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Timeline
September 2019 - Kickoff - Design Committee started to meet weekly to 
brainstorm the main requirements and desiderata. This included: Merce 
Crosas, James Honaker, Gary King, Aleksandra Korolova,and Ilya Mironov.

December 2019 - Design Committee retreat - Sketch of the basic design of 
the library and further discussions on the integration of the library with other 
components.

May 2020 - White paper - Outline of the different components and 
requirements for them. Basic prototyping of a proof of concept.



Previous work - background
Many DP systems and languages developed by research community and industry. 

An incomplete list: PINQ, Fuzz, Ektelo, DFuzz, wPINQ, Flex, Chorus, Airavat, 

Featherweight PINQ, DiffPrivLib, PSI library, PrivateSQL, APEX, Google SQL, DPella, 

LightDP, Duet, TensorFlow Privacy, ...

Our design borrows from prior frameworks, especially PINQ, Fuzz, Ektelo.

We welcome your feedback!    Come to breakout tomorrow 11:00 ET!



Desiderata
● Modularity

● Verifiability

● Flexibility

● Extensibility

● Programmability

● Usability

● Efficiency

● Utility



Outline of talk
● Library components

○ Measurements & transformations

○ Chaining, composition, post-processing

○ Privacy and stability relations

○ Interactive measurements

● Practical considerations

○ Implementation considerations

○ Using and contributing to library



Initial assumptions (to be relaxed)

Private input x is of type Multiset(X)

A person may contribute ≤ 1 record to dataset

Goal: support epsilon-DP computation (“pure DP”)

(Adjacency defined in terms of symmetric difference)



Measurement attributes
● Input domain
● Function
● Privacy loss

Measurement:

A randomized function from datasets to outputs

For now, think non-interactive pure DP function

Example:

> NoisySum = MakeNoisySum(l, u, eps)

> NoisySum(private_data) 

Measurements and Transformations

Expects: private_data is a Multiset([l, u])

Returns: sum + Laplace noise

Privacy loss: eps



Transformation:

A deterministic function from datasets to datasets.

T is c-stable if for any x, x’ that differ by d records, then 

                       T(x),T(x’) differ by at most cd records

   

Measurements and Transformations

Transformation attributes
● Input domain
● Output domain
● Function
● Stability

Example:

> Clamping = MakeClamp(l, u)

> Clamping(private_data) 

Expects: private_data is a Multiset(float)

Returns: input with each item “clamped” to [l, u]

Stability: c=1



Combining measurements and 
transformations

Measurements

&

Transformations

Complex DP 

programs

Chaining, 

Composition, & 

Post-processing



Chaining
Chaining T2 and T1 yields a new transformation T’(data) := T2(T1(data))

Chaining M and T yields a new measurement: M’(data) := M(T(data))

The chaining operator

1. checks compatibility of operators

2. derives (privacy) properties of new operator

Example:

> NoisyClampedSum=ChainingMT(NoisySum, Clamping)

New measurement operator

● Input domain: multiset of 
floats

● Function: noisy sum of 
clamped values

● Privacy loss: (c x eps)



Chaining, Composition, Post-processing
Chaining   

M’ = M(T(data))

T’   = T2(T1(data))

Post-processing

M’ = f(M(data))

Composition

M’ = (M1(data), M2(data)) sequential

M’ = (y = M1(data), M2(data, y)) adaptive



New measurement operator

● Input domain: multiset of floats
● Privacy loss: 2eps
● Function: noisy average of 

clamped values

Illustrative example

Noisy average of  (clamped) data

NoisyCount=ChainingMT(

            MakeNoisySum(1, 1, eps), 

            MakeClamp(1, 1))

NoisyPair=Compose(NoisyClampedSum, 

                  NoisyCount)

def divide(x,y): return x/y

NoisyMean=Postprocess(NoisyPair, divide)



Verifying Privacy Properties
Any contribution requires a proof that for all inputs, 

● it raises exception or produces a valid measurement/transformation

● it does not modify already constructed operators or other library code

The proof can be supplied by contributor (and verified by OpenDP) or derived 

automatically.



Want to support multiple types of private data.  Why?

1. Natural variety in input data types (tables, graphs, streams, ...)

2. Intermediate data representations (multisets, vectors, … )

Example of #2: Rewrite NoisySum as…

   BoundedSum = MakeBoundedSum(l, u)

   BaseLaplace = MakeBaseLap(sigma)

   NoisySum=ChainingMT(BaseLaplace, BoundedSum)

Varying types and measures

Intermediate data type: a 
single float



To support multiple types, properties like stability and 

differential privacy must be made type-compatible

We add metrics to measurements and transformations

Varying types and measures

Transformation attributes
● Input domain
● Input metric
● Output domain
● Output metric
● Function
● Stability

Measurement attributes
● Input domain
● Input metric
● Function
● Privacy loss

Example:

Output metric of BoundedSum and 

input metric of BaseLaplace is 

d
abs

(a, b) = | a - b |



Privacy relations and stable relations
To increase flexibility, we replace the privacy loss attribute

with output measure and privacy relation. These two 

attributes permit  to capture other notions of privacy. 

e.g. approx. DP, Renyi DP, or CDP.

Measurement attributes
● Input domain
● Input metric
● Output measure
● Function
● Privacy relation

Example:

> BaseGauss = MakeBaseGauss(sigma)

Output measure: approxDP

Privacy relation: 
R(d_in,(eps,delta))=
(d_in/sigma)√2ln(1.25/delta) ≤ min(eps,1)



Privacy relations and stable relations
We generalize the privacy loss to output measure and 

privacy relation, to capture other notions of privacy. 

E.g. approx. DP, Renyi DP, or CDP.

Similarly, we generalize stability in transformations to 

stability relation. This can be used to capture more

general transformations. E.g. bounded joins.

Measurement attributes
● Input domain
● Input metric
● Output measure
● Function
● Privacy relation

Transformation attributes
● Input domain
● Input metric
● Output domain
● Output metric
● Function
● Stability relation



Example for chainingMT:

….

def privacy_relation(d_in,d_out)=

  d_mid=hint(d_in,d_out)

  return (trans.stability_relation(d_in,d_mid) 

          and

          meas.privacy_relation(d_mid,d_out))

Chaining and composition revisited
Chaining and composition now can use the relations

of the components to derive the relation of the chained

transformation or measurement.

Measurement attributes
● Input domain
● Input metric
● Output measure
● Function
● Privacy relation

Transformation attributes
● Input domain
● Input metric
● Output domain
● Output metric
● Function
● Stability relation



Interactive Measurements
Given the data, an interactive measurement creates a 

queryable object  - a state machine consisting of an initial

state and an evaluation function. 

  

InteractiveMeasurement 
attributes

● Input domain
● Input metric
● Output measure
● Function
● Privacy relation

Queryable
● state
● eval

Example: Adaptive Composition

….

 def eval(query: Measurement, state):

    (st_data, eps) = state

    if query.privacy_loss < eps:

    return (query.function(st_data),eps-query.privacy_loss)

When the queryable receives a query, the evaluation 

function evaluates it and updates the state. 



Chaining, Composition, Post-processing 
for interactive Measurements

Chaining   

M’ = M(T(data))

Post-processing

M’ = f(M(data))       

f can take the queryable produced by M a produce a new queryable.

Composition

Q = M(data);   a1 = Q(q1), a2 = Q(q2), … adaptive

We can also have other forms of composition, e.g. sequential, concurrent.



Outline of talk
● Library components

○ Measurements & transformations

○ Chaining, composition, post-processing

○ Privacy and stability relations

○ Interactive measurements

● Practical considerations

○ Implementation considerations

○ Using and contributing to library



Ensuring Privacy in Implementations
The design we outlined above guarantees private data to be accessed only by 

means of valid measurement and transformations.

In addition, we will need to prevent leakages potentially caused by:

● Timing channels

● Implementation of arithmetic

● Use of pseudorandomness



Discussion of Implementation Language
Desired features: 

● memory safety, encapsulation, immutability

● abstract data types & type safety

● other: functional programming features, generics, structures

Proposal: Rust + Python and R

● Core library written in Rust (for efficiency, verifiability)

● Made available in Python and R via API bindings (for programmability)



Using the library
Calling the library from a DP system requires to: 

● determine the dataset and its type, the privacy notion and its granularity.

● select an interactive measurement from the library.

● present all the queries to the queryable created by the measurement.

The library needs information about the system, e.g. data access model, 

capabilities of the backend, partition between secure and insecure storage.

Different user interfaces can be built on top of the library, e.g. sql-like, GUI, 

Python notebook, etc. 



Contributing to the library
We envision different kinds of code contributions:

● New measurements or transformations combining existing library 

components.

● New private data types, distance measures, or privacy notions.

● New primitives to combine measurements and transformations.

● New “atomic” measurements or transformations with proof of 

correctness.

● New type of privacy or stability calculus. 



The Scope of the Framework
What is supported within the current framework:

● Many different dataset types, privacy measures and granularities, ways 

to combine different primitives to build more complex mechanisms.

● Common database transformations, mechanisms based on global 

sensitivity or restricted sensitivity

Outside the current framework:

● Mechanisms based on local sensitivity, privacy odometers, privacy with 

explicit adversary models, randomized or interactive transformations.



Summary
● Library components

○ Measurements & transformations

○ Chaining, composition, post-processing

○ Privacy and stability relations

○ Interactive measurements

● Practical considerations

○ Implementation considerations

○ Using and contributing to library


