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Abstract
The illegal poaching of wildlife is a pressing con-
servation issue, driving the loss of biodiversity
worldwide. To aid resource-constrained rangers on
their search for vicious snares across expansive na-
tional parks, machine learning can be harnessed to
predict the poaching hot-spots in a given protected
area. However, beyond predictions on the relative
risk of poaching activity in different areas of a park,
rangers ultimately need guidance on selecting the
best areas to patrol to maximize the number of an-
imal traps they find en route given a budget con-
strained by limited patrolling resources. Tradition-
ally, such a feat can be achieved through a two-
stage approach, where a machine learning model
is first trained to render predictions that are opti-
mized upon thereafter. In this paper we introduce
the the notion of combining the learning and com-
binatorial optimization process through a decision-
focused learning approach for anti-poaching pa-
trols. We find that we enhance the decision quality,
as evidenced by an increase in the expected number
of snares found by the targets we select for patrol
using decision-focused learning compared to a two-
stage approach. Thus, we improve the chances that
rangers actually encounter snares in the target areas
selected through our approach, preventing the loss
of wildlife and biodiversity.

1 Introduction
Over past decades, illegal poaching of wildlife in protected
areas has driven species to endangerment, accelerating the
loss of biodiversity globally, with repercussions to life on
Earth as grave as climate change at large [Pires and Moreto,
2016].

To combat illegal wildlife poaching, rangers are sent to
patrol expansive national parks of thousands of kilometers
squared and remove snares (Fig. 1). However, there are sim-
ply not enough patrol rangers to cover all areas of the park. To
guide rangers to the most important areas to patrol, the Pro-
tection Assistant for Wildlife Security (PAWS) uses machine
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Figure 1: Rangers patrolling expansive areas in Queen Elizabeth
National Park and removing snares. Photo courtesy of Futurity and
Wildlife Conservation Network.

learning to predict the risk of poaching in different areas of
the park based on geospatial and temporal features as well as
historical patrol data [Xu et al., 2020]. The system has been
deployed to the SMART consortium (Spatial Monitoring and
Reporting Tool), used by rangers on the ground in hundreds
of national parks.

Figure 2: Risk map pro-
vided to rangers at Queen
Elizabeth National Park in
Uganda.

PAWS currently provides
a risk map to rangers based
on predictions made using
a standard machine learn-
ing model, such as random
forests and Gaussian processes
(Fig. 2). The next step to
helping rangers make sense
of the predictions would be to
include optimization to guide
rangers to specific areas that
would maximize the number
of animal traps they find based
on the predictions.

A natural way to optimize
upon predictions is a traditional
two-stage learning and opti-
mization approach, where the
machine learning model outputs predictions that are sent into
the optimization algorithm, which selects the best targets
to patrol given a budget constraint on patrolling resources.
However, such an approach prioritizes achieving high predic-
tive accuracy by minimizing loss during the training stage.

Instead, we propose a decision-focused learning approach
that integrates the learning and optimization stages in a way



Figure 3: Comparison of two-stage and decision-focused pipelines.

that prioritizes the ultimate goal of the task at hand: to max-
imize the number of snares found through the patrol strategy
our model prescribes (Fig. 3). In doing so, we find that, for
every instance of 10 target cells, we increase the number of
snares that rangers find by 0.021 in expectation given a bud-
get of 3 out of the 10 target cells to patrol, compared to a
traditional two-stage learning and optimization approach.

With our decision-focused model, we increase the chances
that rangers actually find snares to remove in the cells we pre-
scribe for them to patrol, with great potential for expediting
anti-poaching efforts and slowing the loss of biodiversity.

2 Related Work
One of the major technical challenges of decision-focused
learning is its reliance on computationally intensive differ-
entiation over the decision space.

[Amos and Kolter, 2019] propose a differentiable opti-
mization network architecture within a larger neural network
structure that benefits from fast GPU computation. While the
authors exemplify their approach through a 4×4 Sudoku grid,
this form of optimization is inherently different from using
such a technique on real-world data.

[Donti et al., 2019] introduces the notion of training mod-
els to capture the ultimate task-based objective for which they
will be used. However, these authors only consider synthetic
domains such as the classic inventory stock problem. More-
over, their techniques are applied to stochastic programming,
which is not the setting we consider in this paper.

[Wilder et al., 2018] introduces integrating combinatorial
optimization into the predictive process, which is the setting
we consider as we aim to optimize for the top k targets over
a discrete set of targets given a budget k. However, [Wilder
et al., 2018] demonstrates its efficacy only over synthetic do-
mains such as budget allocation of synthetic ad data.

In sum, little is known regarding the robustness of how
decision-focused learning fares in real-world applications
such as anti-poaching patrols, where data is incredibly class-
imbalanced and incomplete.

3 Methods
3.1 Data Preprocessing
We use data from Queen Elizabeth National Park in Uganda
from 2010 to 2016. Given a boundary of the park, we dis-
cretize the park region into 1 × 1 km cells. We similiarly
discretize all geospatial and temporal features from the park
into 1× 1 km cells.

(a) Shapefiles of roads and
boundary of the park

(b) Processed roads feature: dis-
tance from cell to road

(c) Raw satellite imagery from
GEE for NPP

(d) Processed NPP feature

Figure 4: We preprocess shapefiles for features such as roads (a) by
computing the distance from each cell to the nearest road (b), as we
believe distance to roads is predictive of poaching activity. We pre-
process raster satellite imagery from GEE (c) such as net primary
product (NPP) by interpolating the raster values to match our reso-
lution size of 1× 1 km cells (d).

Some geospatial features such as road shapefiles and an-
imal density TIF files come from the park managers them-
selves. Other geospatial features like landcover, elevation,
and rivers as well as dynamic temporal data such as temper-
ture and net primary product were automatically extracted
from Google Earth Engine (GEE) remote sensing imagery
[Guo et al., 2020]. An example of preprocessing such data
is shown in Fig. 4.

We also use historical patrol data given by the park man-
ager that includes patrol waypoints including the time and lo-
cation a cell was patrolled, and a binary indication of whether
illegal poaching activity was found in the cell.

3.2 Problem Setup
The combinatorial optimization problem we seek to solve is
of the form maxz∈Z f(z, θ), where z is our decision variable,
a binary vector of length n, and Z ⊆ {0, 1}n, where Z is a
discrete set of possible decisions. f is our objective, which
depends on the unknown parameter θ ∈ Θ, which is learned
from the data.

For each training instance, we predict θ̂ from the fea-
ture vector x ∈ X . Then we solve the optimization prob-
lem maxz f(z, θ̂) to obtain the decision z∗. We thus de-
fine z∗(θ) = arg maxz∈Z f(z, θ̂). We seek to find a model
m : X → Θ that maximizes

E [f(z∗(m(x)), θ)]

The traditional two-stage approach to first to this problem



is to first train the model on a loss function, and to then use the
trained model on optimization. However, such an approach
prioritizes prediction accuracy rather than the decision task.
Therefore, by combining the learning and optimization pro-
cess, we train the model to actually make good decisions.

3.3 Combining Training and Optimization
We aim to integrate combinatorial optimization with the train-
ing process. We do so by directly training the model on
the objective E [f(z∗(m(x)), θ)]. Doing so is difficult as
the differentiation involves the z∗(m(x)) term. In particu-
lar, two major challenges entail dealing with the nondifferen-
tiability of the discrete z∗ as well as differentiating through
the argmax operation. Thus, we impose a continuous relax-
ation on the combinatorial optimization task, as [Wilder et
al., 2018] showed we can analytically obtain derivatives of
the continuous optimizer with respect to the model’s param-
eters. This allows us to train our model using a continuous
form of the objective, and approximate the solution to the
discrete problem by rounding the continuous points.

3.4 Continuous relaxation
We relax our constraint z ∈ Z to a continuous one: z ∈
conv(Z), with conv denoting the convex hull. When training
our model, we compute gradients for the objective given by
E [f(z∗(m(x)), θ)], with z∗ replaced by its continuous coun-
terpart. For a given training example, we derive the stochastic
gradient estimate with respect to the model’s parameters w as

df(z(θ̂), θ)

dw
=
df(z(θ̂), θ)

dz(θ̂)

dz(θ̂)

dθ̂

dθ̂

dw

The first and third term are straightforward to compute; the
challenge lies in computing the middle term, which tells us
how the decision changes with respect to the model’s predic-
tions θ̂.

We solve this combinatorial optimization problem by using
such a continuous relaxation and differentiating over the KKT
conditions to solve for z(θ) = arg maxz∈conv(Z) f(z, θ̂), the
optimal solution for the continuous problem.

3.5 Experiments
After we preprocess the QENP data, we have 24,320 1 × 1
km target cells. We divide 24,320 cells into instances of 10
cells such that we have 2,432 park instances. The size of each
park instance is 10× 51, covering 10 consecutive target cells
with 34 geospatial features including elevation, temperature,
roads, rivers, and 51 total features after one-hot encoding cat-
egorical features such as drainage direction and land cover
classification. We used an 80-20 split for train and test.

Given budget k, we select the top k targets out of 10 targets
for each park instance. Using the decision-focused learning
approach, we differentiate with respect to the decision i.e. the
combinatorial selection of k targets for a given park instance.

We run experiments for the decision-focused model, the
traditional two stage model where training and optimization
are separate, the optimal selection of top k targets based on
the ground truth data, and a random selection of the top k
targets for each park instance.

Table 1: Decision quality

k = 3 k = 5

Decision-Focused 0.367 ± 0.018 0.607 ± 0.029
Two-Stage 0.345 ± 0.011 0.586 ± 0.015

Optimal 1.090 ± 0.014 1.140 ± 0.020
Random 0.360 ± 0.007 0.574 ± 0.011

Table 2: Prediction performance (MSE)

k = 3 k = 5

Decision-Focused 1422.10 1359.55
Two-Stage 0.125 0.112

For our model m, we used a neural network architecture
in both the decision-focused learning and two-stage learning
approach with 2 fully connected layers, 40 hidden layers, and
a ReLU activation.

For each model, we averaged the results over 4 runs. While
we ideally would like to run on more runs to average over, the
decision-focused approach turned out to be computationally
expensive for differentiation over the argmax. The decision-
focused model was trained over 40 iterations.

We tested different budget sizes k = 3 and k = 5 for park
instances of 10 target cells. While we tried experimenting
with larger park instances as well (and thus proportionally
larger budget sizes) such as 25 target cells, computing the
derivatives over the argmax with the continuous relaxation
again proved computationally challenging.

4 Results
We assess performance by comparing the average number of
cells, out of the top k cells that we select for patrolling, that
actually have snares.

Table 1 presents the average decision qualilty over four
runs reported with the standard error of the mean. As seen
in the results for the decision quality of our models in Table
1, our decision-focused model yields a better decision qual-
ity than the traditional two stage approach for both budgets
k = 3 and k = 5. In particular, 0.021 more cells are found to
have poaching using decision-focused learning compared to
two-stage learning in expectation for budget of 3, and 0.022
more cells are found to have poaching using decision-focused
learning compared to two-stage learning in expectation for
budget of 5.

While this improvement may seem small, this is actually a
drastic improvement considering the severe class imbalance
in our ground truth poaching activity data, where we deal
with only 10% of the data with positive instances. Indeed,
we see that on average, Optimal selects finds 1.09 out of the
top 3 cells chosen to patrol, suggesting that only around 1
of the 10 target cells have illegal activity in them on aver-
age. Moreover, increasing the budget by patrolling 2 addi-
tional cells only increases the number of snares that Optimal
finds by 0.05, reinforcing the fact that a 0.055 increase in the
number of snares found is a substantial result.



(a) Decision-Focused Predic-
tions

(b) Two-Stage Predictions

Figure 5: Comparison of predictions made by the decision-focused
model vs. the two-stage model on a single park instance of 9 target
cells in a 3× 3 km area.

While decision-focused learning performs better than Ran-
dom, as expected, it is interesting to note that Random per-
forms pretty well, surpassing Two-Stage for k = 3, consid-
ering that it randomly selects the top k cells to patrol. We
believe this phenomenon can be attributed to the fact that we
are dealing with small park instances of size 10, a small bud-
get of 3, and an incredibly class-imbalanced dataset, all of
which combine to make it so that, by random chance alone,
it is possible to select a decent set of cells that happen to en-
capsulate the one or two illegal activity instances for a given
park instance.

As we see in Table 2, the mean squared errors (MSEs) are
large for the decision-focused model as the optimizer does
not consider MSE when trying to improve decision quality.
MSE is not something we are concerned about in our evalu-
ation, as our goal is to maximize our decision quality rather
than MSE loss. However, we display them here to illustrate
the phenomenon that decision-focused learning improves de-
cision quality despite having lower prediction accuracy.

Note that the two plots in Fig. 5 are on different scales
as we do not place constraints on the predictions for the
decision-focused model; therefore, the relative values can be
compared between the two plots. Meanwhile, the two-stage
predictions are constrained between 0 and 1 as they represent
the probability of finding a snare in a target cell.

Observe also that the decision-focused model generates
richer predictions through the broad range of colors, and thus
values, represented. On the other hand, the predictions from
the two-stage model seem to all hover around a 0.2 probabil-
ity of poaching. Moreover, five cells in the two-stage model
were predicted to have zero probability of poaching, in com-
parison to two cells in the decision-focused model that were
predicted to have zero probability of poaching, suggesting
that the decision-focused model’s predictions are more infor-
mative. Finally, we note the difference between the location
of the cells found to have higher risk of poaching in the two
models. For example, the bottom-middle cell in the decision-
focused plot is predicted to have higher risk of poaching than
the cell in the top-right corner, while the bottom-middle cell
in the two-stage plot is predicted to have much lower proba-
bility of poaching than the cell in the top-right corner.

It is not immediately clear which plot’s predictions are

more accurate, though we can wager that the two-stage pre-
dictiions, while less varying in its prediction values, are more
accurate to the ground truth considering its exceptionally
small MSE. This will make for interesting future explorations
as we seek to understand why the predictions between the
two models differ in this spatial manner. Perhaps using con-
volutional neural networks will make good use of the spa-
tial patterns available in our data to further enrich our predic-
tions and make for closer comparisons between the decision-
focused model and two-stage model. Such investigations
can help us better understand how decision-focused learning
makes its predictions, and why decision-focused learning per-
forms better than the traditional two-stage model.

5 Conclusion
In this paper, we introduced a decision-focused approach in
the detection of poaching activity. We find that decision-
focused learning leads to a better decision quality than tradi-
tional two-stage training for maximizing the number of snares
found during anti-poaching patrols. That is, a larger fraction
of the top k targets selected by the decision-focused model
actually has poaching activity in expectation, and yielding a
higher reward than two-stage training. Using our decision-
focused approach, rangers are more likely to find snares in the
cells that the decision-focused model selects for patrolling,
which has major implications in the slowing of the loss of
biodiversity to illegal wildlife poaching.

6 Future Work
In the future, we aim to use convolutional neural networks
in tandem with our decision-focused approach to further im-
prove upon our decision quality using the spatial patterns in
our geospatial data. This will be interesting from a technical
perspective as well, as decision-focused learning has not yet
been applied to CNNs to our knowledge.

7 Ethics and Broader Impact
While our decision-focused approach improves the chances
that rangers actually find snares in the cells they patrol, we
note that there are ethical considerations we must address. In
particular, our approach may make it more likely that rangers
encounter actual poachers as they target the most likely cells
to have snares. However, many of these poachers should not
be considered criminals as they are merely villagers trying to
survive and feed their family. The actual criminals are the
larger illegal smuggling businesses that exploit these people
to poach for their profit. Therefore, it will be increasingly
important to work with local governments and agencies that
use our system to ensure the way rangers and officials deal
with poachers encountered en route is ethical and fair to their
circumstances.
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