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An Introduction to Robust and Clustered Standard Errors Linear Regression with Non-constant Variance

Review: Errors and Residuals

Errors are the vertical distances between observations and the
unknown Conditional Expectation Function. Therefore, they are
unknown.

Residuals are the vertical distances between observations and the
estimated regression function. Therefore, they are known.
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An Introduction to Robust and Clustered Standard Errors Linear Regression with Non-constant Variance

Notation

Errors represent the difference between the outcome and the true
mean.

y = Xβ + u
u = y− Xβ

Residuals represent the difference between the outcome and the
estimated mean.

y = Xβ̂ + û

û = y− Xβ̂
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An Introduction to Robust and Clustered Standard Errors Linear Regression with Non-constant Variance

Variance of β̂ depends on the errors

β̂ =
(
X′X

)−1 X′y

=
(
X′X

)−1 X′(Xβ + u)

= β +
(
X′X

)−1 X′u
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(
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(
X′X
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(
X′X

)−1 X′uu′X
(
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)−1
]− E [
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An Introduction to Robust and Clustered Standard Errors Linear Regression with Non-constant Variance

Variance of β̂ depends on the errors (continued)

V [β̂] = V [β] + V [
(
X′X

)−1 X′u]

= 0 + V [
(
X′X

)−1 X′u]

= E [
(
X′X

)−1 X′uu′X
(
X′X

)−1
]− E [

(
X′X

)−1 X′u]E [
(
X′X

)−1 X′u]′

= E [
(
X′X

)−1 X′uu′X
(
X′X

)−1
]− 0

=
(
X′X

)−1 X′E [uu′]X
(
X′X

)−1

=
(
X′X

)−1 X′ΣX
(
X′X

)−1
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An Introduction to Robust and Clustered Standard Errors Linear Regression with Non-constant Variance

Constant Error Variance and Dependence

Under standard OLS assumptions,

u ∼ Nn(0,Σ)

Σ = Var(u) = E [uu′] =


σ2 0 0 . . . 0
0 σ2 0 . . . 0

...
0 0 0 . . . σ2


What does this mean graphically for a CEF with one explanatory
variable?
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An Introduction to Robust and Clustered Standard Errors Linear Regression with Non-constant Variance

Evidence of Non-constant Error Variance (4 examples)
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An Introduction to Robust and Clustered Standard Errors Linear Regression with Non-constant Variance

Notation

The constant error variance assumption sometimes called
homoskedasiticity states that

Var(u) = E [uu′] =


σ2 0 0 . . . 0
0 σ2 0 . . . 0

...
0 0 0 . . . σ2


In this section we will allow violations of this assumption in the
following heteroskedastic form.

Var(u) = E [uu′] =


σ2

1 0 0 . . . 0
0 σ2

2 0 . . . 0
...

0 0 0 . . . σ2
n


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An Introduction to Robust and Clustered Standard Errors Linear Regression with Non-constant Variance

Consequences of non-constant error variance

I The σ̂2 will not be unbiased for σ2.

I For “α” level tests, probability of Type I error will not be α.
I “1− α” confidence intervals will not have 1− α coverage

probability.
I The LS estimator is no longer BLUE.

However,
I The degree of the problem depends on the amount of

heteroskedasticity.
I β̂ is still unbiased for β
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An Introduction to Robust and Clustered Standard Errors Linear Regression with Non-constant Variance

Heteroskedasticity Consistent Estimator

Suppose

V [u] = Σ =


σ2

1 0 0 . . . 0
0 σ2

2 0 . . . 0
...

0 0 0 . . . σ2
n


then Var(β̂) = (X′X)−1 X′ΣX (X′X)−1 and Huber (and then White)
showed that

(
X′X

)−1 X′


û2

1 0 0 . . . 0
0 û2

2 0 . . . 0
...

0 0 0 . . . û2
n

X
(
X′X

)−1

is a consistent estimator of V [β̂].
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n

X
(
X′X

)−1

is a consistent estimator of V [β̂].

Molly Roberts Robust and Clustered Standard Errors March 6, 2013 13 / 35



An Introduction to Robust and Clustered Standard Errors Linear Regression with Non-constant Variance

Heteroskedasticity Consistent Estimator

Suppose

V [u] = Σ =


σ2

1 0 0 . . . 0
0 σ2

2 0 . . . 0
...

0 0 0 . . . σ2
n


then Var(β̂) = (X′X)−1 X′ΣX (X′X)−1 and Huber (and then White)
showed that

(
X′X

)−1 X′


û2
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An Introduction to Robust and Clustered Standard Errors Linear Regression with Non-constant Variance

Things to note about this approach

1. Requires larger sample size

I large enough for each estimate (e.g., large enough in both
treatment and baseline groups or large enough in both runoff and
non-runoff groups)

I large enough for consistent estimates (e.g., need n ≥ 250 for Stata
default when highly heteroskedastic (Long and Ervin 2000)).

2. Doesn’t make β̂ BLUE
3. What are you going to do with predicted probabilities?
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An Introduction to Robust and Clustered Standard Errors GLM’s and Non-constant Variance

Outline

1 An Introduction to Robust and Clustered Standard Errors
Linear Regression with Non-constant Variance
GLM’s and Non-constant Variance
Cluster-Robust Standard Errors

2 Replicating in R
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An Introduction to Robust and Clustered Standard Errors GLM’s and Non-constant Variance

What happens when the model is not linear?

Huber (1967) developed a general way to find the standard errors for
models that are specified in the wrong way.

Under certain conditions, you can get the standard errors, even if your
model is misspecified.

These are the robust standard errors that scholars now use for other
glm’s, and that happen to coincide with the linear case.
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An Introduction to Robust and Clustered Standard Errors GLM’s and Non-constant Variance

What does it mean for a non-linear model to have
heteroskedasticity?

I Think about the probit model in the latent variable formulation.

I Pretend that there is heteroskedasticity on the linear model for y∗.
I Heteroskedasticity in the latent variable formulation will completely

change the functional form of P(y = 1|x).
I What does this mean? The P(y = 1|x) 6= Φ(xβ). Your model is

wrong.
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An Introduction to Robust and Clustered Standard Errors GLM’s and Non-constant Variance

RSEs for GLMs

To derive robust standard errors in the general case, we assume that

y ∼ fi(y |θ)

Then our likelihood function is given by

n∏
i=1

fi(Yi |θ)

and thus the log-likelihood is

L(θ) =
n∑

i=1

log fi(Yi |θ)
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RSEs for GLMs

We will denote the first and second partial derivatives of L to be:

L′(θ) =
n∑

i=1

gi(Yi |θ),L′′(θ) =
n∑

i=1

hi(Yi |θ)

Where
gi(Yi |θ) = [logfi(y |θ)]′ =

δ

δθ
log fi(y |θ)

and

hi(Yi |θ) = [logfi(y |θ)]′′ =
δ2

δθ2 log fi(y |θ)
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An Introduction to Robust and Clustered Standard Errors GLM’s and Non-constant Variance

RSEs for GLMs

This shouldn’t be too unfamiliar.

Remember, the Fisher information matrix is −Eθ[hi(Yi |θ)].
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An Introduction to Robust and Clustered Standard Errors GLM’s and Non-constant Variance

RSEs for GLMs

I Let’s assume the model is correct – there is a true value θ0 for θ.

I Then we can use the Taylor approximation for the log-likelihood
function to estimate what the likelihood function looks like around
θ0:

L(θ) = L(θ0) + L′(θ0)(θ − θ0) +
1
2

(θ − θ0)T L′′(θ0)(θ − θ0)
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An Introduction to Robust and Clustered Standard Errors GLM’s and Non-constant Variance

RSEs for GLMs

I We can use the Taylor approximation to approximate θ̂ − θ0 and
therefore the variance covariance matrix.

I We want to find the maximum of the log-likelihood function, so we
set L′(θ) = 0:

L′(θ0) + (θ − θ0)T L′′(θ0) = 0

θ̂ − θ0 = [−L′′(θ0)]−1L′(θ0)T

Avar(θ̂) = [−L′′(θ0)]−1[Cov(L′(θ0))][−L′′(θ0)]−1
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An Introduction to Robust and Clustered Standard Errors GLM’s and Non-constant Variance

RSEs for GLMs

It’s the sandwich estimator.

Avar(θ̂) = [−L′′(θ0)]−1[Cov(L′(θ0))][−L′′(θ0)]−1

=

[
−

n∑
i=1

hi(Yi |θ̂)

]−1 [ n∑
i=1

gi(Yi |θ̂)T gi(Yi |θ̂)

][
−

n∑
i=1

hi(Yi |θ̂)

]−1
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RSEs for GLMs

It’s the sandwich estimator.

=

[
−

n∑
i=1

hi(Yi |θ̂)

]−1 [ n∑
i=1

gi(Yi |θ̂)T gi(Yi |θ̂)

][
−

n∑
i=1

hi(Yi |θ̂)

]−1

Bread:
[
−
∑n

i=1 hi(Yi |θ̂)
]−1

Meat:
[∑n

i=1 gi(Yi |θ̂)T gi(Yi |θ̂)
]
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An Introduction to Robust and Clustered Standard Errors Cluster-Robust Standard Errors

Cluster-Robust Standard Errors

Using clustered-robust standard errors, the meat changes.

Instead of summing over each individual, we first sum over the groups. n∑
j=1

∑
i∈cj

gi(Yi |θ̂)T gi(Yi |θ̂)


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Replicating in R

Outline

1 An Introduction to Robust and Clustered Standard Errors
Linear Regression with Non-constant Variance
GLM’s and Non-constant Variance
Cluster-Robust Standard Errors

2 Replicating in R
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Replicating in R

Replicating in R

I There are lots of different ways to replicate these standard errors
in R.

I Sometimes it’s difficult to figure out what is going on in Stata.
I But by really understanding what is going on in R, you will be able

to replicate once you know the equation for Stata.
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Replicating in R

Some Data

I’m going to use data from the Gov 2001 Code library.

load("Gov2001CodeLibrary.RData")

This particular dataset is from the paper "When preferences and
commitments collide: The effect of relative partisan shifts on
International treaty compliance." in International Organization by
Joseph Grieco, Christopher Gelpi, and Camber Warren.

Thanks to Michele Margolis and Dan Altman for their contributions to
the library!

Molly Roberts Robust and Clustered Standard Errors March 6, 2013 29 / 35



Replicating in R

Some Data

I’m going to use data from the Gov 2001 Code library.

load("Gov2001CodeLibrary.RData")

This particular dataset is from the paper "When preferences and
commitments collide: The effect of relative partisan shifts on
International treaty compliance." in International Organization by
Joseph Grieco, Christopher Gelpi, and Camber Warren.

Thanks to Michele Margolis and Dan Altman for their contributions to
the library!

Molly Roberts Robust and Clustered Standard Errors March 6, 2013 29 / 35



Replicating in R

Some Data

I’m going to use data from the Gov 2001 Code library.

load("Gov2001CodeLibrary.RData")

This particular dataset is from the paper "When preferences and
commitments collide: The effect of relative partisan shifts on
International treaty compliance." in International Organization by
Joseph Grieco, Christopher Gelpi, and Camber Warren.

Thanks to Michele Margolis and Dan Altman for their contributions to
the library!

Molly Roberts Robust and Clustered Standard Errors March 6, 2013 29 / 35



Replicating in R

Some Data

I’m going to use data from the Gov 2001 Code library.

load("Gov2001CodeLibrary.RData")

This particular dataset is from the paper "When preferences and
commitments collide: The effect of relative partisan shifts on
International treaty compliance." in International Organization by
Joseph Grieco, Christopher Gelpi, and Camber Warren.

Thanks to Michele Margolis and Dan Altman for their contributions to
the library!

Molly Roberts Robust and Clustered Standard Errors March 6, 2013 29 / 35



Replicating in R

The Model

First, let’s run their model:

fmla <- as.formula(restrict ~ art8 + shift_left + flexible + gnpcap +
regnorm + gdpgrow + resgdp + bopgdp + useimfcr +
surveil + univers + resvol + totvol + tradedep + military +
termlim + parli + lastrest + lastrest2 + lastrest3)

fit <-glm(fmla, data=treaty1,
family=binomial(link="logit"))
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Replicating in R

The Meat and Bread

First recognize that the bread of the sandwich estimator is just the
variance covariance matrix.

library(sandwich)
bread <-vcov(fit)

For the meat, we are going to use the estimating function to create the
matrices first derivative:

est.fun <- estfun(fit)

Note: if estfun doesn’t work for your glm, there is a way to do it using
numericGradient().
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Replicating in R

The Sandwich

So we can create the sandwich

meat <- t(est.fun)%*%est.fun
sandwich <- bread%*%meat%*%bread

And put them back in our table

library(lm.test)
coeftest(fit, sandwich)

Note: For the linear case, estfun() is doing something a bit different
than in the logit, so use:

robust <- sandwich(lm.1, meat=crossprod(est.fun)/N)
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And put them back in our table

library(lm.test)
coeftest(fit, sandwich)
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Replicating in R

Clustered Standard Errors

First, we have to identify our clusters:

fc <- treaty1$imf_ccode
m <- length(unique(fc))
k <- length(coef(fit))

Then, we sum the u’s by cluster

u <- estfun(fit)
u.clust <- matrix(NA, nrow=m, ncol=k)
for(j in 1:k){
u.clust[,j] <- tapply(u[,j], fc, sum)
}
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Replicating in R

Last, we can make our cluster robust matrix:

cl.vcov <- vcov %*% ((m / (m-1)) * t(u.clust)
%*% (u.clust)) %*% + vcov

And test our coefficients

coeftest(fit, cl.vcov)
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Replicating in R

A couple notes

I There are easier ways to do this in R (see for example hccm).

I But it’s good to know what is going on, especially when you are
replicating.

I Beware: degrees of freedom corrections.
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