Rethinking Nuclear
Can We Change the World’s
Cumulative Carbon Emissions Soon Enough?

Joseph B. Lassiter, III
Senior Fellow
Senator John Heinz Professor of Management Practice
In Environmental Management, Retired
Harvard Business School

April 2016
Venture Capital Return Profile 1995 - 2009
636 Investments
$1,200 MM Cost / $3,000 MM Value - 2.5X

Can you get into the “Big” Ideas?
Private Capital Ecosystem for US and Canadian Privately Funded Nuclear Efforts

• Approximately $1.6+ billion invested in last 10 years
• Professional Investors:
 • Venrock, NEA, RedPoint, Charles River, Lux Capital, Founders Fund, Braemar, Intellectual Ventures, Khosla Ventures, The Wellcome Trust, RussNano, Chrysalix, SDTC, Mithral, Y-Combinator
• High Net Worth Individuals – Gates, Bezos, Samberg
• SWF: Saudi, Russian
• Corporates – Lockheed, General Atomic, Fluor, Toshiba,
• Existing Industry Strategic Partners
 • Many are circling
 • Do they have the “innovators dilemma”
• Nuclear utilities engaged in discussions
• Prototype Testing Announced: TerraPower (China), ThorCon (Indonesia) and Terrestrial (Canada)
• **Industrial MOUs signed in TerraPower (China) and ThorCon Power (Indonesia)**
Funded Nuclear Efforts: Advanced Reactor Nascent Industry
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure Style Construction</td>
<td>Westinghouse AP-1000 GE-Hitachi/Areva (Korea/China/Russia)</td>
<td>TerraPower TWR</td>
<td>Site Excavation Only</td>
<td>Site Excavation Only</td>
</tr>
<tr>
<td>Factory Manufacture</td>
<td>NuScale (Reactor Module)</td>
<td>GE-PRISM UPower (Reactor Module and Whole Plant)</td>
<td>PBMR Areva NGNP General Atomic EM² (Reactor Module and Whole Plant?)</td>
<td>Terrestrial Energy ThorCon Transatomic Moltex (Reactor Module and Whole Plant)</td>
</tr>
<tr>
<td>Service and Fueling</td>
<td>Repair? Centralized Fuel Processing</td>
<td>Upgrade and Repair No Refueling</td>
<td>Upgrade and Repair Continuous Refueling</td>
<td>Upgrade and Repair By Swap Out Continuous Refueling Centralized Fuel Processing</td>
</tr>
<tr>
<td>Reactor Physics Impact</td>
<td>Hi P/Low Temp Water</td>
<td>Atm P/Hi Temp Liquid Metal Sodium</td>
<td>Hi P/Hi Temp He Gas</td>
<td>Atm P/Hi Temp Na/Be/Li Salts</td>
</tr>
</tbody>
</table>
Nuclear Must Be Cheaper Than Coal... Maybe Even Natural Gas ($< 0.05/kWh by 2025)

Uncertain, Lumpy Investments and Technology Cost Curve Forecasts

- Asian Pulverized SC Coal
- North America CCGT
- Gen-III+ LWRs
 - AP-1000 & NuScale
- Gen-IV SFRs
 - PRISM, TerraPower, & UTILITY
- Gen-IV MSRs
 - ThorCon, Terrestrial, and Transatomic
- Gen-IV HTGRs/GFRs
 - GA & Areva NGNP

Cost per kWh vs Time
Nuclear Must Be As Scalable as Coal
(50-100 GWe/yr by 2030)

Build Everything on an Assembly Line
Make Everything Repairable & Upgradeable On Site

- Reactor yard produces 150--500 ton blocks. About 100 blocks per 1GWe plant.
- Blocks are pre-coated, pre-piped, pre-wired, pre-tested.
- Focus quality control at the block and sub-block level.
- Blocks barged to site, dropped into place, and welded together.
- No major repairs or upgrades on-site...ship the block back to the yard.

100 GWe/year yard block diagram; 2,000,000 tons steel per year