We consider the problem of Named Entity Recognition and experiment with three data augmentation techniques based on the WikiText-2 dataset with the aim of improving NER benchmark performance. We show improved performance on the WNUT dataset using a technique inspired by back-translation.

ABSTRACT

PROBLEM STATEMENT

Background

Kensho is a market data analytics system that can answer hundreds of million question combinations by scanning over 90,000 customizable actions.

Product Charter

Understand and predict financial markets using the wealth of text data on the internet

Project Goal

Improved Named Entity Recognition (NER) by incorporating knowledge bases

1. Kensho is interested in improving NER benchmarks
2. NER: retrieve information from text by identifying token categories
3. Important in finance due to the need for unambiguous information

NER Example

Apple prices have outpaced Facebook...

Apple prices are killing the jam market.

Conclusions

Apple is likely a reference to the fruit.

Context matters!

Our Datasets

- CoNLL 2003
- WNUT 2017
- Wikidata Knowledge Base
- Text Corpus: WikiData Knowledge
 - WikiData 1.2
 - WikiData 2

Scope of Work

1. Task: Build an NER system which utilizes the WikiData Knowledge Graph to improve performance on a benchmark test set, when compared with existing NER approaches.
2. Training Dataset: WikiData (for the Knowledge Graph) + NER Training Dataset from one or both of (1) WNUT 2017 Emerging Entities ("WNUT") and (2) CoNLL 2003 ("CoNLL").
3. Benchmark Test Set: Test sets created out of one or both of (1) WNUT, and (2) CoNLL.
4. Evaluation: F1 score

VOCABULARIES

- Lists of words for each entity type used in train models
- CoNLL 2003: the canonical NER benchmark
 - 10,000 sentences
 - 20,285 (train, test) pairs
 - |V| = 21,008 words
 - LOC, ORG, PER, MISC + non-labeled words

WikiData

- Unambiguous:
 - We want to build a vocabulary we can rely on
 - Focus on unambiguous words (pertaining to only one entity vocabulary)
 - Don’t use heuristics to build a MISC vocabulary, stick to CoNLL definition

RESULTS AND CHALLENGES

- Get an average F1 score of 0.21, worse than random
- When we incorporate type priors, drops further to 0.14
- Problem: method does not scale to sparse, highly overlapping vocabularies
- Despite the name of the paper, the model is poorly suited to incorporating knowledge base data

3. Fine-tune BERT multi-label classifier on text corpus

Learn to classify each word in a corpus based on whether it is in each entity

VOCABULARIES

- Traditional (Bidirectional) Language Models
 - The company
 - Microsoft
 - Is located in Seattle
 - Data to train Model
 - Word Prediction Based on Context

Knowledge Augmented Language Models

- The company
 - Microsoft
 - Is located in Seattle
 - Lists of Entities
 - Word Based on Context and Type

RESULTS AND CHALLENGES

- Performance on CoNLL Test Set:
 - CoNLL Model
 - 0.650
 - WikiModel
 - 0.673

4. Back-translation

- Key issues with our other approaches: We don’t have contextual NER tags for WikiText-2!
 - Same tag for a label, regardless of context.
- New approach: inspired by “Back-translation”!
 - Used in Neural Machine Translation for language pairs where there is not enough training data.

CONCLUSION

SUMMARY OF RESULTS

1. Results from paper “Knowledge Augmented Language Models” are poor with large knowledge base vocabularies
2. Multi-label classification on top of BERT also does poorly since it encourages the model to ignore context

WHAT WE’VE LEARNED

1. Constructing sets of non-contextual NER tags (vocabs) from knowledge bases is extremely challenging
2. Over-reliance on non-contextual labels encourages the model to ignore context and degrades NER performance
3. Back-translation approaches don’t improve results in-sample but may improve generalization performance from CoNLL to WNUT