Party Competition and Legislative Conflict
Legislative Dimensionality in the American South, 1880-1930

Introduction
Low-dimensional legislative conflict in the United States Congress is one of the preeminent empirical findings in the study of American politics. The low-dimensional conflict is normatively valuable insofar as it permits legislators to be easily evaluated by citizens and elites—roll call votes convey more information when legislative conflict is low-dimensional. Aldrich (2011) and others have suggested that party competition drives this low dimensionality. Previous empirical studies of this question have conceptually dichotomized the presence of party and have relied on assumption-laden research designs (Wright and Schaffer 2002). I take advantage of Aldrich's (1949) turn of phrase that one-party government is akin to “no-party govern-ment” to explore the importance of chamber-level party competition for the dimensionality of roll-call voting. I exploit the U.S. South's descent from two-party competition at the end of Reconstruction to one-party enclosure by 1900 to offer evidence that the degree of chamber-level party competition is a major determinant of the dimensionality of legislative conflict. This result indicates the importance of legislative-level party competition for citizens’ ability to hold legislators accountable as well as suggesting bounds on the methodological relevance of low-dimensional legislative ideal points.

Context and Data
The American South, 1880-1930: The context that I study in this piece is the U.S. South between the end of Reconstruction and the onset of the Great Depression. This period covers much of the South’s “reclamation,” a phrase used by white elites to describe the transition of the South from Reconstruction-era party competition to white elite domination of Southern politics through the Democratic Party. This period offers a number of advantages for the purposes of my study:

- First, this period offers considerable variation in levels of chamber-level partisan competition, as Figure 1 demonstrates. Some states exited Reconstruction with robust party competition, while others were dominated by Democrats already, all by 1900, would be dominated by Democrats.
- Second, by focusing only on the American South I am able to control for a number of pos- sible regional confounders.
- Finally, this is a region and period that has received considerable previous scrutiny for its one-party governance; this study is therefore able to benefit from and build upon this previ- ous work.

Data: I employ original data on state legislative roll call voting in the legislative chambers of the U.S. South between 1883 and 1930. At present, the sample is comprised of the Georgia House, the Mississippi House and Senate, the North Carolina House, the Tennessee House and Senate, and the Virginia House and Senate.

This data was scraped from state legislative journals available online through the Law Library Microfilm Consortium (LLMC). The text-searchable journals were first used to acquire a roster of state legislators who served in any given state and session. The roll call votes were then scraped from the journals. Using the roll call data, I used W-NOMINATE software to acquire legislators ideal point estimates and measures of fit for these estimates. The most common such measure is the Average Proportion Reduction in Error (APRE), a measure, calculated at the chamber session level, indicates the proportion of errors that are reduced by the model beyond assuming that everyone votes in the minority on a given roll call vote.

Empirical Strategy
The empirical strategy formalizes the intuition of the above example. Using the first dimension APRE as a measure of the relative chaos or structure in roll call voting, I examine the rela- tionship between the size of the Democratic majority in a chamber and the dimensionality of its roll-call voting. To do so, I leverage within-state changes in Democratic party seat share in a two-way fixed effects design. This design recovers causal estimates under a parallel trends assumption, where states would have reacted to changes in treatment level just as other states that receive different treatment levels would have. The estimating equation is as follows:

\[APRE_{it} = \beta \text{Democratic Seat Share}_{it} + \gamma X_{it} + \alpha_i + \tau_t + \epsilon_{it} \]

where \(i \) indexes legislative chambers, \(t \) indexes years, and \(\alpha_i \) and \(\tau_t \) are chamber and year fixed effects, respectively. Because error terms are likely to be correlated over time within unit, I account for clustering by legislative chamber in conducting inference. Specifically, I use a wild bootstrap blocked on chamber, which produces more accurate coverage probabilities with a small number of clusters (Cameron, Gelbach, and Miller 2008). I report 95% confidence intervals from this bootstrap to conduct statistical inference.

Results
I first present the results graphically in Figure 4. This plots the one-dimensional W-NOMINATE APRE against Democratic chamber share, without accounting for possible confounding. Nev- ertheless, the hypothesized relationship is clearly visible.

Table 1: Legislative Dimensionality and Chamber-Level Party Competition

<table>
<thead>
<tr>
<th>Chamber Share</th>
<th>W-NOMINATE One-Dimension APRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Democratic</td>
<td>-0.689*</td>
</tr>
<tr>
<td></td>
<td>(-0.814, -0.564)</td>
</tr>
<tr>
<td></td>
<td>(0.726, 0.557)</td>
</tr>
<tr>
<td></td>
<td>(0.657, 0.507)</td>
</tr>
</tbody>
</table>

Note: Entries are linear regression coefficients from a model with chamber and year fixed effects. 95% Confidence intervals from a wild bootstrap, blocked on state-chamber, are in parentheses. \(\gamma \) is not significant. The estimating equation is as follows:

\[APRE_{it} = \beta \text{Democratic Seat Share}_{it} + \gamma X_{it} + \alpha_i + \tau_t + \epsilon_{it} \]

\(\text{Demographic Covariates} \)

\(N_i^2 = \sum_i (\text{Observations}) \)

\(183 \quad 183 \quad 183 \)

References

