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Abstract

In recent years, computer vision analysis of satellite
imagery has been used to identify large ships
in both offshore and inland settings, as well as
to combat deforestation in the Amazon Forest.
However, the presence of mining barges conducting
ecologically destructive gold dredging operations
in inland rivers remains a major problem relatively
unaddressed by artificial intelligence. Challenges
in this domain include the small size of the barges
in question, their rapid movement patterns, and
inconsistent satellite image availability, leading to
high difficulty in detection. In our paper, we
present three key contributions: (i) a self-curated
medium-resolution satellite image dataset (n =
296) of small river watercraft, (ii) a temporal image
differencing algorithm using radar data to detect
watercraft movement under cloud coverage, and
(iii) a convolutional neural network model trained
using weighted cross-entropy loss that achieves
90.0% balanced accuracy and 100.0% TPR on a
small held-out portion of our dataset. To the best
of our knowledge, our work is the first application
of artificial intelligence to identify small inland
watercraft, and our dataset is also the first of its
kind.

1 Introduction
Areas in the Amazon River Basin such as the state of
Rôndonia in Brazil are rich in gold [1]. Gold prices have
increased over 300% in the past two decades, and have
recently gone over $1,700 per ounce. This has caused gold
mining to be both lucrative and widespread.

Dredging of the Amazon River is generally harmful to the
ecosystem. Gold mining operations have caused mercury
contamination in the river, which negatively impacts local
wildlife. Although there are occasional police patrols in
the area, the Brazilian government’s stance is that the large
geographical region makes it too difficult to police the illegal
miners. This serves as the motivation of our project as
predicting illegal mining can narrow down search areas and
accelerate policing.

Satellite imagery data currently does not exist for inland
rivers and barges. Current solutions focus on massive ship
classification. In addition, current solutions are ineffective
because they don’t have working relationships with local
enforcement for feedback and explanation.

We solve the problem of being able to detect the presence
of an illegal gold mining barge in the Amazon River
based on satellite imagery. This will allow the World
Wildlife Foundation (WWF) to better conduct research into
the problem, and enable more targeted police enforcement
against illegal mining.

Our main contributions are the following:
• We use spatial-temporal differencing of radar data to

detect small barges in the Amazon river.
• We create the first-of-its-kind barge dataset [2] along

with a custom CNN model to detect barges from optical
data. In previous work, these datasets only had boats in
ocean water far from land.

• We utilize both radar and optical data, as well as the
MASATI dataset for transfer learning, to create novel
a barge identification system that can be used for local
enforcement. This includes both temporal differencing
and deep learning models 1.

Figure 1: An example of a barge in the Amazon river. Gold mining
in the river is harmful to the ecosystem because of the mercury
contamination it produces.

1Please view our code at our GitHub Repo

https://github.com/julianl092/amazon-barge-detection


2 Related Work
Advances in imagery and object detection models have led to
increased research on using satellite imagery for watercraft
identification. Current literature largely focuses on using
either synthetic aperture radar (SAR) or optical remote
sensing images for ship detection. However, these techniques
are not generalizable to trickier environments, such as smaller
watercraft in inland river areas.

SAR images have been preferred in past research due to
their capabilities of seeing through clouds and independence
from sunlight, making them work in all weather conditions
at any time of the day. Previously, high-quality SAR
images were hard to curate, leading to techniques working
with simulated images [3]. An increase in the number
of satellites capable of SAR imagery led to more widely
available SAR datasets and more advanced models [4]. Then,
ship detection was accelerated with the advent of deep
learning [5]. Kang et al. showed in [6] how modifying the
Faster R-CNN architecture with the constant false alarm rate
(CFAR) algorithm led to increased accuracy for smaller-sized
targets. This was improved further by [7] using YOLOv2
models.

Limitations on SAR image quality led to shortcomings
in more complex marine areas with shores, islands, and
uneven surfaces. To address this, optical remote sensing
images, with much higher quality compared to SAR, were
employed. Earlier algorithms using 2D object detection [8]
were improved by threshold segmentation [9] and finally
supplanted by the same Faster R-CNN models used for SAR
imagery [10]. Unfortunately, optical imagery does lack the
same benefits as SAR imagery in that clouds and night time
dramatically degrade the use of images.

However, this previous work has all largely focused on
ship detection in open seas or large river ports, which is
strikingly different from the small barges and inland rivers
the WWF and other conservation groups work with around
the globe. Analysis of satellite imagery has previously been
used to target illegal gold mining in the Amazon rainforest to
curb deforestation [11]. Illegal sand, gravel, and gold mining
[12] occur at alarming rates around the world, yet there is
no known prior research in helping authorities detect these
practices using image detection.

Our work addresses this problem by presenting novel
datasets and solutions for identifying small parked barges
in the river, rather than large ships in the open ocean or
analyses of land-based operations. By using both SAR and
optical imagery, we utilize the benefits of both approaches.
In addition, our collaboration with the WWF was important
in shaping the specifications for this project.

3 Data & Challenges
We encountered many challenges relating to the procurement
of data. First and foremost, we had to curate our own training
and testing datasets from satellite image databases, because
existing datasets of satellite images containing watercraft are
heavily focused on large cargo ships and not small inland
barges. This already imposed a practical constraint on our
dataset size, as due to time and labor constraints as well as the

geographical sparsity of barges, the number of images that we
could realistically source, process, and label was extremely
limited.

In the process of data curation, we were further constrained
by the competing considerations that our satellite image
sources had to be high-resolution enough to display mining
barges, which range from 50m to just 10m in length, but
also available at low-cost for an unlimited length of time so
that our solution would be sustainably usable by monitoring
groups like the World Wildlife Fund and indigenous peoples.
Moreover, we required a high temporal frequency of imaging
in order to differentiate between moving watercraft, which
are more likely to be innocuous, and watercraft parked in
one location over multiple days, which are much more likely
to be conducting illegal mining operations. Robustness to
cloud coverage was a final major issue, as cloud coverage
can render several consecutive days of images unusable for
analysis.

Our proposed solution uses three different sources of data
to cumulatively address all of these challenges. An overview
of the approaches we used can be found in Figure 2.

3.1 Planet Labs Optical Data

Planet Labs is a commercial satellite image provider that
provides images of 3m / px resolution using its PlanetScope
satellites - we were able to access these images for free under
its Education and Research program. This represented an
appropriate balance of low cost, acceptable resolution, and
daily revisit time to our Area of Interest (AOI).

Using our access to the Planet Labs database [13], we
curated a dataset [2] of 296 square image tiles of the
Madeira River in Rondônia State, ranging from 224x224px to
approximately 300x300px. This dataset includes 100 samples
manually labeled as ‘positive’ - meaning the tile contains a
barge - and 196 samples labeled as ‘negative’. Because of the
geographical sparsity of barges, downloading large swathes
of river imagery and then labeling afterward was infeasible,
as this would have led to a class imbalance skewed towards
the negative by hundreds or thousands of times.

Instead, we manually searched through the image database
for positive samples via visual inspection, individually
downloading, square-cropping, and processing each one. We
took the same approach for negative samples, which were
considerably more abundant. For negative samples, we
endeavored to proportionally represent in our dataset the wide
range of non-boat-containing images which the model might
encounter in the real world, including sediment deposits and
clouds which could easily be mistaken for boats.

3.2 MASATI Pre-Training Data

The MASATI (MAritime SATellite Imagery) dataset [14]
consists of optical images of maritime scenes, with
image class divisions including with/without ships, and
with/without coastline. This data is originally obtained from
Microsoft® Bing Maps. The typical image in the dataset has
a resolution of approximately 512x512 pixels.



Figure 3: Selected Positive Samples from Planet Labs Dataset

Figure 4: Selected Negative Samples from Planet Labs Dataset

3.3 Sentinel-1 Radar Data

Sentinel-1 [15] is a constellation of two satellites launched
by the European Space Agency. It collects radar data at a
resolution of 10m / px, and the frequency of coverage is 3
days. The data is freely available via Sentinel Hub. Although
the resolution of the radar data is lower than that of the Planet
Labs optical data, radar data has some salient advantages as
well. First, the data is not obscured by cloud coverage, which
provides increased reliability. Second, radar data can also be
collected at night, which is useful for this application because
illegal gold mining barges can also operate at night.

We use a GeoJSON of the area of interest near Rio
Madeira.

Figure 5: GeoJSON of selected Amazon River region used for
Sentinel-1 radar data.

4 Evaluation
4.1 Radar Approaches
We use a single polarization (VV), which offers high contrast
between the ships and water. We then mask the image using
the GeoJSON shown in Figure 5, which allows us to find
temporal differences between two images only in the river
regions we are interested in, as shown in Figure 6c.

Using the masked radar image from two different dates,
we take a temporal difference between the recent date we are
interested in and a later date. The temporal difference allows
ships and barges in the more recent date to have a higher pixel
value. We deploy a binary threshold in OpenCV to extract
only the pixels with high value where the ships and barges

Figure 2: Overview of our approach.



(a) The full Sentinel-1 image with four bands. (b) Sentinel-1 radar image with a single band
(VV).

(c) Sentinel-1 radar image (VV) with masking
using the GeoJSON of desired locations of the
Amazon River.

Figure 6: The Sentinel-1 data processing pipeline, where we start from a single image band and use a GeoJSON mask to focus only on regions
of interest.

(a) We take a temporal image difference
between the recent time period we are
interested in and an earlier time period.
This gives us higher pixel values where
there are emerging objects of interest in
the recent time period. We then use
a binary threshold to remove extraneous
values.

(b) We use a Gaussian blur along with a
simple blob detector in OpenCV to filter
the objects of interest by area. This allows
us to filter for barges and ships in the river.

(c) After we find the keypoint location and
radius of the blob, we overlay the final
detection point on the initial Sentinel radar
image to verify the location of the ship or
barge.

Figure 7: Temporal difference and filtering steps in the Sentinel-1 pipeline.

(a) False positive found by the spatial-temporal difference method.
This false positive occurred because the GeoJSON does not
completely cut out where the land is, and we occasionally get
spurious detections on land.

(b) The circle in the middle created by the spatial-temporal
difference method correctly identifies a barge. The two circles near
the bottom of the image are spurious detections due to an imperfect
GeoJSON outline of the Amazon river.

Figure 8: False positives found by the Sentinel-1 radar spatial-temporal difference technique. We designed our system to be more lenient
towards false positives and strict towards false negatives, since we will have a person verifying the detection output of our system.



are most likely to be.
We then use a Gaussian blur and blob detector to filter

the detections by area, as shown in Figure 7a. We get the
keypoint location and radius from the blob and draw the
keypoint on the initial radar image, as shown in Figure 7c.

We found that there were no false negatives found in the
time interval of interest, but we saw multiple false positives
due to an imperfect GeoJSON outline of the river. These false
positives can be seen in Figure 8. Since the WWF teams
in Brazil will be verifying the final output of our system,
we designed our system to be more lenient towards false
positives and strict towards false negatives.

4.2 Optical Approaches
In order to work with the small size of our curated dataset,
we compared a transfer learning approach to a from-scratch
training approach, and surprisingly found the from-scratch
training, with certain strategic modifications, to perform
better than the transfer learning approach by up to 6.5%.
In all experiments, we used 5-fold cross-validation on the
Planet Labs curated dataset, with one fold of 60 images
being held out until after model selection in order to estimate
generalization capacity, and the other four folds of 59 images
each being used once as a validation fold for model and
hyperparameter selection.

Although training from-scratch at times outperformed
the transfer learning approach for certain wpos thresholds,
pretraining did improve stabilization of model performance,
as seen in Figure 10. The 6.5% improvement sometimes
exhibited by training from-scratch only accounts for a
difference of 16 more images labeled correctly across the
5-fold cross validation in aggregate. Moreover, as wpos is
increased, we see a more stable and consistent increase in
positive accuracy for the pretrained model.

The average of all four validation accuracies was used
to evaluate hyperparameter and model settings, an approach
which was especially necessary given our small dataset - we
found that single train and validation cycles had extremely
high variance and were very unstable depending on the train
/ val / test split used. In order to simulate an inflation of the
dataset size, training images were augmented with random
horizontal and vertical flips, a random 224x224 crop, and
standard color jitters.

Weighted Cross-Entropy Loss
One of the major techniques we incorporated in order to
adapt models to this domain was weighted cross-entropy
loss. Weighted cross-entropy loss was originally developed
to handle significant class imbalances in datasets,
preventing models from neglecting small classes by
disproportionately penalizing the misclassification of
samples from underrepresented classes during training. In
the binary classification case, weighted cross entropy loss is
parameterized by a single hyperparameter, wpos, indicating
the loss incurred by the misclassification of a positive sample
proportionate to the loss incurred by an equally confident
misclassification of a negative sample. This is expressed as

L(y, p) = −(wposy log(p) + (1− y) log(1− p))

where p is the probability assigned to the positive class by the
model, usually derived through applying the softmax function
over the model’s output vector. Standard cross-entropy loss
is equivalent to the case where wpos = 1; if wpos > 1, we
consider correct classification of positive samples to be more
important than correct classification of negative samples, and
if wpos < 1, the opposite holds true.

Weighted cross-entropy was especially important in our
modeling because of the low penalty incurred by false
positives in the real world application of our research. In
the human-in-the-loop system that we envision, a human user
could easily verify and dismiss tens of false positives in a
matter of seconds, while a false negative would represent
a significant missed opportunity to prevent illegal mining.
While a strong balanced accuracy remained an objective, a
high True Positive Rate (TPR) is more important to human
decision-makers than a high True Negative Rate (TNR), and
so a large part of our experimentation revolved around tuning
the wpos hyperparameter to determine which setting best
matched this goal.

Custom CNN
We first trained a custom CNN architecture on our curated
Planet Lab dataset. With RGB input square images of
3x224x224, the sequential model consisted of a convolutional
block with 3 convolutional kernels of size 32x32, followed
by 7 convolutional blocks of 3 kernels of size 128x128.
The final layer is a fully-connected layer taking the outputs
of the convolutional blocks and outputting a binary label.
We designed this custom CNN to be smaller and more
lightweight, since we anticipated that without pre-training on
MASATI, the taks of learning binary classification of barge
vs. no barge wouldn’t need as deep of a model. In Table 1,
we can see that the custom model achieved moderate 5-fold
validation accuracy with wpos = 1.5.

balanced acc. TPR TNR

Custom, no pre-training 0.73 0.71 0.78
ResNet18, no pre-training 0.83 0.82 0.84
ResNet18, pre-trained 0.77 0.65 0.88

Table 1: Averaged 5-fold cross validation accuracies for custom and
ResNet18 models with no pre-training (wpos = 1.5) and pre-trained
ResNet18 (wpos = 2.0)

.

Hyperparameter Optimization
In Figures 9 & 10, we compare the effects of tuning wpos for
a ResNet-18 initialized randomly and with weights learned
from pre-training on the MASATI dataset. We observe
that tuning wpos has a more significant positive effect on
the randomly initialized than on the pre-trained network.
With standard cross-entropy loss (wpos = 1.0), the transfer
learning approach significantly outperforms the from-scratch
training, with a 75.5% vs. a 67.5% balanced accuracy.
Notably, the from-scratch training with wpos = 1.0 had a
TPR of just 52%, which was equivalent to random guessing,
compared to the 80% achieved by the pre-trained network.



Figure 9: wpos vs. validation accuracy for ResNet-18 from scratch

Figure 10: wpos vs. validation accuracy for ResNet-18 pretrained

Increasing wpos appears to have no effect on balanced
accuracy for the pretrained ResNet18 - as expected, we see
incremental gains in TPR as wpos increases, but in order to
achieve these gains the model makes similarly sized sacrifices
in TNR, so that balanced accuracy is almost unchanged.
On the from-scratch network, however, we observe that the
gains in TPR as wpos increases are significant enough to
outweigh the sacrifice in TNR - in particular, the TPR jumps
by over 40% when wpos is tuned from 1.0 to 1.25. We chose
wpos = 1.5 on the from-scratch model, which trained to 84%
validation TPR and 82% validation TNR as our final setting,
retrain over all four train/validation folds, and test on the
holdout fold to estimate generalization capacity. The testing
yielded a TPR of 100% and a TNR of 80%, an impressive and
surprising result which suggests that this particular testing
fold contained an especially ‘easy’ set of samples.

4.3 Proposed Integration of Radar and Optical
Approaches

In practice, we propose to integrate the temporal differencing
and deep learning models by regularly checking the Planet
Labs API for cloud-free images over our AOI. After running
the images through our optical machine learning pipeline
and identifying candidate tiles containing small watercraft,
we can then use the georeferencing of the tile to determine
whether the craft was located within the Protected Areas
designated by the Brazilian government and the government
of Rondônia. Finally, we would utilize our temporal
differencing radar approach to verify the presence of the
barge, guarding against the high false positive rate, and

determine the length of time that it has been stationary.
Optically identified barges that were pictured in a Protected
Area and were shown to be stationary over a period of
multiple days would then be flagged to partners at the World
Wildlife Fund and within indigenous groups for in-person
intervention. For real-world usage by the WWF researchers
and local police, these tools will be built into a mobile app,
since that is the most common and accessible option.

5 Ethics & Broader Impact
With the creation of new technology tools, it is also
important to consider the ethics and broader impact of
using the technology. First, we would want to ensure that
the local governments are using the tools as we intended.
Misuse in general can be mitigated through user training
when onboarding to the platform. For concerns regarding
surveillance, a geofence can be set in the app to only reveal
satellite imagery in the relevant river areas and protected
regions. In addition, the satellite imagery itself, having a
maximum resolution of 3m / px, is not sufficiently high
resolution to pose a threat to individual privacy. Another
ethical concern is how it will affect the livelihood of the
gold miners. Families with small children live and work
on these barges and depend on gold mining for income.
The disruption of their lives is a relevant social cost that
should be considered as this technology is further refined and
deployed. Some of the broader impacts of this project include
a positive environmental impact. Less illegal gold mining in
the Amazon River will translate into better ecosystem health
and less mercury contamination for wildlife. Notably, since
humans consume fish from the Amazon river, successful
reduction of illegal gold mining would ultimately improve
human health.

6 Conclusions and Future Work
Through this research, we have made two primary
contributions. The first is that we have created a novel dataset
for barge detection in rivers. The task is distinctly more
challenging than previous work done on ship detection due
to constraints including low resolution and small size of the
barges. In addition, ambiguity in detection arises if barges
are close to the shore, and if other visual artifacts are present.
The second primary contribution is proving the feasibility of
using computer vision techniques and convolutional neural
networks to successfully detect barges with a sufficiently high
level of accuracy for field use.

In the future, this model could be improved through
training on a larger dataset. Other techniques such as
constrative learning or few-shot detection may increase
accuracy with limited datasets. Work is also greatly needed in
addressing similar illegal sand and gravel mining around the
world. We would like to see more research conducted with
local experts as a human in the loop in these AI detection
systems.
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[4] M. Tello, C. López-Martı́nez, and J. J. Mallorqui, “A
novel algorithm for ship detection in sar imagery based
on the wavelet transform,” IEEE Geoscience and remote
sensing letters, vol. 2, no. 2, pp. 201–205, 2005.

[5] M. Ma, J. Chen, W. Liu, and W. Yang, “Ship
classification and detection based on cnn using gf-3 sar
images,” Remote Sensing, vol. 10, no. 12, p. 2043, 2018.

[6] M. Kang, X. Leng, Z. Lin, and K. Ji, “A modified faster
r-cnn based on cfar algorithm for sar ship detection,” in
2017 International Workshop on Remote Sensing with
Intelligent Processing (RSIP). IEEE, 2017, pp. 1–4.

[7] Y.-L. Chang, A. Anagaw, L. Chang, Y. C. Wang, C.-Y.
Hsiao, and W.-H. Lee, “Ship detection based on yolov2
for sar imagery,” Remote Sensing, vol. 11, no. 7, p. 786,
2019.

[8] S. Li, Z. Zhou, B. Wang, and F. Wu, “A novel inshore
ship detection via ship head classification and body
boundary determination,” IEEE geoscience and remote
sensing letters, vol. 13, no. 12, pp. 1920–1924, 2016.

[9] F. Yang, Q. Xu, and B. Li, “Ship detection from optical
satellite images based on saliency segmentation and
structure-lbp feature,” IEEE Geoscience and Remote
Sensing Letters, vol. 14, no. 5, pp. 602–606, 2017.

[10] S. Zhang, R. Wu, K. Xu, J. Wang, and W. Sun,
“R-cnn-based ship detection from high resolution
remote sensing imagery,” Remote Sensing, vol. 11,
no. 6, p. 631, 2019.

[11] D. O. Fuller, “Tropical forest monitoring and
remote sensing: A new era of transparency in
forest governance?” Singapore Journal of Tropical
Geography, vol. 27, no. 1, pp. 15–29, 2006.

[12] M. A. Ashraf, M. J. Maah, I. Yusoff, A. Wajid,
and K. Mahmood, “Sand mining effects, causes and
concerns: A case study from bestari jaya, selangor,
peninsular malaysia,” Scientific Research and Essays,
vol. 6, no. 6, pp. 1216–1231, 2011.

[13] P. Team, “Planet Application Program Interface: In
Space for Life on Earth,” Planet, 2017–. [Online].
Available: https://api.planet.com

[14] A. P. Antonio-Javier Gallego and P. Gil, “Automatic
ship classification from optical aerial images with
convolutional neural networks,” Remote Sensing,
vol. 10, no. 4, 2018.

[15] “Modified Copernicus Sentinel data/Sentinel Hub,”
European Space Agency, 2021. [Online]. Available:
https://www.sentinel-hub.com/

https://doi.org/10.1371/journal.pone.0018875
https://doi.org/10.1371/journal.pone.0018875
https://github.com/sayakmaity/planet-data-288
https://api.planet.com
https://www.sentinel-hub.com/

	Introduction
	Related Work
	Data & Challenges
	Planet Labs Optical Data
	MASATI Pre-Training Data
	Sentinel-1 Radar Data

	Evaluation
	Radar Approaches
	Optical Approaches
	Weighted Cross-Entropy Loss
	Custom CNN
	Hyperparameter Optimization

	Proposed Integration of Radar and Optical Approaches

	Ethics & Broader Impact
	Conclusions and Future Work
	Acknowledgements

