjust log(population) as covariate 1783 counties 0.17(0.07, 0.27) < 0.01
Adjust population as covariate 1783 counties 0.38(0.28, 0.48) < 0.01

Table S3: Main, secondary and sensitivity analysis results for P-3, i.e., PM2.5 exposure
measured as the 17-year average concentrations 2000-2016 by Di et al (2019) (2). Point
estimates and 95 % confidence intervals for the log mortality rate ratios (MRR).

Analysis N counties log(MRR) P-Value

Main analysis 1783 counties 0.12(0.03, 0.28) 0.01
Adjust # beds 2214 counties 0.05(−0.02, 0.13) 0.15
Adjust # tested 1783 counties 0.12(0.03, 0.21) 0.01
Adjust BRFSS 2272 counties 0.11(0.02, 0.19) 0.01
Adjust weather 1787 counties 0.08(0.00, 0.16) 0.04
Exclude counties in New York 1726 counties 0.09(−0.01, 0.18) 0.07
Exclude counties with < 10 confirmed cases 873 counties 0.08(−0.02, 0.19) 0.1
Categorize PM2.5 into quintiles 1783 counties

Q1 (0-6.71 µg/m3) 0
Q2 (6.71-9.19 µg/m3) 0.37(−0.12, 0.85) 0.13
Q3 (9.19-10.45 µg/m3) 0.50(−0.04, 1.04) 0.07
Q4 (10.45-11.48 µg/m3) 0.50(−0.08, 1.07) 0.09
Q5 (11.48+ µg/m3) 0.68(0.07, 1.28) 0.03

Categorize population density into quintiles 1783 counties 0.11(0.02, 0.20) 0.01
Use standard Negative Binomial model 1783 counties 0.13(0.03, 0.22) 0.01
Adjust log(population) as covariate 1783 counties 0.14(0.05, 0.23) < 0.01
Adjust population as covariate 1783 counties 0.27(0.18, 0.37) < 0.01
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Table S4: Main, secondary and sensitivity analysis results for P-4, i.e., PM2.5 exposure
measured as 2016 average by Di et al (2019) (2). Point estimates and 95 % confidence
intervals for the log mortality rate ratios (MRR).

Analysis N counties log(MRR) P-Value

Main analysis 1783 counties 0.15(0.03, 0.27) 0.01
Adjust # beds 2214 counties 0.09(−0.02, 0.19) 0.10
Adjust # tested 1783 counties 0.15(0.03, 0.27) 0.02
Adjust BRFSS 2272 counties 0.15(0.03, 0.26) 0.01
Adjust weather 1787 counties 0.10(−0.01, 0.20) 0.07
Exclude counties in New York 1726 counties 0.12(−0.01, 0.24) 0.06
Exclude counties with < 10 confirmed cases 873 counties 0.13(−0.01, 0.27) 0.07
Categorize PM2.5 into quintiles 1783 counties

Q1 (0-4.89 µg/m3) 0
Q2 (4.89-6.50 µg/m3) 0.37(−0.08, 0.83) 0.11
Q3 (6.50-7.41 µg/m3) 0.60(0.07, 1.13) 0.03
Q4 (7.41-8.09 µg/m3) 0.72(0.18, 1.26) 0.01
Q5 (8.09+ µg/m3) 0.82(0.25, 1.39) < 0.01

Categorize population density into quintiles 1783 counties 0.14(0.01, 0.26) 0.03
Use standard Negative Binomial model 1783 counties 0.15(0.03, 0.28) 0.02
Adjust log(population) as covariate 1783 counties 0.17(0.05, 0.29) < 0.01
Adjust population as covariate 1783 counties 0.30(0.18, 0.42) 0.01
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