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Abstract
The negative externalities of large-scale forest fires
were shown to outweigh the benefits of natural
forest fires leading to worsened air quality, ero-
sion, landslides and increased risk of respiratory
and cardiovascular diseases. For decades the is-
land of Madagascar has been struggling to manage
its forest fires while receiving little attention from
the international research community. The current
fire management resources and prediction models
are based on domain-specific, hand-crafted features
which require a separate installment of sensors and
adjustment to country-specific needs. These can
turn out to be very costly and hard to adapt for
the country. Our approach aims to create a cost-
efficient, AI-driven approach for predicting forest
fires in Madagascar a month in advance. We use
existing open-source data from Google Earth En-
gine to train a neural network for fire detection. Our
final model achieves 78% balanced accuracy and
83% fire detection accuracy (recall) outperforming
our baseline model.1

1 Introduction
The increasing research on forest fires and its externalities
in the past decade elicited their hazardous impact on human
health and environment. Even though the fires are a natural
phenomenon and are often beneficial for the vegetation pur-
poses, it is shown that the secondary effects of the forest fires
such as erosion, landslides, introduction of invasive species,
and changes in water quality are more harmful than the fire it-
self [?]. Additionally, the smoke and other pollutants worsen
the air quality, increasing the risk of respiratory and cardio-
vascular diseases [Liu et al., 2015]. These negative externali-
ties of forest fires arouse a serious concern for thoughtful fire
management, posing a challenge for researchers and policy
makers.

Over centuries Madagascar has been affected by wildfires
and agricultural fires, dealing with substantial issues concern-
ing fire management in the country. In 2015, NASA pub-

1Our code is publicly available at https://github.com/al5250/
mdg-fire.

lished a report stating that “the island of Madagascar is on
fire”. In 2019, the Malagasy government called on the inter-
national community to aid its fire-fighting efforts as the pro-
tected forest lands were burning. Despite all the fire events
and the obvious need for research and policy aid, Madagas-
car, unfortunately, has not received enough attention from AI
researchers. Focusing on Madagascar, we aim to bridge this
gap and contribute to the country in need.

The existing fire detection resources such as the ones pro-
vided by Global Forest Watch (GFW) do not allow enough
time for preparation and management [Pro et al., 2014]. The
GFW’s interactive Fire Map allows one to track the fires in
real time as well as access the dates and locations of the pre-
vious fires, but does not have a prediction feature. On the
other hand, the predominant prediction approaches like the
Canadian Forest Fire Danger Rating System are modeling-
based and dependent on country-specific features [Wotton,
2009]. The lack of flexibility is a major drawback of these
systems since they deploy country and climate-specific hand-
crafted features. To make it suitable for Madagascar the sys-
tem would require a separate installment process of various
sensors which is very inefficient in terms of monetary cost
and time.

This paper utilizes state-of-the-art machine learning mod-
els combined with Google Earth Engine’s imagery for cre-
ating a cost-effective flexible prediction algorithm for fires
specifically in Madagascar. The training dataset is taken from
Landsat 7 satellite and is further preprocessed to be in the
form of histogram bins. It is important to note that the im-
agery is filtered according to a polygon bounding the en-
tirety of forestland on Madagascar’s east coast, hence, nar-
rowing down our predictions to areas most susceptible to for-
est fire. To be more precise with the predictions, we further
divided the polygon into small rectangular regions and con-
sidered them as our units for location. The response variable
is matched from the Fire Information for Resource Manage-
ment System (FIRMS) database, which has an archive of all
the fire events starting from 2012. Since our goal is to make a
prediction model which will allow some time for fire manage-
ment efforts, the events were matched with satellite imagery
with a 5-weeks lag. We train a neural network that performs
binary classification task for identifying the fire events for
each rectangular region a month in advance. The final model
achieves 78% balanced and 83% fire prediction accuracy, ex-

https://github.com/al5250/mdg-fire
https://github.com/al5250/mdg-fire


ceeding the results of a baseline model. Balanced accuracy is
chosen as a main metric of evaluation because of the existing
class imbalance in the data. Our approach is the first to pre-
dict the fires in Madagascar one month in advance, potentially
allowing time for fire management efforts.

2 Related Work
Fire prediction is not a new idea and it has extensively been
researched in the past. The majority of existing fire prediction
approaches such as Nepstad et al. [1998] are feature-based,
heavily rely on domain knowledge, and do not utilize mod-
ern AI tools. Despite early fire prediction systems, models
like the one described by Cheney et al. [1998] try to predict
the spread of the fire based on wind speed and other environ-
mental indicators, and contribute with alternative ways to fire
management efforts. The system currently in use for fire man-
agement in Canada, New Zealand and some European Union
countries is a variation of Canadian Forest Fire Danger Rat-
ing System (CFFDRS). Canadian Forest Fire Danger Rating
system’s inputs are human or lightning-made risks, weather,
topography and fuels, and the outputs are digit rankings of
the fire risk [Wotton, 2009]. While it is very important to
create models relying on domain expertise, these models are
difficult and costly to adapt and, hence, lack practicality.

Alonso-Betanzos et al. [2003] is one of the earliest works
to apply machine learning for fire prediction. The authors
predict 4 risk categories using neural networks and achieve
78% raw accuracy. There are other papers which deploy
neural networks in the domain of fire management, however,
they either use environmental variables similar to the earlier
model-based approaches or do not use them for fire prediction
specifically. No AI-driven fire prediction models have been
made for Madagascar. Our main inspiration is taken from
Yang et al. [2021], who use remote sensing data combined
with neural networks for predicting fires in Indonesia. The
choice of using remote sensing data makes the approach very
flexible and low-cost since the satellite imagery data is open-
sourced and available for anyone to use. Our model attempts
to synthesize previous wisdom from the domain-based and
AI-driven approaches to create a new prediction algorithm
for Madagascar.

3 Data
3.1 Landsat 7 Satellite Images
Landsat 7 (U.S. Geological Survey 2019) is part of the Land-
sat program under NASA and U.S. Geological Survey and
has an orbit period of 16 days. Satellite images from Land-
sat 7 obtained through Google Earth Engine are used as the
input source for our hotspot prediction model2. In order to
obtain these images, a grid was created along the east coast
of Madagascar to obtain 8 km × 8 km images of areas along
this region over a one-year span. Using Google Earth Engine,
a grid with 2054 areas measuring 8 km by 8 km was gener-
ated (Figure 1). We attempt to predict fires for each square in
this grid corresponding to a distinct place p in Madagascar.

2https://developers.google.com/earth-engine/datasets/catalog/
landsat-7

Figure 1: Google Earth Engine 8 km by 8 km grid along the east
coast of Madagascar.

Enhanced Thematic Mapper Plus (ETM+), the imaging in-
strument on Landsat 7 satellite, produces imagery of Earth
as eight spectral bands. Following prior work, we found that
seven out of the eight bands are sampled to 30m in the Land-
sat 7 data available on Google Earth Engine, so we focus on
the resolution on these bands [Yang et al., 2021].

From the satellite imagery, we are able to generate 32-bin
histograms of pixel values for each of the seven bands. As a
result, we were able to collect satellite images corresponding
to one years’ worth of data, convert each image to seven his-
tograms of 32 bins, and pair this data with the Fire Informa-
tion on Resource Management System (FIRMS) data in order
to predict “yes” or “no” for fire in a 8 km by 8 km region in
Madagascar in one months’ time.

The data preprocessing was a highly non-trivial part of this
work and we open-source all of our preprocessing code to
drive future research in this area.

3.2 Fire Information on Resource Management
System (FIRMS) data

In order to train our model, we needed to provide ground truth
labels for training and evaluating our predictions. The FIRMS
dataset is provided by NASA and used by several fire predic-
tion systems3. We used the Fire Information on Resource
Management System (FIRMS) archive and preprocessed the
data beginning from 2014 in order to predict the fire events
roughly a month in advance. In order to do this, the data
was matched with the Landsat 7 satellite image dataset with
a 5-week lag for each 8 km by 8 km region. Moreover, we al-
lowed a week-long period for the fire event to happen. Due to

3https://earthdata.nasa.gov/earth-observation-data/
near-real-time/firms
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the fact that the response variable (existence of the fire event
in each 8 km by 8 km region) in the final dataset is very unbal-
anced, we introduced “fire weight” in our prediction model to
account for this imbalance.

4 Fire Prediction Method
4.1 Task Definition
From our data, we construct training and testing datasets of
place-time pairs (p, t). For each place time pair, we create a
three-dimensional feature tensor x ∈ RT×C×B based on our
pre-processing of Landsat 7 satellite imagery, as described in
Section 3. Here, T is the number of historical time points
before t, C is the number of image bands, and B is the num-
ber of histogram bins. The Landsat 7 satellite has an orbit
of 16 days; gathering approximately a years’ worth of image
data for each training example leads to T = 368/16 = 23
time points. The satellite collects C = 7 bands correspond-
ing to different parts of the electromagnetic spectrum. Fol-
lowing prior work, we set the number of histogram bins to
B = 32 [Yang et al., 2021]. Thus, the total number of fea-
tures per training example isD = 23·7·32 = 5152. The label
y ∈ {0, 1} indicating either “fire” (y = 1) or “no fire” (y = 0)
at time t+5 weeks in location p is obtained from the FIRMS
dataset. The goal is to train a classifier f : RT×C×B → [0, 1]
such that f(x) gives us an accurate probability of a fire break-
ing out (i.e. f(x) ≈ y).

For our training set, we use data corresponding to all places
p and all times t between 2015 and 2018, which gives us a to-
tal of Ntrain = 158,102 (p, t)-pairs. For our testing set, we
use data corresponding to all places p and all times t in the
year 2019, which gives us a total of Ntest = 41,575 (p, t)-
pairs. Note that this is in contrast to Yang et al. [2021], who
only evaluate their models on specific months. Evaluating on
a full year gives us a more complete picture of model per-
formance by summarizing across the seasonal variations of
different months.

4.2 Models
We train two classifiers – a logistic regression baseline fLR
and a neural network (“AI system”) fNN to tackle the fire clas-
sification task.

Logistic Regression
The logistic regression classifier learns a feature weight w ∈
RD and bias b ∈ R such that the prediction for a flattened
input x ∈ RD is

fLR(x) = σ(w>x+ b), (1)

where σ(z) = 1/(1 + exp(−z)) is the sigmoid function.

Neural Network
We design the architecture of fNN following prior work [Yang
et al., 2021]. Given x, we first apply a 2D convolutional
layer [LeCun et al., 1995] to integrate data across the im-
age bands and pixel bins dimensions for each time point. We
use H = 64 filters of size 3 × 3 and 2D max pooling to
summarize across each filter. Then, to integrate data across
the time dimension, we feed the (T ×H)-dimensional output
to a one-layer long short-term memory (LSTM) [Hochreiter

and Schmidhuber, 1997] with hidden dimension H . We ap-
ply dropout [Srivastava et al., 2014] with rate 0.1 to the H-
dimensional representation at the last time point and feed it
through three fully connected layers with output sizes 256,
32, 1 and rectified linear unit (ReLU) activations. The final
output is passed through the sigmoid function σ(·) to obtain
a predicted probability.

In comparison to logistic regression, we hope that the neu-
ral network can better synthesize spatial and temporal infor-
mation due to the inductive biases of its compositional layers.
Furthermore, the neural network should be able to learn more
complicated and highly non-linear decision boundaries that
the logistic regression baseline cannot represent.

Training
For fairness of comparison, we keep all training details (other
than the aforementioned model architectures) the same for
these two classifiers. Given a training example (x, y), we use
the binary cross entropy loss function as our training objec-
tive, a standard choice in classification problems [Murphy,
2012]:

`f (x, y) = y log f(x) + (1− y) log(1− f(x)). (2)

To optimize Equation (2) for over all training examples,
we use mini-batch gradient descent with batch size 256 for
20 epochs. We employ the Adam optimizer [Kingma and Ba,
2014] with learning rate 0.001 and default hyperparameter
settings.

Due to class imbalance in the FIRMS dataset (i.e. “fires”
are much less common than “no fires”), we oversample the
“fire” events by factor P during training. More specfically,
when adding an example to the mini-batch, we uniformly se-
lect a random “fire” event with probability P/(P + 1) and
uniformly select a random “no fire” event with probability
1/(P + 1).

Our models are implemented in PyTorch [Paszke et al.,
2019] and trained on a Nvidia T4 Tensor Core GPU. We uti-
lize the FastAI library [Howard and Gugger, 2020] for model
training, Hydra [Yadan, 2019] for hyperparameter manage-
ment, and TensorBoard [Girija, 2016] for visualization. We
open-source all of our code to help facilitate future research.

4.3 Evaluation
After training, we can obtain a binary prediction ŷ ∈ {0, 1}
for each example x on the testing set by letting

ŷ =

{
0, f(x) < 0.5,

1, f(x) ≥ 0.5.
(3)

Due to class imbalance, it would be inappropriate to utilize
accuracy as the main metric to evaluate our models. Indeed,
since the “no fire” event occurs 90% of the time, a trivial
classifier that always predicts “no fire” obtains 90% accuracy
despite being terrible at fire detection. Instead, we choose to
focus on balanced accuracy, a popular choice for imbalanced
binary prediction tasks. This metric is defined as

1

2
·
∑Ntest

i=1 I[ŷi = yi = 1]∑Ntest
i=1 I[yi = 1]

+
1

2
·
∑Ntest

i=1 I[ŷi = yi = 0]∑Ntest
i=1 I[yi = 0]

, (4)



Figure 2: Balanced accuracy (left) and class accuracies (right) as functions of different ”fire” class weights.

Table 1: Evaluated metrics on the testing set of the Madagascar fire prediction task, along with model training time.

Model Balanced Acc “Fire” Acc (Recall) “No Fire” Acc Precision Training Time
Logistic Regression 74.91% 76.15% 73.67% 32.15% 14.1 min
Neural Network 78.73% 83.37% 74.09% 32.47% 21.1 min

where the notation I[e] denotes 1 if event e is true and 0 oth-
erwise. Intuitively, balanced accuracy is the average over the
accuracy for each class. The aforementioned trivial classifier
would obtain a low score of 50% on balanced accuracy, in-
dicating that this metric is a much better way to evaluate our
problem.

5 Results
We found that for both models, balanced accuracy is opti-
mized at oversampling factor P = 6. Table 1 provides the
main results comparing the performances of fLR and fNN on
the testing set. In addition to balanced accuracy, we also pro-
vide other common metrics, such as precision and recall. In
terms of the precision-recall tradeoff, our models typically
have much higher recall than precision. This phenomenon is
preferable for our application, because a false negative (i.e.
failing to detect a true fire) is much worse than a false posi-
tive (i.e. triggering a false warning when no fire will actually
occur).

From Table 1, we see that the neural network outperforms
the logistic regression baseline on all reported metrics. In
terms of balanced accuracy, the gap in model performance
is almost 4%. Furthermore, in terms of fire detection accu-
racy (also known as recall), the neural network outperforms
the baseline by over 7%. Thus, there seems to be a notable
performance advantage in using the more complex model. In
addition, the neural network only requires 1.5× more time to
train on our GPU.

Figure 2 presents the effect of changing the “fire” oversam-
pling factor P on balanced accuracy for fNN. As shown in
Equation (4), balanced accuracy is comprised of two compo-

nents – accuracy on the “fire” class and accuracy on the “no
fire” class. As P increases, accuracy on the “fire” class in-
creases, since these examples are sampled more during train-
ing. On the other hand, as P increases, accuracy on the “no
fire” class decreases since these examples are sampled less.
Balanced accuracy – which assumes a 50%-50% weighting
between the class accuracies – is optimized at P = 6. How-
ever, depending on the needs of a particular application, P
may be tuned to find the best tradeoff between accuracy at
fire detection and not having too many false alarms.

6 Conclusion
This work aims to use machine learning models to predict for-
est fires a month in advance along the east coast of Madagas-
car, a country that has dealt with substantial issues regarding
the management of wildfires and agriculture fires. Using state
of the art machine learning models, Landsat 7 satellite im-
agery via Google Earth Engine, and FIRMS data, we showed
that our neural network model achieved a balance accuracy
of 78% and a fire-detection accuracy of 83%.

Future work and improvements can be made on this project
by incorporating soil moisture data as features within our
model to build a more robust neural network that could bet-
ter predict fires. Additionally, many wildfires in Madagascar
are manmade for agricultural purposes, so it would be use-
ful to incorporate human activity data to predict when these
agricultural fires may occur.

7 Broader Impact
There are several benefits to continuing further research on
our work aimed to predict forest fires in Madagascar. As



stated in Section 1, harmful effects such as erosion, land-
slides, introduction of invasive species, changes in water
quality, and decreased air quality which increases the risk
of respiratory and cardiovascular diseases are several reasons
why policy makers should be well-equipped to manage forest
fires [Threat, 2006; Woo et al., 2020].

However, we must be aware that there are also economic
and agricultural benefits to fires in the region, and that peo-
ple in Madagascar may want fires to occur to increase their
own prosperity. As a result, a model predicting forest fires
with the intent of decreasing the amount of fires that occur
in the future could negatively impact communities that rely
on agricultural fires for economic and social gain, and could
potentially harm impoverished communities. Therefore, this
model must be used responsibly by AI researchers and policy
makers alike in order to find the appropriate balance between
managing negative environmental, social, and health effects
and allowing agriculturalists to continue to reap the benefits
of fires in regards to vegetation purposes.
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