Female Judicial Assignment and the Content of Appellate Opinions
Michael Gill and Andrew Hall
Department of Government, Harvard University
email: mgill@fas.harvard.edu, hall@fas.harvard.edu

1 Motivation
A significant body of research in social science and empirical law has shown that the random assignment of one or more female judges to appeals court cases affects outcomes. In particular, presence of female judges makes the appeals court rule more favorably for plaintiffs, especially in cases about sexual discrimination, harassment, abortion, and Title VII. Our project extends this work by examining whether the presence of one or more female judges affects the way the text of the rulings are written. This question is important because the text of published appeals court rulings will inform future cases by precedent. Using automated content analysis, we analyze published appeals court rulings for cases in which all three judges were women, and for cases in which there is at least one female judge. We find that the presence of a female judge changes the manner in which the rulings are written to a significant degree. Furthermore, we show this effect is not the result of female authorship. These results suggest female judges are demonstrably effective representatives for women’s issues, not just as judges who rule in a certain way, but as esteemed colleagues who inform the content of a panel’s opinion.

2 Workflow

Collection:
- Get Cases
- Generate Query
- Download
- Match
- Merge

Analysis:
- Create TDM
- Cosine Similarity
- Placebo Tests
- Word Graphics
- KL Divergence

3 Empirics
We divide the entire corpus into two categories: treatment, if at least one female judge is on the panel, and control, if the panel is all male. For each group we generate a vector expressing word frequencies for the entire observed vocabulary.

Cosine Similarity
We then calculate the Cosine Similarity between the treatment and control groups:

\[\text{similarity} = \cos(\theta) = \frac{C \cdot T}{||C|| \cdot ||T||} \]

Where \(T \) and \(C \) are the word-vectors for the treatment and control text corpuses, respectively. To find the significance of our estimates, we employ placebo tests. We repeatedly divide the entire corpus into two random groups, equal in size to the treatment and control groups, and calculate \(\cos(\theta) \).

Kullback-Leibler Divergence
Formally, let \(V \) be the set of observed words (i.e. a unique list of every word observed in any document). Continue to let the vectors \(C \) and \(T \) represent the control and treatment word frequency vectors, thinking of them in terms of probability distributions now. We have:

\[KL(C||T) = \sum_{w \in V} P(w|T) \cdot \log \left(\frac{P(w|T)}{P(w|C)} \right) \]

In words, we take each word \(w \) in the vocabulary \(V \) and compare how likely it is under each distribution. If the two distributions are identical, then the \(KLD \) is 0. If they are completely different, the \(KLD \) can range to \(\infty \).

4 Results

5 Circuit Checks
We show how the cosine similarity and KL-divergence change over all possible subsets of circuits. The strong stability gives us reasonable confidence that non-random assignment at the individual circuit level are not driving our results.

6 Word Plots

References