Electron-impact excitation of molecular hydrogen: dissociation and vibrationally resolved cross sections

D.V. Fursa
Curtin University, Perth, Australia

in collaboration with: J.S. Savage¹, L.H. Scarlett¹, J. Tapley¹, I. Bray¹, M.C. Zammit², M. Zawadzki³, R. Wright⁴, G. Dolmat⁴, M. F. Martin⁴, L. Hargreaves⁴, M. A. Khakoo⁴

¹Department of Physics and Astronomy, Curtin University, Perth, Western Australia 6102, Australia
²Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
³Department of Physics, Gdansk University of Technology, Gdansk, Poland
⁴Department of Physics, California State University, Fullerton, USA

Acknowledgements
Australian Research Council
Los Alamos National Laboratory
US Air Force Office of Scientific Research
Pawsey Supercomputing Centre
Cross sections for electron scattering from H₂: before CCC (2016)

Experiment
- Only available for scattering from the ground state X $^1\Sigma_g^+ (v=0)$
- Good accuracy for the elastic scattering, total and ionization cross sections
- For excitation cross sections: large uncertainties, often highly inaccurate

Theory
- only small-size close-coupling calculations were available (R-matrix, Schwinger & Kohn variational methods, …), various DW models, impact-parameter method
 - limited to the ground state X $^1\Sigma_g^+ (v=0)$
 - highly inaccurate a few eV away from the excitation thresholds
- for scattering from excited states (vibrationally and electronically) only semiclassical impact-parameter method is available
CCC method: fixed-nuclei (FN) and adiabatic nuclei (AN) approaches

- Born-Oppenheimer approximation
- Fixed-nuclei approximation, $R = \text{fixed}$
- Diagonalization of the target Hamiltonian H_T in a Sturmian (Laguerre) basis

$\Psi_i^{(+)}(x_p, x_i) = \mathcal{A} \sum_{n=1}^{N} F_n(x_p) \phi_n(x_i)$

$T_{fi}(\vec{k}_f, \vec{k}_i) = V_{fi}(\vec{k}_f, \vec{k}_i) + \sum_{n=1}^{N} \int d^3k \frac{V_{fn}(\vec{k}_f, \vec{k})T_{ni}(\vec{k}, \vec{k}_i)}{E + i0 - \varepsilon_n - k^2 / 2}$

$\sigma_{fi}(R) \propto \left| T_{fi}(R) \right|^2$
CCC method:
fixed-nuclei (FN) and adiabatic nuclei (AN) approaches

- Born-Oppenheimer approximation
- Fixed-nuclei approximation, $R = \text{fixed}$
- Diagonalization of the target Hamiltonian H_T in a Sturmian (Laguerre) basis

\[
\Psi_i^{(+)}(x_p, x_i) = \mathcal{A} \sum_{n=1}^{N} F_n(x_p) \phi_n(x_i)
\]

- N-state multi-channel expansion
- Solve integral LS equation for the T-matrix

\[
T_{fi}(\vec{k}_f, \vec{k}_i) = V_{fi}(\vec{k}_f, \vec{k}_i) + \sum_{n=1}^{N} \int d^3k \frac{V_{fn}(\vec{k} f, \vec{k} i) T_{ni}(\vec{k}, \vec{k}_i)}{E + i0 - \varepsilon_n - k^2 / 2}
\]

- Cross sections

\[
\sigma_{fi}(R) \propto |T_{fi}(R)|^2
\]

- AN T-matrix

\[
T_{f \mu, iv}(E) = \int dR \ \varphi_{f \mu}(R) T_{fi}(E; R) \varphi_{iv}(R)
\]

- $\varphi_{n\mu}(R)$ are vibrational wave functions
- Vibrationally resolved cross sections

\[
\sigma_{f \mu, iv}(E) \propto |T_{f \mu, iv}(E)|^2
\]

- Single-center spherical coordinate formulation & spheroidal coordinate formulation
CCC method: PEC for molecular hydrogen

High accuracy of H₂ target states in the spheroidal formulation of CCC

![Graph showing energy levels of H₂ target states as a function of internuclear distance.](image-url)
Cross sections for electron scattering from H_2

CCC: 491, 427, 259, 92, 9-state close-coupling

- total cross section, total ionization cross section, stopping power
- elastic scattering (ICS, DCS)
- excitation cross sections (ICS, DCS) for
 - $b \quad 3\Sigma_u^+$, $a \quad 3\Sigma_g^+$, $c \quad 3\Pi_u$, $e \quad 3\Sigma_u^+$, $h \quad 3\Sigma_g^+$, $i \quad 3\Pi_g$, $j \quad 3\Delta_u$
 - $B \quad 1\Sigma_u^+$, $C \quad 1\Pi_u$, $EF \quad 1\Sigma_g^+$, $B' \quad 1\Sigma_u^+$, $D \quad 1\Pi_u$, $B'' \quad 1\Sigma_u^+$, $D' \quad 1\Pi_u$, $H \quad 1\Sigma_g^+$, $GK \quad 1\Sigma_g^+$, $I \quad 1\Pi_u$, $J \quad 1\Delta$
- dissociation into neutral fragments
- dissociative excitation of $B \quad 1\Sigma_u^+$, $C \quad 1\Pi_u$, $EF \quad 1\Sigma_g^+$, $B' \quad 1\Sigma_u^+$, $D \quad 1\Pi_u$ states
- excitations of $B \quad 1\Sigma_u^+$, $C \quad 1\Pi_u$, $EF \quad 1\Sigma_g^+$, $B' \quad 1\Sigma_u^+$, $D \quad 1\Pi_u$ states from vibrationally excited ground state $X \quad 1\Sigma_g^+ (\nu)$
- in preparation:
 - a data set of vibrationally resolved transitions $X \quad 1\Sigma_g^+ (\nu) \rightarrow B \quad 1\Sigma_u^+ (\nu')$, etc.
 - vibrational excitations of the ground electronic $X \quad 1\Sigma_g^+ (\nu)$ state via electron-impact (VCC)
 - excitation and radiative decay (ERD)
 - scattering from the metastable $c \quad 3\Pi_u (\nu=0)$ state

e⁻-H₂ excitation ICS: B \(^1\Sigma^+_u\) - Lyman band

Oscillator Strength
- Fixed-nuclei CCC: 0.288

Janev & Miles comparisons

\[b^3\Sigma_u^+, \ a^3\Sigma_g^+, \ c^3\Pi_u, \ e^3\Sigma_u^+, \ h^3\Sigma_g^+, \ i^3\Pi_g, \ j^3\Delta_u, \ B^1\Sigma_u^+, \ C^1\Pi_u, \ EF^1\Sigma_g^+, \ B^1\Sigma_u^+, \ D^1\Pi_u \]

Miles, Thompson, Green, J. App. Phys. 43 (1972) 678;
Janev, Reiter, Samm, JÜL-4105, Jülich, 2003

\[\rightarrow \]

used by Ursel Fantz & Dirk Wuenderlich (Garching) in their CR model
e^−-H_2 total ionization cross section

recommended cross sections are due to Yoon et al.,
e^{-}-H$_2$ mass stopping power

$$-\frac{1}{\rho} \frac{dE}{dx} = \frac{N}{M} \sigma_{SP}$$

$$\sigma_{SP} = \sum_{n=1}^{N} (\varepsilon_n - \varepsilon_0) \sigma_n$$

$$= \bar{E} \sigma_{inel}$$

$\bar{E} = \frac{\sigma_{sp}}{\sigma_{inel}} = \frac{\sum_{n=1}^{N} (\varepsilon_n - \varepsilon_0) \sigma_n}{\sum_{n=1}^{N} \sigma_n}$

E-bar from analysis of energy loss spectra

PEC for molecular hydrogen & dissociation

- repulsive first excited state $b^3\Sigma_u^+$
 - major dissociation channel at low energies

- all triplet state decay to $b^3\Sigma_u^+$ contributing to dissociation

- singlet states:
 - dissociative excitation
 - predissociation
 - excitation radiative decay dissociation
Electron-impact dissociation of H$_2$: b $^3\Sigma_u^+$ state

Low energy (< 14 eV): AN approach is required
above 14 eV: FN approach is sufficient
Electron-impact dissociation of H_2: $b\;^3\Sigma_u^+$ state

New time of flight (TOF) spectrometer at California State University, Fullerton:

Old experiments: likely transmission problems for electrostatic spectrometer
Cross sections for the $b \, \Sigma_u^+$ state: experiment at California State University, Fullerton

$$R = \frac{\text{Inelastic}(b \, \Sigma_u^+)}{\text{Elastic}}$$

Cross sections for the $b \, ^3\Sigma_u^+$ state: experiment at California State University, Fullerton

$$R = \text{Inelastic}(b \, ^3\Sigma_u^+) / \text{Elastic}$$

Cross sections for the $b \ ^3\Sigma_u^+$ state: experiment at California State University, Fullerton

Electron-impact dissociation of H_2 : triplet states

Electron-impact dissociation of H_2 : singlet states

- singlet states:
 - dissociative excitation (DE)
 - predissociation (PD)
 - excitation radiative decay dissociation (ERDD)

- fully vibrationally resolved cross sections are required

$$\sigma_{f \mu, jv} (E) \propto |T_{f \mu, jv} (E)|^2$$

Have already published or submitted:
DE
ERD
v-v' cross section data set

Electron-impact dissociation of H₂: singlet states

Electron-impact dissociation of H$_2$ to neutral fragments

Main features
- low energy dominated by the b $^3\Sigma_u^+$ state
- other triplet states make equally large contribution at the peak and above
- singlet states dominate above 50 eV:
 - At high energies (> 50 eV) the main dissociation pathway for H$_2$ is radiative decay to the ground state vibrational continuum via the B $^1\Sigma_u^+$ state.

Scattering from vibrationally excited states $X^{1\Sigma_g^+}(\nu)$

IP: semiclassical impact-parameter method – Bari group

Conclusions

- Large-scale close-coupling calculations for H₂ produced a comprehensive theoretical dataset of e-H₂ excitation cross sections
- Identified and resolved a major discrepancy for excitation of the b $^3\Sigma_{u}^+$ state in collaboration with Prof. Khakoo group (Fullerton)
- Provided first ab-initio estimates for dissociation of H₂
- in preparation: a detailed data set of vibrationally resolved cross sections for H₂
- Cross sections for isotopologues can be produced (D₂, HD, …)
- Results available from LXcat and ALADDIN databases